Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = turbocharger compressor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4494 KiB  
Article
Experimental Investigation on the Erosion Resistance Characteristics of Compressor Impeller Coatings to Water Droplet Impact
by Richárd Takács, Ibolya Zsoldos, Norbert Kiss, Izolda Popa-Müller, István Barabás, Balázs Dobos, Miklós Zsolt Tabakov, Csaba Tóth-Nagy and Pavel Novotny
Coatings 2025, 15(7), 767; https://doi.org/10.3390/coatings15070767 - 28 Jun 2025
Viewed by 355
Abstract
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was [...] Read more.
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was monitored through continuous precision mass measurements, and structural changes on the surfaces of both the base materials and the coatings were examined using a Zeiss Crossbeam 350 scanning electron microscope (SEM). Hardness values were determined using a Vickers KB 30 hardness tester, while the chemical composition was analysed using a WAS Foundry Master optical emission spectrometer. Significant differences in erosion resistance were observed among the various compressor wheels, which can be attributed to differences in coating hardness values, as well as to the detachment of the Ni-P layer from the base material under continuous erosion. In all cases, water droplet erosion led to a reduction in the isentropic efficiency of the compressor—measured using a hot gas turbocharger testbench—with the extent of efficiency loss depending upon the type of coating applied. Although blade protection technologies for turbocharger compressor impellers used in the automotive industry have been the subject of only a limited number of studies, modern technologies, such as the application of certain alternative fuels and exhaust gas recirculation, have increased water droplet formation, thereby accelerating the erosion rate of the impeller. The aim of this study is to evaluate the resistance of three different coating layers to water droplet erosion through standardized tests conducted using a custom-designed experimental apparatus. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

22 pages, 6648 KiB  
Article
Conjugate Heat Transfer Modelling in a Centrifugal Compressor for Automotive Applications
by Carlo Cravero, Pierre-Alain Hoffer, Davide Marsano, Daniele Mattiello and Luigi Mosciaro
Energies 2025, 18(13), 3348; https://doi.org/10.3390/en18133348 - 26 Jun 2025
Viewed by 228
Abstract
In the automotive industry, the increasing stringent standards to reduce fuel consumption and pollutant emissions has driven significant advancements in turbocharging systems. The centrifugal compressor, as the most widely used power-absorbing machinery, plays a crucial role but remains one of the most complex [...] Read more.
In the automotive industry, the increasing stringent standards to reduce fuel consumption and pollutant emissions has driven significant advancements in turbocharging systems. The centrifugal compressor, as the most widely used power-absorbing machinery, plays a crucial role but remains one of the most complex components to study and design. While most numerical studies rely on adiabatic models, this work analyses several Computational Fluid Dynamics (CFD) models with conjugate heat transfer (CHT) of varying complexity, incorporating real solid components. This approach allowed a sensitivity analysis of the performance obtained from the different models compared to the adiabatic case, highlighting the effects of internal heat exchange losses. Moreover, an analysis of the temperature distribution of the wheel was conducted, along with a thermal assessment of the various heat flux contributions across the different components, to gain a deeper understanding of the performance differences. The impact of including the seal plate has been evaluated and different boundary conditions on the seal plate have been tested to assess the uncertainty in the results. Finally, the influence of heat exchange between the shroud and the external environment is also examined to further refine the model’s accuracy. One of the objectives of this work is to obtain a correct temperature profile of the rotor for a subsequent thermo-mechanical analysis. Full article
Show Figures

