Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = tunnel magnetoresistance effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 24344 KiB  
Article
The Influence of Dimensional Parameters on the Characteristics of Magnetic Flux Concentrators Used in Tunneling Magnetoresistance Devices
by Ran Bi, Huiquan Zhang, Shi Pan, Xinting Liu, Ruiying Chen, Shilin Wu and Jun Hu
Sensors 2025, 25(15), 4739; https://doi.org/10.3390/s25154739 - 31 Jul 2025
Viewed by 198
Abstract
Measuring weak magnetic fields proposes significant challenges to the sensing capabilities of magnetic field sensors. The magnetic field detection capacity of tunnel magnetoresistance (TMR) sensors is often insufficient for such applications, necessitating targeted optimization strategies to improve their performance in weak-field measurements. Utilizing [...] Read more.
Measuring weak magnetic fields proposes significant challenges to the sensing capabilities of magnetic field sensors. The magnetic field detection capacity of tunnel magnetoresistance (TMR) sensors is often insufficient for such applications, necessitating targeted optimization strategies to improve their performance in weak-field measurements. Utilizing magnetic flux concentrators (MFCs) offers an effective approach to enhance TMR sensitivity. In this study, the finite element method was employed to analyze the effects of different MFC geometric structures on the uniformity of the magnetic field in the air gap and the magnetic circuit gain (MCG). It was determined that the MCG of the MFC is not directly related to the absolute values of its parameters but rather to their ratios. Simulation analyses evaluated the impact of these parameter ratios on both the MCG and its spatial distribution uniformity, leading to the formulation of MFC design optimization principles. Building on these simulation-derived principles, several MFCs were fabricated using the 1J85 material, and an experimental platform was established to validate the simulation findings. The fabricated MFCs achieved an MCG of 7.325 times. Based on the previously developed TMR devices, a detection sensitivity of 2.46 nT/Hz @1Hz was obtained. By optimizing parameter configurations, this work provides theoretical guidance for further enhancing the performance of TMR sensors in magnetic field measurements. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 8345 KiB  
Article
Enhancing Reliability in Redundant Homogeneous Sensor Arrays with Self-X and Multidimensional Mapping
by Elena Gerken and Andreas König
Sensors 2025, 25(13), 3841; https://doi.org/10.3390/s25133841 - 20 Jun 2025
Viewed by 2130
Abstract
Mechanical defects and sensor failures can substantially undermine the reliability of low-cost sensors, especially in applications where measurement inaccuracies or malfunctions may lead to critical outcomes, including system control disruptions, emergency scenarios, or safety hazards. To overcome these challenges, this paper presents a [...] Read more.
Mechanical defects and sensor failures can substantially undermine the reliability of low-cost sensors, especially in applications where measurement inaccuracies or malfunctions may lead to critical outcomes, including system control disruptions, emergency scenarios, or safety hazards. To overcome these challenges, this paper presents a novel Self-X architecture with sensor redundancy, which incorporates dynamic calibration based on multidimensional mapping. By extracting reliable sensor readings from imperfect or defective sensors, the system utilizes Self-X principles to dynamically adapt and optimize performance. The approach is initially validated on synthetic data from tunnel magnetoresistance (TMR) sensors to facilitate method analysis and comparison. Additionally, a physical measurement setup capable of controlled fault injection is described, highlighting practical validation scenarios and ensuring the realism of synthesized fault conditions. The study highlights a wide range of potential TMR sensor failures that compromise long-term system reliability and demonstrates how multidimensional mapping effectively mitigates both static and dynamic errors, including offset, amplitude imbalance, phase shift, mechanical misalignments, and other issues. Initially, four individual TMR sensors exhibited mean absolute error (MAE) of 4.709°, 5.632°, 2.956°, and 1.749°, respectively. To rigorously evaluate various dimensionality reduction (DR) methods, benchmark criteria were introduced, offering insights into the relative improvements in sensor array accuracy. On average, MAE was reduced by more than 80% across sensor combinations. A clear quantitative trend was observed: for instance, the MAE decreases from 4.7°–5.6° for single sensors to 0.111° when the factor analysis method was applied to four sensors. This demonstrates the concrete benefit of sensor redundancy and DR algorithms for creating robust, fault-tolerant measurement systems. Full article
Show Figures

