Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = tuna purse seine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3216 KiB  
Article
Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific
by Shuyang Feng, Xiaoming Yang, Menghao Li, Zhoujia Hua, Siquan Tian and Jiangfeng Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1444; https://doi.org/10.3390/jmse13081444 - 29 Jul 2025
Viewed by 278
Abstract
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, [...] Read more.
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, as its resource abundance is significantly influenced by marine environmental factors. Skipjack tuna can be categorized into unassociated schools and associated schools, with the latter being predominant. Overfishing of the associated schools can adversely affect population health and the ecological environment. In-depth exploration of the spatial distribution responses of these two fish schools to environmental variables is significant for the rational development and utilization of tuna resources and for enhancing the sustainability of fishery resources. In sparsely sampled and complex marine environments, geographic similarity methods effectively predict tuna resources by quantifying local fishing ground environmental similarities. This study introduces geographical similarity theory. This study focused on 1° × 1° fishery data (2004–2021) released by the Western and Central Pacific Fisheries Commission (WCPFC) combined with relevant marine environmental data. We employed Geographical Convergent Cross Mapping (GCCM) to explore significant environmental factors influencing catch and variations in causal intensity and employed a Geographically Optimal Similarity (GOS) model to predict the spatial distribution of catch for the two types of tuna schools. The research findings indicate that the following: (1) Sea surface temperature (SST), sea surface salinity (SSS), and net primary productivity (NPP) are key factors in GCCM model analysis, significantly influencing the catch of two fish schools. (2) The GOS model exhibits higher prediction accuracy and stability compared to the Generalized Additive Model (GAM) and the Basic Configuration Similarity (BCS) model. R2 values reaching 0.656 and 0.649 for the two types of schools, respectively, suggest that the geographical similarity method has certain applicability and application potential in the spatial prediction of fishery resources. (3) Uncertainty analysis revealed more stable predictions for unassociated schools, with 72.65% of the results falling within the low-uncertainty range (0.00–0.25), compared to 52.65% for associated schools. This study, based on geographical similarity theory, elucidates differential spatial responses of distinct schools to environmental factors and provides a novel approach for fishing ground prediction. It also provides a scientific basis for the dynamic assessment and rational exploitation and utilization of skipjack tuna resources in the Pacific Ocean. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

16 pages, 2851 KiB  
Article
A Catch Community Diversity Analysis of Purse Seine in the Tropical Western and Central Pacific Ocean
by Jiaojiao Fei, Jian Zhang, Xiao Wang, Yuntao Wu and Yuxiu Teng
Fishes 2025, 10(4), 164; https://doi.org/10.3390/fishes10040164 - 7 Apr 2025
Viewed by 439
Abstract
Epipelagic fish communities dominate fish assemblages and are an important part of marine ecosystems due to their high abundance, vertical migration behavior, and global distribution. Purse seine fisheries are key components of marine fisheries in the tropical Western and Central Pacific Ocean (WCPO), [...] Read more.
Epipelagic fish communities dominate fish assemblages and are an important part of marine ecosystems due to their high abundance, vertical migration behavior, and global distribution. Purse seine fisheries are key components of marine fisheries in the tropical Western and Central Pacific Ocean (WCPO), primarily targeting skipjack tuna (Katsuwonus pelamis, SKJ), yellowfin tuna (Thunnus albacares, YFT), and bigeye tuna (Thunnus obesus, BET). In this study, WCPO purse seine fishery data from 2014 to 2022, combined with environmental factor data, were used, and Mantel tests and correlation analysis were employed to analyze the diversity, fish coexistence mechanisms, and environmental responses of catch communities under the following two different fishing strategies: free–swimming schools (FSCs) and drifting fish aggregating devices (DFADs). Mantel tests indicated that nitrate (NO3), the Oceanic Niño Index (ONI), and pH significantly impact the diversity of the FSCs community, whereas NO3 significantly affects the diversity of the DFADs community. Based on the correlation analysis results, in the FSCs community, yellowfin tuna was positively correlated with bigeye tuna, and yellowfin tuna was negatively correlated with skipjack tuna and black marlin (Istiompax indica, BLM). In the DFADs community, yellowfin tuna was only positively correlated with skipjack tuna and bigeye tuna. In addition, species with high correlations were also positively correlated. The results of this study provide a theoretical basis for the biodiversity conservation of catch communities under two different purse seine fishing strategies in the WCPO. Full article
Show Figures

