Optimization of Magnetic Tunnel Junction Structure through Component Analysis and Deposition Parameters Adjustment
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Working Gas Pressure
3.2. Discharge Power
3.3. Target–Substrate Distance
3.4. Performance of the Magnetic-Tunnel-Junction-Based Structure
- Definition of an MTJ structure in a rectangular shape with dimensions of 40 × 80 μm2 using electron-beam lithography (EBL) and ion-beam etching (IBE). The detection element and the bottom contact are then defined on this rectangular structure.
- Definition of the bottom contact by EBL and IBE followed by resist stripping.
- Definition of the rectangular (4 × 8 μm2) detection element with EBL and IBE. In this stage, the surface of the bottom contact is protected by e-resist in the same lithography step as the detection element (pillar).
- In order to prevent electrical contact between the bottom contact and the top surface of the MTJ, a 40 nm thick SiO2 insulating layer was deposited on the chip surface by sputtering, followed by a lift-off process.
- Fabrication of the electrical contacts by laser-beam lithography and deposition of Ta (5 nm)/Cu (200 nm).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomson, W. On the Electro-Dynamic Qualities of Metals:—Effects of Magnetization on the Electric Conductivity of Nickel and of Iron. Proc. R. Soc. Lond. 1857, 8, 546–550. [Google Scholar]
- Mansour, A.M. Magnetic Sensors and Geometrical Magnetoresistance: A Review. J. Met. Mater. Miner. 2020, 30, 1–18. [Google Scholar] [CrossRef]
- Macdonald, D.K.C. Magneto-Resistance in Metals. Phil. Mag. 1957, 2, 97–104. [Google Scholar] [CrossRef]
- Coleman, R.V.; Isin, A. Magnetoresistance in Iron Single Crystals. J. Appl. Phys. 1966, 37, 1028–1029. [Google Scholar] [CrossRef]
- Leitao, D.C.; Paz, E.; Silva, A.V.; Moskaltsova, A.; Knudde, S.; Deepak, F.L.; Ferreira, R.; Cardoso, S.; Freitas, P.P. Nanoscale Magnetic Tunnel Junction Sensing Devices with Soft Pinned Sensing Layer and Low Aspect Ratio. IEEE Trans. Magn. 2014, 50, 1–8. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Kaiser, C.; Panchula, A.; Rice, P.M.; Hughes, B.; Samant, M.; Yang, S.-H. Giant Tunnelling Magnetoresistance at Room Temperature with MgO (100) Tunnel Barriers. Nat. Mater. 2004, 3, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant Room-Temperature Magnetoresistance in Single-Crystal Fe/MgO/Fe Magnetic Tunnel Junctions. Nat. Mater. 2004, 3, 868–871. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Chen, Y.; Liu, F.; Chen, X.; Xu, B.; Lu, P.; Patwari, M.; Xi, H.; Chang, C.; Miller, B.; et al. Commercial TMR Heads for Hard Disk Drives: Characterization and Extendibility at 300 Gbit2. IEEE Trans. Magn. 2006, 42, 97–102. [Google Scholar]
- Chen, Y.; Wang, X.; Li, H.; Xi, H.; Yan, Y.; Zhu, W. Design Margin Exploration of Spin-Transfer Torque RAM (STT-RAM) in Scaled Technologies. IEEE Trans. VLSI Syst. 2010, 18, 1724–1734. [Google Scholar] [CrossRef]
- Cubells, M.D.; Reig, C.; De Marcellis, A.; Roldan, A.; Roldan, J.-B.; Cardoso, S.; Freitas, P.P. Magnetic Tunnel Junction (MTJ) Sensors for Integrated Circuits (IC) Electric Current Measurement. In Proceedings of the 2013 IEEE SENSORS, Baltimore, MD, USA, 3–6 November 2013; IEEE: Baltimore, MD, USA, 2013; pp. 1–4. [Google Scholar]