Figure 1

22 pages, 9995 KiB  
Article
Skin-Inspired Magnetoresistive Tactile Sensor for Force Characterization in Distributed Areas
by Francisco Mêda, Fabian Näf, Tiago P. Fernandes, Alexandre Bernardino, Lorenzo Jamone, Gonçalo Tavares and Susana Cardoso
Sensors 2025, 25(12), 3724; https://doi.org/10.3390/s25123724 - 13 Jun 2025
Cited by 1 | Viewed by 736
Abstract
Touch is a crucial sense for advanced organisms, particularly humans, as it provides essential information about the shape, size, and texture of contacting objects. In robotics and automation, the integration of tactile sensors has become increasingly relevant, enabling devices to properly interact with [...] Read more.
Touch is a crucial sense for advanced organisms, particularly humans, as it provides essential information about the shape, size, and texture of contacting objects. In robotics and automation, the integration of tactile sensors has become increasingly relevant, enabling devices to properly interact with their environment. This study aimed to develop a biomimetic, skin-inspired tactile sensor device capable of sensing applied force, characterizing it in three dimensions, and determining the point of application. The device was designed as a 4 × 4 matrix of tunneling magnetoresistive sensors, which provide a higher sensitivity in comparison to the ones based on the Hall effect, the current standard in tactile sensors. These detect magnetic field changes along a single axis, wire-bonded to a PCB and encapsulated in epoxy. This sensing array detects the magnetic field from an overlayed magnetorheological elastomer composed of Ecoflex and 5 µm neodymium–iron–boron ferromagnetic particles. Structural integrity tests showed that the device could withstand forces above 100 N, with an epoxy coverage of 0.12 mL per sensor chip. A 3D movement stage equipped with an indenting tip and force sensor was used to collect device data, which was then used to train neural network models to predict the contact location and 3D magnitude of the applied force. The magnitude-sensing model was trained on 31,260 data points, being able to accurately characterize force with a mean absolute error ranging between 0.07 and 0.17 N. The spatial sensitivity model was trained on 171,008 points and achieved a mean absolute error of 0.26 mm when predicting the location of applied force within a sensitive area of 25.5 mm × 25.5 mm using sensors spaced 4.5 mm apart. For points outside the testing range, the mean absolute error was 0.63 mm. Full article
(This article belongs to the Special Issue Smart Magnetic Sensors and Application)
Show Figures

Figure 1

12 pages, 3613 KiB  
Article
Design and Simulation of Magnetic Shielding Structure Based on Closed-Loop TMR Current Sensor
by Qiuyang Li, Suqin Xiong, Shuo Wang, Xianguang Dong and Haifeng Zhang
Micromachines 2025, 16(3), 272; https://doi.org/10.3390/mi16030272 - 27 Feb 2025
Viewed by 839
Abstract
With the rapid development of current sensor technology, tunnel magnetoresistance (TMR) current sensors have been widely adopted in industrial detection due to their high sensitivity, excellent linearity, and broad measurement range. This study focuses on closed-loop TMR current sensors, utilizing COMSOL Multiphysics 6.2 [...] Read more.
With the rapid development of current sensor technology, tunnel magnetoresistance (TMR) current sensors have been widely adopted in industrial detection due to their high sensitivity, excellent linearity, and broad measurement range. This study focuses on closed-loop TMR current sensors, utilizing COMSOL Multiphysics 6.2 software and the finite element method to conduct an in-depth analysis of structural parameters affecting sensor sensitivity. A novel magnetic shielding package architecture is proposed and designed. Simulation results demonstrate that the shielding efficiency of this structure improves by 44.3% compared to a single magnetic ring under a stray magnetic field of 0.1 mT along the sensing axis. At the same time, the measurement accuracy is 2.1 times higher than that of traditional structures. Current detection experiments conducted in a strong magnetic field environment further validate that the shielding package effectively suppresses external electromagnetic interference, significantly enhancing sensor stability and measurement accuracy. This research provides important theoretical and practical insights for applying high-precision TMR current sensors in complex electromagnetic environments. Full article
Show Figures