Figure 1

19 pages, 4962 KiB  
Article
A Prediction of the Shooting Trajectory for a Tuna Purse Seine Using the Double Deep Q-Network (DDQN) Algorithm
by Daeyeon Cho and Jihoon Lee
J. Mar. Sci. Eng. 2025, 13(3), 530; https://doi.org/10.3390/jmse13030530 - 10 Mar 2025
Viewed by 761
Abstract
The purse seine is a fishing method in which a net is used to encircle a fish school, capturing isolated fish by tightening a purse line at the bottom of the net. Tuna purse seine operations are technically complex, requiring the evaluation of [...] Read more.
The purse seine is a fishing method in which a net is used to encircle a fish school, capturing isolated fish by tightening a purse line at the bottom of the net. Tuna purse seine operations are technically complex, requiring the evaluation of fish movements, vessel dynamics, and their interactions, with success largely dependent on the expertise of the crew. In particular, efficiency in terms of highly complex tasks, such as calculating the shooting trajectory during fishing operations, varies significantly based on the fisher’s skill level. To address this challenge, developing techniques to support less experienced fishers is necessary, particularly for operations targeting free-swimming fish schools, which are more difficult to capture compared to those utilizing Fish Aggregating Devices (FADs). This study proposes a method for predicting shooting trajectories using the Double Deep Q-Network (DDQN) algorithm. Observation states, actions, and reward functions were designed to identify optimal scenarios for shooting, and the catchability of the predicted trajectories was evaluated through gear behavior analysis. The findings of this study are expected to aid in the development of a trajectory prediction system for inexperienced fishers and serve as foundational data for automating purse seine fishing systems. Full article
Show Figures

Figure 1

15 pages, 9046 KiB  
Article
Numerical Modelling of the Hydrodynamic Performance of Biodegradable Drifting Fish Aggregating Devices in Currents
by Tongzheng Zhang, Junbo Zhang, Qinglian Hou, Gangyi Yu, Ao Chen, Zhiqiang Liu and Rong Wan
J. Mar. Sci. Eng. 2024, 12(7), 1059; https://doi.org/10.3390/jmse12071059 - 24 Jun 2024
Cited by 4 | Viewed by 1329
Abstract
Fish Aggregating Devices (FADs) are essential supplementary structures used in tropical tuna purse-seine fishing. They are strategically placed to attract tuna species and enhance fishing productivity. The hydrodynamic performance of FADs has a direct effect on their structural and environmental safety in the [...] Read more.
Fish Aggregating Devices (FADs) are essential supplementary structures used in tropical tuna purse-seine fishing. They are strategically placed to attract tuna species and enhance fishing productivity. The hydrodynamic performance of FADs has a direct effect on their structural and environmental safety in the harsh marine environment. Conventional FADs are composed of materials that do not break down naturally, leading to the accumulation of waste in the ocean and potential negative effects on marine ecosystems. Therefore, this work aimed to examine the hydrodynamic performance of biodegradable drifting FADs (Bio-DFADs) in oceanic currents by numerical modelling. The Reynolds-averaged Navier–Stokes equation was used to solve the flow field and discretized based on the realizable k-ε turbulence model, employing the finite volume method. A set of Bio-DFADs was developed to assess the hydrodynamic performance under varying current velocities and attack angles, as well as different balsa wood diameters and sinker weights. The results indicated that the relative current velocity significantly affected the relative velocity of Bio-DFADs. The relative length of the raft significantly affected both the relative velocity and the relative wetted area in a pure stream. Finally, the diameter of the balsa wood affected the drift velocity, and the sinker’s relative weight affected the hydrodynamic performance of the Bio-DFADs. Full article
(This article belongs to the Special Issue Advanced Analysis of Marine Structures—Edition II)
Show Figures