- Grancharov, S.G.; Zeng, H.; Sun, S.; Wang, S.X.; O’Brien, S.; Murray, C.B.; Kirtley, J.R.; Held, G.A. Bio-Functionalization of Monodisperse Magnetic Nanoparticles and Their Use as Biomolecular Labels in a Magnetic Tunnel Junction Based Sensor. J. Phys. Chem. B 2005, 109, 13030–13035. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.Q.; Li, L.; Li, G.J.; Leung, C.W.; Shi, J.; Wong, C.M.; Lo, K.C.; Chan, W.K.; Mak, C.S.K.; Chan, S.B.; et al. Liver Cancer Immunoassay with Magnetic Nanoparticles and MgO-Based Magnetic Tunnel Junction Sensors. J. Appl. Phys. 2012, 111, 07E505. [Google Scholar] [CrossRef]
- Shen, W.; Schrag, B.D.; Carter, M.J.; Xie, J.; Xu, C.; Sun, S.; Xiao, G. Detection of DNA Labeled with Magnetic Nanoparticles Using MgO-Based Magnetic Tunnel Junction Sensors. J. Appl. Phys. 2008, 103, 07A306. [Google Scholar] [CrossRef]
- Yuasa, S.; Djayaprawira, D.D. Giant Tunnel Magnetoresistance in Magnetic Tunnel Junctions with a Crystalline MgO (0 0 1) Barrier. J. Phys. D Appl. Phys. 2007, 40, R337–R354. [Google Scholar] [CrossRef]
- Park, M.W.; Lee, W.W.; Lee, J.G.; Lee, C.M. A Comparison of the Mechanical Properties of RF- and DC-Sputter-Deposited Cr Thin Films. Mater. Sci. Forum 2007, 546–549, 1695–1698. [Google Scholar] [CrossRef]
- Nyaiesh, A.; Holland, L. The Dependence of Deposition Rate on Power Input for Dc and Rf Magnetron Sputtering. Vacuum 1981, 31, 315–317. [Google Scholar] [CrossRef]
- Asgary, S.; Vaghri, E.; Daemi, M.; Esmaili, P.; Ramezani, A.H.; Memon, S.; Hoseinzadeh, S. Magnetron Sputtering Technique for Analyzing the Influence of RF Sputtering Power on Microstructural Surface Morphology of Aluminum Thin Films Deposited on SiO2/Si Substrates. Appl. Phys. A 2021, 127, 752. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, C.; Chu, J. The Effect of Working Gas Pressure and Deposition Power on the Properties of Molybdenum Films Deposited by DC Magnetron Sputtering. Sci. China Technol. Sci. 2014, 57, 947–952. [Google Scholar] [CrossRef]
- Dhar, N.; Chelvanathan, P.; Zaman, M.; Sopian, K.; Amin, N. An Investigation on Structural and Electrical Properties of RF-Sputtered Molybdenum Thin Film Deposited on Different Substrates. Energy Procedia 2013, 33, 186–197. [Google Scholar] [CrossRef]
- Ikeda, S.; Hayakawa, J.; Lee, Y.M.; Matsukura, F.; Ohno, Y.; Hanyu, T.; Ohno, H. Magnetic Tunnel Junctions for Spintronic Memories and Beyond. IEEE Trans. Electron Dev. 2007, 54, 991–1002. [Google Scholar] [CrossRef]
- Kawahara, T.; Ito, K.; Takemura, R.; Ohno, H. Spin-Transfer Torque RAM Technology: Review and Prospect. Microelectron. Reliab. 2012, 52, 613–627. [Google Scholar] [CrossRef]
- Iriarte, G.F.; Rodriguez, J.G.; Calle, F. Effect of Substrate–Target Distance and Sputtering Pressure in the Synthesis of AlN Thin Films. Microsyst. Technol. 2011, 17, 381–386. [Google Scholar] [CrossRef]
- Jeong, S.H.; Boo, J.H. Influence of Target-to-Substrate Distance on the Properties of AZO Films Grown by RF Magnetron Sputtering. Thin Solid Films 2004, 447–448, 105–110. [Google Scholar] [CrossRef]
- Yakushiji, K.; Kubota, H.; Fukushima, A.; Yuasa, S. Perpendicular Magnetic Tunnel Junctions with Strong Antiferromagnetic Interlayer Exchange Coupling at First Oscillation Peak. Appl. Phys. Express 2015, 8, 083003. [Google Scholar] [CrossRef]
- Yun, S.J.; Lim, S.H.; Lee, S.-R. Strong Interlayer Exchange Coupling and High Post-Annealing Stability in Perpendicularly Magnetized [Pt/Co]/Ru/[Co/Pt] Structures. AIP Adv. 2016, 6, 025112. [Google Scholar] [CrossRef]