Figure 1

12 pages, 4100 KiB  
Article
High-Precision Tunneling Magnetoresistance (TMR) Current Sensor for Weak Current Measurement in Smart Grid Applications
by Yong Xu, Zhenhu Jin and Jiamin Chen
Micromachines 2025, 16(2), 136; https://doi.org/10.3390/mi16020136 - 24 Jan 2025
Cited by 3 | Viewed by 1625
Abstract
To meet the demand for high-precision, high-resolution measurement of weak currents in smart grids, this article presents the design of a current sensor based on the tunneling magnetoresistance (TMR) effect. To improve the detection accuracy of the sensor, this design adopts a low-noise, [...] Read more.
To meet the demand for high-precision, high-resolution measurement of weak currents in smart grids, this article presents the design of a current sensor based on the tunneling magnetoresistance (TMR) effect. To improve the detection accuracy of the sensor, this design adopts a low-noise, high-sensitivity TMR chip as its chip selection; in the sensor circuit, a high-linearity interface circuit is used to eliminate fixed bias; and a magnetic flux concentrator is used to improve sensitivity and anti-interference capability. Experimental results indicate that the sensor achieves a sensitivity of 29.4 mV/V/mA, a linearity of 0.19%, and an accuracy of 0.045% within a ±100 mA range, supporting current measurement from DC up to 10.5 kHz. The proposed sensor demonstrates several advantages, including a wide measurement range, high accuracy, high resolution, and non-invasive measurement capability, making it well suited for weak current detection in smart grid applications. Full article
Show Figures

Figure 1

12 pages, 6474 KiB  
Article
A Novel Magnetic Flux Leakage Method Incorporating TMR Sensors for Detecting Zinc Dross Defects on the Surface of Hot-Dip Galvanized Sheets
by Bo Wang, San Zhang, Jie Wang, Liqin Jing and Feilong Mao
Magnetochemistry 2024, 10(12), 101; https://doi.org/10.3390/magnetochemistry10120101 - 10 Dec 2024
Cited by 1 | Viewed by 1240
Abstract
Surface quality control of hot-dip galvanized sheets is a critical research topic in the metallurgical industry. Zinc dross, the most common surface defect in the hot-dip galvanizing process, significantly affects the sheet’s service performance. In this manuscript, a novel magnetic flux leakage (MFL) [...] Read more.
Surface quality control of hot-dip galvanized sheets is a critical research topic in the metallurgical industry. Zinc dross, the most common surface defect in the hot-dip galvanizing process, significantly affects the sheet’s service performance. In this manuscript, a novel magnetic flux leakage (MFL) detection method was proposed to detect zinc dross defects on the surface of hot-dip galvanized steel sheets. Instead of using exciting coils in traditional methods, a tiny permanent magnet with a millimeter magnitude was employed to reduce the size and weight of the equipment. Additionally, a high-precision tunnel magnetoresistance (TMR) sensor with a sensitivity of 300 mV/V/Oe was selected to achieve higher detection accuracy. The experimental setup was established, and the x-axis direction (sample movement direction) was determined as the best measurement axis by vector analysis through experiments and numerical simulation. The detection results indicate that this novel MFL detection method could detect industrial zinc dross with an equivalent size of 400 μm, with high signal repeatability and signal-to-noise ratio. In the range of 0–1200 mm/s, the detection speed has almost no effect on the measurement signal, which indicates that this novel method has higher adaptability to various conditions. The multi-path scanning method with a single probe was used to simulate the array measurement to detect a rectangular area of 30 × 60 mm. Ten zinc dross defects were detected across eight measurement paths with 4 mm intervals, and the positions of these zinc dross defects were successfully reconstructed. The research results indicate that this novel MFL detection method is simple and feasible. Furthermore, the implementation of array measurements provides valuable guidance for subsequent in-depth research and potential industrial applications in the future. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