Figure 1

16 pages, 330 KiB  
Article
Enhancement of Maritime Sector Decarbonization through the Integration of Fishing Vessels into IMO Energy Efficiency Measures
by Luis Alfonso Díaz-Secades
J. Mar. Sci. Eng. 2024, 12(4), 663; https://doi.org/10.3390/jmse12040663 - 17 Apr 2024
Cited by 13 | Viewed by 2347
Abstract
The escalating impact of anthropogenic activities on global climate patterns necessitates urgent measures to reduce emissions, with the maritime industry playing a pivotal role. This article aims to examine the adoption of International Maritime Organization energy efficiency measures for the often-overlooked fishing vessels [...] Read more.
The escalating impact of anthropogenic activities on global climate patterns necessitates urgent measures to reduce emissions, with the maritime industry playing a pivotal role. This article aims to examine the adoption of International Maritime Organization energy efficiency measures for the often-overlooked fishing vessels and their contribution to the overall maritime decarbonization efforts. The article analyzes the attained technical efficiency indices of a case study large-scale fishing vessel and compares them with those of two cargo ships where IMO measures already apply. To support the proposal, a comprehensive analysis of the energy efficiency indices of eight large purse seine fishing vessels is also presented. The results show that large-scale fishing vessels of 400 GT and above could be subject to the IMO energy efficiency measures. The operational challenges, unique to the fishing sector, suggest that sector-specific considerations may be required to integrate the fishing fleet into the already existing IMO energy efficiency guidelines. Looking ahead, this article explores the benefits of aligning Regulation (EU) 2023/957 and IMO guidelines, as well as applying the IMO Carbon Intensity Indicator (CII) in assessing the operational environmental impact of fishing operations, emphasizing the importance of including these vessels in the current regulatory frameworks to promote decarbonization. Full article
18 pages, 2513 KiB  
Article
Use of Space-Time Cube Model and Spatiotemporal Hot Spot Analyses in Fisheries—A Case Study of Tuna Purse Seine
by Ran Xu, Xiaoming Yang and Siquan Tian
Fishes 2023, 8(10), 525; https://doi.org/10.3390/fishes8100525 - 21 Oct 2023
Cited by 4 | Viewed by 2852
Abstract
Katsuwonus pelamis, or skipjack, is a vital resource in purse seine fishing across the Central and Western Pacific. Identifying skipjack distribution hotspots and coldspots is crucial for effective resource management, but the dynamic nature of fish behavior means these spots are not [...] Read more.
Katsuwonus pelamis, or skipjack, is a vital resource in purse seine fishing across the Central and Western Pacific. Identifying skipjack distribution hotspots and coldspots is crucial for effective resource management, but the dynamic nature of fish behavior means these spots are not constant. We used Chinese fishing logbook data from 2010 to 2019 to analyze skipjack resource hotspots and coldspots in a space-time cube. The study revealed 13 spatiotemporal patterns in skipjack Catch per Unit Effort (CPUE). Hotspots (36.53%) were concentrated in the central area, predominantly showing oscillating hotspots (21.25%). The significant effect of the eastern oscillating hotspot continues to be enhanced and extends to the east. Coldspots constituted 63.47% of the distribution, mainly represented by intensifying coldspots (25.07%). The no-pattern-detected type (10.53%) is distributed between coldspots and hotspots. The fishing grounds exhibited longitudinal oscillations of 3°–6° and latitudinal oscillations of 1°–2°. The spatial autocorrelation of cold and hot spot distribution was strong, and the spatiotemporal dynamic changes in skipjack resources were closely related to the El Niño-Southern Oscillation (ENSO) phenomenon. Notably, during 2011–2016, hotspots exhibited an eastward expansion trend, which continued from 2017–2019 due to the influence of fishery management measures, such as the Vessel Day Scheme (VDS) system. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