Figure 1

31 pages, 21407 KiB  
Article
Effect of Different Heat Sink Designs on Thermoelectric Generator System Performance in a Turbocharged Tractor
by Ali Gürcan and Gülay Yakar
Energies 2025, 18(13), 3267; https://doi.org/10.3390/en18133267 - 22 Jun 2025
Viewed by 750
Abstract
In this study, the effects of different heat sink designs on the cold side of the modules in a thermoelectric generator (TEG) system placed between the compressor and the intercooler of a turbocharged tractor on the system performance were numerically analyzed. In the [...] Read more.
In this study, the effects of different heat sink designs on the cold side of the modules in a thermoelectric generator (TEG) system placed between the compressor and the intercooler of a turbocharged tractor on the system performance were numerically analyzed. In the current literature, heat sinks used in TEG modules generally consist of plate fins. In this study, by using perforated and slotted fins, the thermal boundary layer behaviors were changed and there was an attempt to increase the heat transfer from the cold surface compared to plate fins. Thus, the performance of the TEG system was also increased. When looking at the literature, it is seen that there are studies which aim to increase the performance of TEG modules by changing the dimensions of p and n type semiconductors. However, there is no study aiming to increase the performance of TEG modules by making changes on the plate fins of the heat sinks used in these modules and thus increasing the heat transfer amount. In this respect, this study offers important results for the literature. According to the numerical analysis results, the total TEG output power, output voltage, and thermal efficiency obtained for S0.5H15 were 6.2%, about 3%, and about 5% higher than those for PF, respectively. In addition, the pressure drop values obtained for different heat sinks, except for aluminum foam, were approximately close to each other. In cases with TEG systems where different heat sinks were used, the intercooler inlet air temperatures decreased by approximately 3.4–3.5% compared to the case without the TEG system. This indicates that the use of TEG will positively affect the improvement in engine efficiency. Full article
Show Figures

Figure 1

19 pages, 5539 KiB  
Article
Matching and Control Optimisation of Variable-Geometry Turbochargers for Hydrogen Fuel Cell Systems
by Matt L. Smith, Alexander Fritot, Davide Di Blasio, Richard Burke and Tom Fletcher
Appl. Sci. 2025, 15(8), 4387; https://doi.org/10.3390/app15084387 - 16 Apr 2025
Viewed by 678
Abstract
The turbocharging of hydrogen fuel cell systems (FCSs) has recently become a prominent research area, aiming to improve FCS efficiency to help decarbonise the energy and transport sectors. This work compares the performance of an electrically assisted variable-geometry turbocharger (VGT) with a fixed-geometry [...] Read more.
The turbocharging of hydrogen fuel cell systems (FCSs) has recently become a prominent research area, aiming to improve FCS efficiency to help decarbonise the energy and transport sectors. This work compares the performance of an electrically assisted variable-geometry turbocharger (VGT) with a fixed-geometry turbocharger (FGT) by optimising both the sizing of the components and their operating points, ensuring both designs are compared at their respective peak performance. A MATLAB-Simulink reduced-order model is used first to identify the most efficient components that match the fuel cell air path requirements. Maps representing the compressor and turbines are then evaluated in a 1D flow model to optimise cathode pressure and stoichiometry operating targets for net system efficiency, using an accelerated genetic algorithm (A-GA). Good agreement was observed between the two models’ trends with a less than 10.5% difference between their normalised e-motor power across all operating points. Under optimised conditions, the VGT showed a less than 0.25% increase in fuel cell system efficiency compared to the use of an FGT. However, a sensitivity study demonstrates significantly lower sensitivity when operating at non-ideal flows and pressures for the VGT when compared to the FGT, suggesting that VGTs may provide a higher level of tolerance under variable environmental conditions such as ambient temperature, humidity, and transient loading. Overall, it is concluded that the efficiency benefits of VGT are marginal, and therefore not necessarily significant enough to justify the additional cost and complexity that they introduce. Full article
(This article belongs to the Special Issue Advances in Fuel Cell Renewable Hybrid Power Systems)
Show Figures