9 pages, 2190 KiB  
Article
Optimization of Bifurcated Switching by Enhanced Synthetic Antiferromagnetic Layer
by Yihui Sun, Fantao Meng, Junlu Gong, Yang Gao, Ruofei Chen, Lei Zhao, Dinggui Zeng, Ting Fu, Weiming He and Yaohua Wang
Electronics 2024, 13(23), 4771; https://doi.org/10.3390/electronics13234771 - 3 Dec 2024
Viewed by 1003
Abstract
Defects in the free layer are considered to be the main cause of the balloon effect, but there is little insight into the synthetic antiferromagnetic (SAF) layer. To address this shortcoming, in this work, an optimized SAF layer was introduced in the perpendicular [...] Read more.
Defects in the free layer are considered to be the main cause of the balloon effect, but there is little insight into the synthetic antiferromagnetic (SAF) layer. To address this shortcoming, in this work, an optimized SAF layer was introduced in the perpendicular magnetic tunneling junction (pMTJ) stack to eliminate the low-probability bifurcated-switching phenomenon. The results indicated that the Hf field in the film stack improved significantly from ~5700 Oe to ~7500 Oe. A magnetoresistive random access memory (MRAM) test chip was also fabricated with a 300 mm process, resulting in a significantly improved ballooning effect. The results also indicated that the switching voltage decreased by 18.6% and the writing energy decreased by 33.7%. In addition, the low-probability stray field along the x-axis was thought to be the main cause of the ballooning effect, and was experimentally optimized for the first time by enhancing the SAF layer. This work provides a new perspective on spin-flipping dynamics, facilitating a deeper comprehension of the internal mechanism and helping to secure improvements in MRAM performance. Full article
(This article belongs to the Special Issue Advanced CMOS Devices and Applications, 2nd Edition)
Show Figures

Figure 1

17 pages, 3550 KiB  
Article
A High-Precision Temperature Compensation Method for TMR Weak Current Sensors Based on FPGA
by Jie Wu, Ke Zhou, Qingren Jin, Baihua Lu, Zhenhu Jin and Jiamin Chen
Micromachines 2024, 15(12), 1407; https://doi.org/10.3390/mi15121407 - 22 Nov 2024
Cited by 2 | Viewed by 3398
Abstract
Tunnel magnetoresistance (TMR) sensors, known for their high sensitivity, efficiency, and compact size, are ideal for detecting weak currents, particularly leakage currents in smart grids. However, temperature variations can negatively impact their accuracy. This work investigates the effects of temperature variations on measurement [...] Read more.
Tunnel magnetoresistance (TMR) sensors, known for their high sensitivity, efficiency, and compact size, are ideal for detecting weak currents, particularly leakage currents in smart grids. However, temperature variations can negatively impact their accuracy. This work investigates the effects of temperature variations on measurement accuracy. We analyzed the operating principles and temperature characteristics of TMR sensors and proposed a high-precision, software-based temperature compensation method using cubic spline interpolation combined with polynomial regression and zero-point self-calibration. Additionally, a field-programmable gate array (FPGA)-based temperature compensation circuit was designed and implemented. An experimental platform was established to comprehensively evaluate the sensor’s performance under various temperature conditions. Experimental results demonstrate that this method significantly enhances the sensor’s temperature stability, reduces the sensitivity temperature drift coefficient, and improves zero-point drift stability, outperforming other compensation methods. After compensation, the sensor’s measurement accuracy in complex temperature environments is substantially improved, enabling effective weak current detection in smart grids across diverse environments. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