14 pages, 1241 KiB  
Article
The Environmental Niche of the Tuna Purse Seine Fleet in the Western and Central Pacific Ocean Based on Different Fisheries Data
by Shenglong Yang, Linlin Yu, Fei Wang, Tianfei Chen, Yingjie Fei, Shengmao Zhang and Wei Fan
Fishes 2023, 8(2), 78; https://doi.org/10.3390/fishes8020078 - 29 Jan 2023
Cited by 10 | Viewed by 3196
Abstract
Understanding the spatial pattern of human fishing activity is very important for fisheries resource monitoring and spatial management. The environmental preferences of tropical tuna purse seine fleet in the Western and Central Pacific Ocean (WCPO) were constructed and compared at different spatial scales [...] Read more.
Understanding the spatial pattern of human fishing activity is very important for fisheries resource monitoring and spatial management. The environmental preferences of tropical tuna purse seine fleet in the Western and Central Pacific Ocean (WCPO) were constructed and compared at different spatial scales based on the fishing effort (FE) data from the available automatic identification system (AIS) and commercial fishery data compiled from the Western and Central Pacific Fisheries Commission (WCPFC), using maximum entropy (MaxEnt) methods. The MaxEnt models were fitted with FE and commercial fishery data and remote sensing environmental data. Our results showed that the area under the curve (AUC) value each month based on the commercial fishery data (1°) and FE at 0.25° and 0.5° spatial scales was greater than 0.8. The AUC values each month based on the FE data at a 1° scale ranged from 0.775 to 0.829. The AUC values based on commercial fishing data at the 1° scale were comparable to the model results based on FE data at the 0.5° scale and inferior to the model results based on FE data at the 0.25° scales. Overall, the sea surface temperature (SST), temperature at 100 metres (T100), oxygen concentration at 100 metres (O100) and total primary production (PP) had the greatest influence on the distribution of the purse seine tuna fleet. The oxygen concentration at 200 metres (O200), distance to shore (DSH), dissolved oxygen (Dox), EKE, mixed layer depth (Mld), sea surface salinity (SSS), salinity at 100 metres (S100) and salinity at 200 metres (S200) had moderate influences, and other environmental variables had little influence. The suitable habitat areas varied in response to environmental conditions. The purse seine tuna fleet was mostly present at locations where the SST, T100, O100, O200 and PP were 28–30 °C, 27–29 °C, 150–200 mmol/m3 and 5–10 mg/m−3, respectively. The MaxEnt models enable the integration of AIS data and high-resolution environmental data from satellite remote sensing to describe the spatiotemporal distribution of the tuna purse seine fishery and the influence of environmental variables on the distribution, and can provide forecasts for fishing ground distributions based on future remote sensing environmental data. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Figure 1