Figure 1

9 pages, 1074 KiB  
Proceeding Paper
Novel Modeling Methodology for Thermal Evaluation of an Electrically Assisted High-Speed Turbomachine
by Georgios S. Arvithis, Georgios Iosifidis, Roberto DeSantis, Martin Rode, Raphael Burgmair and Anestis I. Kalfas
Eng. Proc. 2025, 90(1), 48; https://doi.org/10.3390/engproc2025090048 - 14 Mar 2025
Viewed by 570
Abstract
Hydrogen-based fuel-cell systems are a promising technology for reducing carbon footprint in the portfolio of future propulsion system concepts for small-range and regional aircraft In order to increase efficiency, the application of a turbo-charged air supply, using a compressor stage, a turbine stage, [...] Read more.
Hydrogen-based fuel-cell systems are a promising technology for reducing carbon footprint in the portfolio of future propulsion system concepts for small-range and regional aircraft In order to increase efficiency, the application of a turbo-charged air supply, using a compressor stage, a turbine stage, and an electric motor, has proven to be beneficial. This paper explores the thermal management aspects of a pioneering Electrified Turbo Charger designed for fuel-cell applications. A novel approach employing gas-cooling for the electric machine is investigated through simulation using an adiabatic Computational Fluid Dynamics (CFD) model. Bulk-flow-based Heat Transfer Coefficients (BHTCs) and temperatures are extracted from the CFD Analysis and serve as boundary conditions in a Solid Thermal model. Additionally, a 3D transient electromagnetic analysis is employed to assess losses in various components of the machine, which are then integrated into the 3D Solid Thermal Model. Initial evaluation of the temperature distribution is conducted, and subsequent analysis highlights uncertainties inherent in this methodology. Full article
Show Figures

Figure 1

19 pages, 9197 KiB  
Article
Numerical Investigations of Inlet Recirculation in a Turbocharger Centrifugal Compressor
by Tariq Ullah, Krzysztof Sobczak, Grzegorz Liskiewicz and Mariusz Mucha
Energies 2025, 18(4), 903; https://doi.org/10.3390/en18040903 - 13 Feb 2025
Viewed by 790
Abstract
Turbocharged internal combustion engines offer efficient power-to-weight ratios, aiding in fuel-saving efforts within the automotive industry. However, when the flow is low, compressors show various instabilities, i.e., stall and inlet recirculation, which have a negative influence on their performance. This paper uses transient [...] Read more.
Turbocharged internal combustion engines offer efficient power-to-weight ratios, aiding in fuel-saving efforts within the automotive industry. However, when the flow is low, compressors show various instabilities, i.e., stall and inlet recirculation, which have a negative influence on their performance. This paper uses transient numerical simulations to explore the inlet recirculation phenomenon in a turbocharger compressor. The Reynolds-Averaged Navier–Stokes equations and k-ω SST turbulence model were solved using ANSYS CFX. The numerical model was verified using the experimental data for the design speed line. Analysis of mesh independence was performed to assess the discretization uncertainty near the design and surge line points. The results indicate that the inlet recirculation appears for moderate flows lower than design conditions. It shows significant radial and streamwise growth as the flow decreases. The reversed flow area increases more intensely in the radial direction at medium mass flow rates, whereas the streamwise growth is more substantial at low mass flow rates. The reversed flow reached 27% of the total inlet area at the point on the surge line. It was accompanied by a 15.7% drop in efficiency between the points with weak and strong inlet recirculation. The presented research indicates significant changes in the size of the inlet recirculation zone in the circumferential direction. It reaches its highest intensity close to the angular position of the volute tongue. Full article
Show Figures

Figure 1

20 pages, 7847 KiB  
Article
Performance Analysis of a Waste-Gated Turbine for Automotive Engines: An Experimental and Numerical Study
by Carla Cordalonga, Silvia Marelli and Vittorio Usai
Machines 2025, 13(1), 54; https://doi.org/10.3390/machines13010054 - 13 Jan 2025
Viewed by 889
Abstract
In this article, the results of an experimental investigation and a 1D modeling activity on the steady-state performance of a wastegated turbocharger turbine for spark ignition engines are presented. An experimental campaign to analyze the turbine performance for different waste-gate valve openings was [...] Read more.
In this article, the results of an experimental investigation and a 1D modeling activity on the steady-state performance of a wastegated turbocharger turbine for spark ignition engines are presented. An experimental campaign to analyze the turbine performance for different waste-gate valve openings was conducted at the test bench for components of propulsion systems of the University of Genoa. Thanks to the experimental activity, a 1D model is developed to assess the interaction between the flow through the impeller and the by-pass port. Advanced modeling techniques are crucial for improving the assessment of turbocharger turbines performance and, consequently, enhancing the engine–turbocharger matching calculation. The initial tuning of the model is based on turbine characteristic maps obtained with the by-pass port kept closed. The study then highlights the waste-gate valve behavior considering its different openings. It was found that a more refined model is necessary to accurately define the mass flow rate through the waste-gate valve. After independently tuning the 1D models of the turbine and the waste-gate valve, their behavior is analyzed in parallel-flow conditions. The results highlight significant interactions between the two components that must be taken into account to reduce inaccuracies in the engine-turbocharger matching calculation. These interactions lead to a reduced swallowing capacity of the turbine impeller. This reduction has an impact on the power delivered to the compressor, the boost pressure, and, consequently, the engine backpressure. The results suggest that methods generally adopted that consider the by-pass valve and the turbine as two nozzles working in parallel under the same thermodynamic condition could be insufficient to accurately assess the turbocharger behavior. Full article
Show Figures