14 pages, 4403 KiB  
Article
Temperature Compensation Method for Tunnel Magnetoresistance Micro-Magnetic Sensors Through Reference Magnetic Field
by Tao Kuai, Qingfa Du, Jiafei Hu, Shilong Shi, Peisen Li, Dixiang Chen and Mengchun Pan
Micromachines 2024, 15(10), 1271; https://doi.org/10.3390/mi15101271 - 20 Oct 2024
Cited by 1 | Viewed by 1684
Abstract
The sensitivity of Tunnel Magnetoresistance (TMR) sensors is characterized by significant temperature drift and poor sensitivity drift repeatability, which severely impairs measurement accuracy. Conventional temperature compensation techniques are often hindered by low compensation precision, inadequate real-time performance, and an inability to effectively address [...] Read more.
The sensitivity of Tunnel Magnetoresistance (TMR) sensors is characterized by significant temperature drift and poor sensitivity drift repeatability, which severely impairs measurement accuracy. Conventional temperature compensation techniques are often hindered by low compensation precision, inadequate real-time performance, and an inability to effectively address the issue of poor repeatability in temperature drift characteristics. To overcome these challenges, this paper introduces a novel method for suppressing temperature drift in TMR sensors. In this method, an alternating reference magnetic field is applied to TMR sensors, and the output amplitude at the frequency of the reference magnetic field is calculated to compensate the sensitivity temperature drift in real time. Temperature characteristic tests were conducted in a non-magnetic temperature test chamber, and the results revealed that the proposed method significantly reduced the TMR sensitivity drift coefficient from 985.39 ppm/°C to 59.08 ppm/°C. Additionally, the repeatability of sensitivity temperature characteristic curves was enhanced, with a reduction in root mean square error from 0.84 to 0.21. This approach effectively mitigates temperature-induced sensitivity drift without necessitating the use of a temperature sensor, and has the advantages of real-time performance and repeatability, providing a new approach for the high-precision temperature drift suppression of TMR. Full article
Show Figures

Figure 1

17 pages, 12303 KiB  
Article
Optimization of Magnetic Tunnel Junction Structure through Component Analysis and Deposition Parameters Adjustment
by Crina Ghemes, Mihai Tibu, Oana-Georgiana Dragos-Pinzaru, Gabriel Ababei, George Stoian, Nicoleta Lupu and Horia Chiriac
Materials 2024, 17(11), 2554; https://doi.org/10.3390/ma17112554 - 25 May 2024
Cited by 2 | Viewed by 1597
Abstract
In this work, we focus on a detailed study of the role of each component layer in the multilayer structure of a magnetic tunnel junction (MTJ) as well as the analysis of the effects that the deposition parameters of the thin films have [...] Read more.
In this work, we focus on a detailed study of the role of each component layer in the multilayer structure of a magnetic tunnel junction (MTJ) as well as the analysis of the effects that the deposition parameters of the thin films have on the performance of the structure. Various techniques including atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to investigate the effects of deposition parameters on the surface roughness and thickness of individual layers within the MTJ structure. Furthermore, this study investigates the influence of thin films thickness on the magnetoresistive properties of the MTJ structure, focusing on the free ferromagnetic layer and the barrier layer (MgO). Through systematic analysis and optimization of the deposition parameters, this study demonstrates a significant improvement in the tunnel magnetoresistance (TMR) of the MTJ structure of 10% on average, highlighting the importance of precise control over thin films properties for enhancing device performance. Full article
(This article belongs to the Special Issue Preparation of Thin Films by PVD/CVD Deposition Techniques)
Show Figures