- Feng, J.F.; Feng, G.; Ma, Q.L.; Han, X.F.; Coey, J.M.D. Temperature Dependence of Inverted Tunneling Magnetoresistance in MgO-Based Magnetic Tunnel Junctions. J. Magn. Magn. Mater. 2010, 322, 1446–1448. [Google Scholar] [CrossRef]
- Wiśniowski, P.; Almeida, J.M.; Cardoso, S.; Barradas, N.P.; Freitas, P.P. Effect of Free Layer Thickness and Shape Anisotropy on the Transfer Curves of MgO Magnetic Tunnel Junctions. J. Appl. Phys. 2008, 103, 07A910. [Google Scholar] [CrossRef]
- Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S.N. Spintronics Based Random Access Memory: A Review. Mater. Today 2017, 20, 530–548. [Google Scholar] [CrossRef]
- Wang, W.-G.; Li, M.; Hageman, S.; Chien, C.L. Electric-Field-Assisted Switching in Magnetic Tunnel Junctions. Nat. Mater. 2012, 11, 64–68. [Google Scholar] [CrossRef]
- Kurt, H.; Oguz, K.; Niizeki, T.; Coey, J.M.D. Giant Tunneling Magnetoresistance with Electron Beam Evaporated MgO Barrier and CoFeB Electrodes. J. Appl. Phys. 2010, 107, 083920. [Google Scholar] [CrossRef]
- Diao, Z.; Feng, J.F.; Kurt, H.; Feng, G.; Coey, J.M.D. Reduced Low Frequency Noise in Electron Beam Evaporated MgO Magnetic Tunnel Junctions. Appl. Phys. Lett. 2010, 96, 202506. [Google Scholar] [CrossRef]
- Martins, L.; Ventura, J.; Ferreira, R.; Freitas, P.P. Optimization of the Buffer Surface of CoFeB/MgO/CoFeB-Based Magnetic Tunnel Junctions by Ion Beam Milling. Appl. Surf. Sci. 2017, 424, 58–62. [Google Scholar] [CrossRef]
- Yuasa, S.; Suzuki, Y.; Katayama, T.; Ando, K. Characterization of Growth and Crystallization Processes in CoFeB/MgO/CoFeB Magnetic Tunnel Junction Structure by Reflective High-Energy Electron Diffraction. Appl. Phys. Lett. 2005, 87, 242503. [Google Scholar] [CrossRef]
Thin Film | Role in MTJ Structure | Properties | |
---|---|---|---|
Ta | Capping layer |
| |
CoFeB | Free layer |
| |
MgO | Tunnel layer |
| |
CoFeB | Synthetic antiferromagnetic (SAFM) | Reference layer |
|
Ru | Barrier layer in SAFM |
| |
CoFe | Pinned layer |
| |
IrMn | Antiferromagnetic layer |
| |
CoFe | Seed layer |
| |
Ta | Buffer layer |
| |
Ru | Buffer layer |
| |
Ta | Buffer layer |
| |
Si/SiO2 | Substrate |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghemes, C.; Tibu, M.; Dragos-Pinzaru, O.-G.; Ababei, G.; Stoian, G.; Lupu, N.; Chiriac, H. Optimization of Magnetic Tunnel Junction Structure through Component Analysis and Deposition Parameters Adjustment. Materials 2024, 17, 2554. https://doi.org/10.3390/ma17112554
Ghemes C, Tibu M, Dragos-Pinzaru O-G, Ababei G, Stoian G, Lupu N, Chiriac H. Optimization of Magnetic Tunnel Junction Structure through Component Analysis and Deposition Parameters Adjustment. Materials. 2024; 17(11):2554. https://doi.org/10.3390/ma17112554
Chicago/Turabian StyleGhemes, Crina, Mihai Tibu, Oana-Georgiana Dragos-Pinzaru, Gabriel Ababei, George Stoian, Nicoleta Lupu, and Horia Chiriac. 2024. "Optimization of Magnetic Tunnel Junction Structure through Component Analysis and Deposition Parameters Adjustment" Materials 17, no. 11: 2554. https://doi.org/10.3390/ma17112554
APA StyleGhemes, C., Tibu, M., Dragos-Pinzaru, O.-G., Ababei, G., Stoian, G., Lupu, N., & Chiriac, H. (2024). Optimization of Magnetic Tunnel Junction Structure through Component Analysis and Deposition Parameters Adjustment. Materials, 17(11), 2554. https://doi.org/10.3390/ma17112554