Figure 1

31 pages, 13172 KiB  
Article
Impact of Optimization Variables on Fuel Consumption in Large Four-Stroke Diesel Marine Engines with Electrically Divided Turbochargers
by Anibal Aguillon Salazar, Georges Salameh, Pascal Chesse, Nicolas Bulot and Yoann Thevenoux
Machines 2024, 12(12), 926; https://doi.org/10.3390/machines12120926 - 17 Dec 2024
Cited by 2 | Viewed by 1278
Abstract
The objective of this study is to understand how each variable impacts the optimal configuration of a marine diesel engine equipped with an electric hybrid air-charging system that allows energy assistance and recovery. The aim is to minimize CO2 emissions by reducing [...] Read more.
The objective of this study is to understand how each variable impacts the optimal configuration of a marine diesel engine equipped with an electric hybrid air-charging system that allows energy assistance and recovery. The aim is to minimize CO2 emissions by reducing fuel consumption. The hybrid system offers flexibility in adjusting parameters from both the engine and air-charging system. It is compared with the baseline engine, which uses a free-floating turbocharger. The results show a significant improvement at low engine loads, where the baseline engine struggles to provide sufficient air. While turbine speed has little influence, compressor power reduces fuel consumption at low loads. However, at mid loads, resizing the turbomachine is necessary for further improvements. At high loads, full optimization of all variables is required to reduce fuel consumption. The electric hybrid system is particularly effective in tugboat-like conditions, where low loads dominate, but less impactful for ro-pax ferries. Despite the potential of the hybrid system, a fully optimized turbocharger could provide greater benefits due to reduced losses. Future studies could explore combining the adaptability of the hybrid system with a highly efficient turbocharger to reduce emissions across all load conditions. Full article
(This article belongs to the Special Issue Advanced Engine Energy Saving Technology)
Show Figures

Figure 1

30 pages, 5921 KiB  
Article
Experimental Investigation of Synchronous-Flow-Induced Blade Vibrations on a Radial Turbine
by Marios Sasakaros, Markus Schafferus, Manfred Wirsum, Arthur Zobel, Damian Vogt, Alex Nakos and Bernd Beirow
Int. J. Turbomach. Propuls. Power 2024, 9(4), 35; https://doi.org/10.3390/ijtpp9040035 - 8 Nov 2024
Cited by 1 | Viewed by 2479
Abstract
In this study, a thorough experimental investigation of the synchronous blade vibrations of a radial turbine is performed for different IGV configurations. First, the blade modes are measured experimentally and calculated numerically. Subsequently, the vibrations are recorded with two redundant measurement systems during [...] Read more.
In this study, a thorough experimental investigation of the synchronous blade vibrations of a radial turbine is performed for different IGV configurations. First, the blade modes are measured experimentally and calculated numerically. Subsequently, the vibrations are recorded with two redundant measurement systems during real operation. Strain gauges were applied on certain blades, while a commercial blade-tip-timing system is used for the measurement of blade deflections. The experimentally determined vibration properties are compared with numerical estimations. Initially, the vibrations recorded with the “nominal” IGV were presented. This IGV primarily generates nodal diameter (ND) 0 vibrations. Subsequently, the impact of two different IGV configurations is examined. First, a mistuned IGV, which has the same number of vanes as the “nominal” IGV is examined. By intentionally varying the distance between the vanes, additional low engine order excitations are generated. Moreover, an IGV with a higher number of vanes is employed to induce excitations at higher frequency modes and ND6 vibrations. Certain vibrations are consistently measured across all IGV configurations, which cannot be attributed to the spiral turbine casing. In addition, a turbine–compressor interaction has been observed. Full article
Show Figures