Figure 1

13 pages, 6527 KiB  
Article
Residual Magnetic Field Testing System with Tunneling Magneto-Resistive Arrays for Crack Inspection in Ferromagnetic Pipes
by Shuxiang Zhao, Junqi Gao, Jiamin Chen and Lindong Pan
Sensors 2024, 24(11), 3259; https://doi.org/10.3390/s24113259 - 21 May 2024
Cited by 1 | Viewed by 1820
Abstract
Ferromagnetic pipes are widely used in the oil and gas industry. They are subject to cracks due to corrosion, pressure, and fatigue. It is significant to detect cracks for the safety of pipes. A residual magnetic field testing (RMFT) system is developed for [...] Read more.
Ferromagnetic pipes are widely used in the oil and gas industry. They are subject to cracks due to corrosion, pressure, and fatigue. It is significant to detect cracks for the safety of pipes. A residual magnetic field testing (RMFT) system is developed for crack detection in ferromagnetic pipes. Based on this background, a detection probe based on an array of tunneling magneto-resistive (TMR) sensors and permanent magnets is exploited. The probe is able to partially magnetize the pipe wall and collect magnetic signals simultaneously. First, a theoretical analysis of RMFT is presented. The physics principle of RMFT is introduced, and a finite element model is built. In the finite element simulations, the effects of the crack length and depth on the RMFT signal are analyzed, and the signal characteristics are selected to represent the crack size. Next, the validated experiments are conducted to demonstrate the feasibility of the proposed RMFT method in this paper. Full article
(This article belongs to the Special Issue Sensors in Nondestructive Testing)
Show Figures

Figure 1

21 pages, 8129 KiB  
Article
Development and Application of a High-Precision Portable Digital Compass System for Improving Combined Navigation Performance
by Songhao Zhang, Min Cui and Peng Zhang
Sensors 2024, 24(8), 2547; https://doi.org/10.3390/s24082547 - 16 Apr 2024
Cited by 2 | Viewed by 2127
Abstract
There are not many high-precision, portable digital compass solutions available right now that can enhance combined navigation systems’ overall functionality. Additionally, there is a dearth of writing about these products. This is why a tunnel magnetoresistance (TMR) sensor-based high-precision portable digital compass system [...] Read more.
There are not many high-precision, portable digital compass solutions available right now that can enhance combined navigation systems’ overall functionality. Additionally, there is a dearth of writing about these products. This is why a tunnel magnetoresistance (TMR) sensor-based high-precision portable digital compass system is designed. First, the least-squares method is used to compensate for compass inaccuracy once the ellipsoid fitting method has corrected manufacturing and installation errors in the digital compass system. Second, the digital compass’s direction angle data is utilized to offset the combined navigation system’s mistake. The final objective is to create a high-performing portable TMR digital compass system that will enhance the accuracy and stability of the combined navigation system (abbreviated as CNS). According to the experimental results, the digital compass’s azimuth accuracy was 4.1824° before error compensation and 0.4580° after it was applied. The combined navigation system’s path is now more accurate overall and is closer to the reference route than it was before the digital compass was added. Furthermore, compared to the combined navigation route without the digital compass, the combined navigation route with the digital compass included is more stable while traveling through the tunnel. It is evident that the digital compass system’s design can raise the integrated navigation system’s accuracy and stability. The integrated navigation system’s overall performance may be somewhat enhanced by this approach. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

23 pages, 5029 KiB  
Review
Magnetic Micro and Nano Sensors for Continuous Health Monitoring
by Tomasz Blachowicz, Ilda Kola, Andrea Ehrmann, Karoline Guenther and Guido Ehrmann
Micro 2024, 4(2), 206-228; https://doi.org/10.3390/micro4020015 - 6 Apr 2024
Cited by 9 | Viewed by 3681
Abstract
Magnetic micro and nano sensors can be used in a broad variety of applications, e.g., for navigation, automotives, smartphones and also for health monitoring. Based on physical effects such as the well-known magnetic induction, the Hall effect, tunnel magnetoresistance and giant magnetoresistance, they [...] Read more.
Magnetic micro and nano sensors can be used in a broad variety of applications, e.g., for navigation, automotives, smartphones and also for health monitoring. Based on physical effects such as the well-known magnetic induction, the Hall effect, tunnel magnetoresistance and giant magnetoresistance, they can be used to measure positions, flow, pressure and other physical properties. In biomedicine and healthcare, these miniaturized sensors can be either integrated into garments and other wearables, be directed through the body by passive capsules or active micro-robots or be implanted, which usually necessitates bio-functionalization and avoiding cell-toxic materials. This review describes the physical effects that can be applied in these sensors and discusses the most recent micro and nano sensors developed for healthcare applications. Full article
(This article belongs to the Section Microscale Physics)
Show Figures