Figure 1

17 pages, 10625 KiB  
Article
Diesel Engine Turbocharger Monitoring by Processing Accelerometric Signals through Empirical Mode Decomposition and Independent Component Analysis
by Ornella Chiavola, Fulvio Palmieri, Gabriele Bocchetta, Giorgia Fiori and Andrea Scorza
Energies 2024, 17(17), 4293; https://doi.org/10.3390/en17174293 - 28 Aug 2024
Viewed by 1027
Abstract
In this study, a method for the monitoring of internal combustion engine operation by vibration signals is proposed. The work falls within the context of the increasingly stringent standards relating to the environmental impact of engines and the development of monitoring and control [...] Read more.
In this study, a method for the monitoring of internal combustion engine operation by vibration signals is proposed. The work falls within the context of the increasingly stringent standards relating to the environmental impact of engines and the development of monitoring and control techniques to ensure increased engine performance as well as fuel saving and reduction of pollutant emissions. Experimentation was performed on a turbocharged light-duty compression ignition direct-injection engine. Two monoaxial accelerometers were installed on the engine compressor case, the speed of which has been demonstrated to be closely related to the engine operation. Vibration measurements of the engine compressor case have been processed by combining the Empirical Mode Decomposition technique with Independent Component Analysis and Short Time Fourier Transform to indirectly estimate the turbocharger speed. The obtained traces have been compared to the direct turbocharger velocity measures during the stationary running of the engine (speed and load conditions varied in the complete engine’s range of operation). The results point out the potentiality of the methodology in algorithms devoted to identifying modifications of the combustion development regarding regular operation via indirect turbocharger speed monitoring. Full article
Show Figures

Figure 1

28 pages, 15256 KiB  
Article
A Computational Analysis of Turbocharger Compressor Flow Field with a Focus on Impeller Stall
by Deb K. Banerjee, Ahmet Selamet and Pranav Sriganesh
Fluids 2024, 9(7), 162; https://doi.org/10.3390/fluids9070162 - 17 Jul 2024
Cited by 1 | Viewed by 1556
Abstract
Understanding the flow instabilities encountered by the turbocharger compressor is an important step toward improving its overall design for performance and efficiency. While an experimental study using Particle Image Velocimetry was previously conducted to examine the flow field at the inlet of the [...] Read more.
Understanding the flow instabilities encountered by the turbocharger compressor is an important step toward improving its overall design for performance and efficiency. While an experimental study using Particle Image Velocimetry was previously conducted to examine the flow field at the inlet of the turbocharger compressor, the present work complements that effort by analyzing the flow structures leading to stall instability within the same impeller. Experimentally validated three-dimensional computational fluid dynamics predictions are carried out at three discrete mass flow rates, including 77 g/s (stable, maximum flow condition), 57 g/s (near peak efficiency), and 30 g/s (with strong reverse flow from the impeller) at a fixed rotational speed of 80,000 rpm. Large stationary stall cells were observed deep within the impeller at 30 g/s, occupying a significant portion of the blade passage near the shroud between the suction surface of the main blades and the pressure surface of the splitter blades. These stall cells are mainly created when a substantial portion of the inlet core flow is unable to follow the impeller’s axial to radial bend against the adverse pressure gradient and becomes entrained by the reverse flow and the tip leakage flow, giving rise to a region of low-momentum fluid in its wake. This phenomenon was observed to a lesser extent at 57 g/s and was completely absent at 77 g/s. On the other hand, the inducer rotating stall was found to be most dominant at 57 g/s. The entrainment of the tip leakage flow by the core flow moving into the impeller, leading to the generation of an unstable, wavy shear layer at the inducer plane, was instrumental in the generation of rotating stall. The present analyses provide a detailed characterization of both stationary and rotating stall cells and demonstrate the physics behind their formation, as well as their effect on compressor efficiency. The study also characterizes the entropy generation within the impeller under different operating conditions. While at 77 g/s, the entropy generation is mostly concentrated near the shroud of the impeller with the core flow being almost isentropic, at 30 g/s, there is a significant increase in the area within the blade passage that shows elevated entropy production. The tip leakage flow, its interaction with the blades and the core forward flow, and the reverse flow within the impeller are found to be the major sources of irreversibilities. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics in Fluid Machinery)
Show Figures