Figure 1

12 pages, 5208 KiB  
Article
A Modulation Method for Tunnel Magnetoresistance Current Sensors Noise Suppression
by Shuaipeng Wang, Haichao Huang, Ying Yang, Yanning Chen, Zhen Fu, Zhenhu Jin, Zhenyu Shi, Xingyin Xiong, Xudong Zou and Jiamin Chen
Micromachines 2024, 15(3), 360; https://doi.org/10.3390/mi15030360 - 1 Mar 2024
Cited by 8 | Viewed by 2609
Abstract
To mitigate the impact of low-frequency noise from the tunnel magnetoresistance (TMR) current sensor and ambient stray magnetic fields on weak current detection accuracy, we propose a high-resolution modulation-demodulation test method. This method modulates and demodulates the measurement signal, shifting low-frequency noise to [...] Read more.
To mitigate the impact of low-frequency noise from the tunnel magnetoresistance (TMR) current sensor and ambient stray magnetic fields on weak current detection accuracy, we propose a high-resolution modulation-demodulation test method. This method modulates and demodulates the measurement signal, shifting low-frequency noise to the high-frequency band for effective filtering, thereby isolating the target signal from the noise. In this study, we developed a Simulink model for the TMR current sensor modulation-demodulation test method. Practical time-domain and frequency-domain tests of the developed high-resolution modulation-demodulation method revealed that the TMR current sensor exhibits a nonlinearity as low as 0.045%, an enhanced signal-to-noise ratio (SNR) of 77 dB, and a heightened resolution of 100 nA. The findings indicate that this modulation-demodulation test method effectively reduces the impact of low-frequency noise on TMR current sensors and can be extended to other types of resistive devices. Full article
Show Figures

Figure 1

16 pages, 2897 KiB  
Article
Nanogranular Strontium Ferromolybdate/Strontium Molybdate Ceramics—A Magnetic Material Possessing a Natural Core-Shell Structure
by Gunnar Suchaneck, Evgenii Artiukh, Nikolay Kalanda, Marta Yarmolich and Gerald Gerlach
Electron. Mater. 2024, 5(1), 1-16; https://doi.org/10.3390/electronicmat5010001 - 31 Jan 2024
Cited by 1 | Viewed by 1674
Abstract
In this work, we demonstrate the preparation of easy-to-fabricate nanogranular strontium ferromolybdate/strontium molybdate core-shell ceramics and examine their properties, including tunnel magnetoresistance, magnetic field sensitivity, and temperature coefficient of the tunnel magnetoresistance. The tunnel magnetoresistance of nanogranular strontium ferromolybdate/strontium molybdate core-shell ceramics was [...] Read more.
In this work, we demonstrate the preparation of easy-to-fabricate nanogranular strontium ferromolybdate/strontium molybdate core-shell ceramics and examine their properties, including tunnel magnetoresistance, magnetic field sensitivity, and temperature coefficient of the tunnel magnetoresistance. The tunnel magnetoresistance of nanogranular strontium ferromolybdate/strontium molybdate core-shell ceramics was modeled, yielding values suitable for magnetoresistive sensor applications. Such structures possess a narrow peak of magnetic flux sensibility located at about 80 mT. For magnetic flux measurement, single-domain granules with superparamagnetic behavior should be applied. The predicted TMR magnetic flux sensitivities for granules with superparamagnetic behavior amount to about 7.7% T−1 and 1.5% T−1 for granule sizes of 3 nm and 5 nm, respectively. A drawback of the tunnel magnetoresistance of such nanogranular core-shell ceramics is the unacceptably large value of the temperature coefficient. Acceptable values, lower than 2% K−1, are obtained only at low temperatures (less than 100 K) or large magnetic flux densities (exceeding 6 T). Therefore, a Wheatstone bridge configuration should be adopted for magnetoresistive sensor design to compensate for the effect of temperature. Full article
Show Figures

Figure 1

Back to TopTop