Figure 1

10 pages, 9827 KiB  
Article
Transient Flow-Induced Stress Investigation on a Prototype Reversible Pump–Turbine Runner
by Dehao Zhang, Qiang Quan, Xingxing Huang, Zhengwei Wang, Biao Wang and Yunfeng Xiao
Energies 2024, 17(12), 3026; https://doi.org/10.3390/en17123026 - 19 Jun 2024
Cited by 6 | Viewed by 1036
Abstract
Pump–turbine units with high heads are subjected to strong pressure pulsations from the unsteady transient flow in fluid channels, which can produce severe vibrations and high stresses on the pump–turbine structural components. Therefore, reducing transient flow-induced stresses on prototype reversible pump–turbine units is [...] Read more.
Pump–turbine units with high heads are subjected to strong pressure pulsations from the unsteady transient flow in fluid channels, which can produce severe vibrations and high stresses on the pump–turbine structural components. Therefore, reducing transient flow-induced stresses on prototype reversible pump–turbine units is an important measure for ensuring their safe and efficient operation. A high-head prototype reversible pump–turbine with a rated head of 440 m was used to investigate the transient flow characteristics and the flow-induced-stresses in this study. First, the flow passages of the pump–turbine unit and the structure of the reversible pump–turbine runner were constructed with CAD tools. Next, CFD simulations at the full load were performed to investigate the pressure pulsation characteristics of the pump turbine in both the time domain and the frequency domain. After this, the pressure files calculated by the CFD were exported and applied to a finite element model of the pump–turbine runner to calculate the transient flow-induced dynamic stresses. The results show that the pressure pulsations in the flow passage are closely related to the rotational speed, the guide vane number, and the runner blade number of the pump–turbine unit. The maximum flow-induced stresses on the pump–turbine runner at the full load were below 2 MPa and lower than the allowable value, which reveals that the designs of the pump–turbine runner and the flow passage are acceptable. The conclusions can be used as a reference to evaluate the design of high-head pump–turbines units. The approaches used to carry out the transient flow-induced stress calculations can be applied not only to pump–turbines units but also to other types of fluid turbomachinery such as pumps, turbines, fans, compressors, turbochargers, etc. Full article
Show Figures

Figure 1

32 pages, 10043 KiB  
Article
Applicability of Variable-Geometry Turbocharger for Diesel Generators under High Exhaust Back Pressure
by Chien-Cheng Chen, Yuan-Liang Jeng and Shun-Chang Yen
J. Mar. Sci. Eng. 2024, 12(6), 938; https://doi.org/10.3390/jmse12060938 - 3 Jun 2024
Cited by 1 | Viewed by 1505
Abstract
The exhaust back pressure of diesel engines is becoming increasingly higher nowadays. In order to keep discharging exhaust unhindered and operating smoothly under high exhaust back pressure, a large reduction in engine maximum brake output is often observed, as well as increased fuel [...] Read more.
The exhaust back pressure of diesel engines is becoming increasingly higher nowadays. In order to keep discharging exhaust unhindered and operating smoothly under high exhaust back pressure, a large reduction in engine maximum brake output is often observed, as well as increased fuel consumption and lower combustion efficiency with heavy exhaust smokes. In our previous study, “Applicability of Reducing Valve Timing Overlap for Diesel Engines under High Exhaust Back Pressure”, a reduced valve timing overlap of 12 °CA partially improves the brake output and BSFC for a fixed-geometry turbocharged diesel engine under high exhaust back pressures. A potential solution for restoring the brake output under high exhaust back pressures could be the use of variable-geometry turbochargers. In this study, a variable-geometry turbocharger is applied to a diesel engine to study the engine performance characteristics and applicability, especially the further improvement of brake output and the brake-specific fuel consumption of the engine. Continuing with the results of our previous research, a basic setting of 12 °CA for the valve timing overlap is set up for the subsequent engine performance simulations in this study (using GT-Power SW). Via simulation, exhaust back pressures of 25 kPa, 45 kPa, and 65 kPa gauge are studied for a turbocharged diesel engine. The results for the engine parameters, including brake output, brake-specific fuel consumption, compressor outlet temperature, turbine inlet temperature, intake air mass flow rate, and exhaust mass flow rate are analyzed. The results of the variable-geometry turbocharger, including turbocharger speed, pressure ratios and efficiencies of compressor and turbine are also analyzed. The results indicate that the brake output and brake-specific fuel consumption are effectively improved under full-load operation with an adequate variable-geometry turbocharger rack position. Operable ranges of rack position are also set up for different back pressures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 8698 KiB  
Article
Experimental Study on the Flow Characteristics of Two-Stage Variable Turbines in a Twin-VGT System
by Qikai Peng, Zhongjie Zhang, Guangmeng Zhou, Surong Dong, Xumin Zhao, Han Zhang, Ruilin Liu and Jun Cai
Energies 2023, 16(23), 7873; https://doi.org/10.3390/en16237873 - 1 Dec 2023
Cited by 1 | Viewed by 1164
Abstract
The twin variable geometry turbocharger (VGT) System, through efficient use of exhaust energy, maximizes internal combustion engine (ICE) power, reduces exhaust emissions and improves reliability. However, the internal flow characteristics of the twin-VGT system are greatly affected by the environment. To ensure that [...] Read more.
The twin variable geometry turbocharger (VGT) System, through efficient use of exhaust energy, maximizes internal combustion engine (ICE) power, reduces exhaust emissions and improves reliability. However, the internal flow characteristics of the twin-VGT system are greatly affected by the environment. To ensure that the two-stage adjustable supercharged internal combustion engine is efficient in all geographical environments and under all operating conditions, it is necessary to conduct in-depth research on the internal flow characteristics of high- and low-pressure turbines. In this paper, an experimental system of the flow characteristics of a double variable-geometry turbocharging (twin-VGT) system is designed and developed. A two-stage variable turbine flow characteristic test was carried out, focusing on the relationship between the initial rotational velocity of high variable-geometry turbocharging (HVGT) and blade opening in low variable-geometry turbocharging (LVGT). The effects of high- and low-pressure variable-geometry turbocharger (VGT) blade opening on available exhaust energy, expansion ratio distribution, blade velocity ratio, compressor power consumption and isentropic efficiency were studied. The results show that when the available energy of exhaust gas is constant, with the increase in HVGT turbine speed, when the LVGT blade opening decreases by 10%, the low-pressure turbine expansion ratio increases by about 0.23. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

13 pages, 2770 KiB  
Article
Determination of a Numerical Surge Limit by Means of an Enhanced Greitzer Compressor Model
by Tobias Haeckel, Dominik Paul, Sebastian Leichtfuß, Heinz-Peter Schiffer and Werner Eißler
Int. J. Turbomach. Propuls. Power 2023, 8(4), 48; https://doi.org/10.3390/ijtpp8040048 - 14 Nov 2023
Cited by 2 | Viewed by 2535
Abstract
The surge limit of centrifugal compressors is a key parameter in the design process of modern turbochargers. Numerical methods like steady-state simulations are state-of-the-art methods for predicting the performance of the centrifugal compressor. In contrast to that, the determination of the surge limit [...] Read more.
The surge limit of centrifugal compressors is a key parameter in the design process of modern turbochargers. Numerical methods like steady-state simulations are state-of-the-art methods for predicting the performance of the centrifugal compressor. In contrast to that, the determination of the surge limit with any numerical method is still an unsolved challenge. Since the extensive work of Greitzer and many other researchers in this field, it is well-known that surge is a system-dependent phenomenon. In the case of steady-state simulations, the simulation domain is chosen to be as small as possible due to the numerical cost. This simply implies that there is no system information included in the numerical model. Therefore, it is not possible to determine any system-dependent surge limit with today’s applied numerical methods. To overcome this issue, an enhanced Greitzer surge model, which has been developed at Tu Darmstadt, should act as a link between the simulation and the system in which the compressor will be operated. The focus of this paper will rather be on the methodology of determining the surge limit by means of numerical data than on the surge model itself. The methodology will be validated by experimental data of different systems. Full article
Show Figures

Figure 1

Back to TopTop