13 pages, 5065 KiB  
Article
Environmental Characteristics Associated with the Presence of the Pelagic Stingray (Pteroplatytrygon violacea) in the Pacific High Sea
by Jiaqi Wang, Chunxia Gao, Feng Wu, Libin Dai, Qiuyun Ma and Siquan Tian
Fishes 2023, 8(1), 46; https://doi.org/10.3390/fishes8010046 - 10 Jan 2023
Cited by 5 | Viewed by 3575
Abstract
The pelagic stingray (Pteroplatytrygon violacea), perhaps the only stingray to inhabit open ocean waters, is highly interactive with longline and purse seine fisheries. The threat to P. violacea posed by high bycatch mortality has received widespread attention. To date, the environmental [...] Read more.
The pelagic stingray (Pteroplatytrygon violacea), perhaps the only stingray to inhabit open ocean waters, is highly interactive with longline and purse seine fisheries. The threat to P. violacea posed by high bycatch mortality has received widespread attention. To date, the environmental preference of P. violacea, which is important in designing conservation and management measures, has not been well studied. Based on data collected during a 2016–2019 survey in the Pacific Ocean by national observers of tuna longline fisheries, the relationship between the presence of P. violacea and spatiotemporal and environmental variables was first analyzed using the Generalized Additive Model. The results showed that geographic location (latitude and longitude) was the most influential variable. Monthly, P. violacea is frequently present in the Pacific high sea from December to May. The El Niño–Southern Oscillation had a significant impact on the presence of P. violacea in the Pacific high sea, with both the cold (Ocean Nino Index <−0.5) and warm (Ocean Nino Index >1) phases leading to a decrease in its presence. Regarding the environmental factors, we found that high presence was associated with low salinity (33.0~34.5 psu), a relatively high concentration of chlorophyll (0.2–0.35 mg/m3), and warm water (>20 °C). P. violacea was most likely observed in the waters offshore, closer to seamounts, and with water depths between 4000 and 5000 m. Four areas, including those east of the Solomon Islands and east of Kiribati, areas west of the Galapagos Islands, and areas near the coastal upwelling of northern Peru, related to upwelling systems or seamounts, were identified as the potential key habitats of P. violacea. Predicted distribution maps showed a significant seasonal variation in the presence of P. violacea. Moreover, the yearly change in the presence of P. violacea in the Pacific high sea indicated a possible decreasing trend in recent years. The information first provided here is essential for developing conservation and management measures for P. violacea to prevent the unavoidable ecological consequences of bycatch or other anthropogenic factors. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

15 pages, 1435 KiB  
Article
Length-Based Assessment Methods for the Conservation of a Pelagic Shark, Carcharhinus falciformis from the Tropical Pacific Ocean
by Richard Kindong, Ousmane Sarr, Feng Wu and Siquan Tian
Fishes 2022, 7(4), 184; https://doi.org/10.3390/fishes7040184 - 25 Jul 2022
Cited by 22 | Viewed by 5093
Abstract
The silky shark, Carcharhinus falciformis is one of the most heavily exploited sharks, being the main by-catch species in both tuna longline and purse-seine fisheries in tropical waters worldwide. Despite this severe exploitation, little is known about the species’ life history and population [...] Read more.
The silky shark, Carcharhinus falciformis is one of the most heavily exploited sharks, being the main by-catch species in both tuna longline and purse-seine fisheries in tropical waters worldwide. Despite this severe exploitation, little is known about the species’ life history and population status. Silky sharks, like many other sharks, exhibit slow growth and low fecundity, indicating the urgency of developing assessment studies to aid in the implementation of conservation plans for their stocks. Because information on the catch and effort of this species is scarce, some length-based data-limited methods were applied in the present study to provide estimates of the status of the tropical Pacific silky shark population. As evident from the LBSPR analysis, the current spawning potential ratio (SPR) was found to be below the target reference point of SPR 40% and slightly above the limit reference point of SPR 20%. In addition, the LBB model also confirmed that this stock’s status is overfished with relatively low biomass levels. Furthermore, both models showed estimates of size selectivity at 50% and 95% that were lower than the estimated size at sexual maturity. In conclusion, the data-limited models developed in this study indicated that the silky shark stock in the tropical Pacific Ocean may be at risk of further decline. Additionally, the results show that growth and recruitment overfishing may be occurring in the silky shark’s population calling for immediate intensification of monitoring programs for these sharks as a pre-requisite to develop efficient management and conservation plans in the Pacific Ocean. Full article
(This article belongs to the Special Issue Cartilaginous Fishes: Stock Assessment and Population Dynamics)
Show Figures

Figure 1

16 pages, 3545 KiB  
Article
Impact of Abnormal Climatic Events on the CPUE of Yellowfin Tuna Fishing in the Central and Western Pacific
by Weifeng Zhou, Huijuan Hu, Wei Fan and Shaofei Jin
Sustainability 2022, 14(3), 1217; https://doi.org/10.3390/su14031217 - 21 Jan 2022
Cited by 9 | Viewed by 3226
Abstract
To explore the impact of climate change on fishery resources, the temporal and spatial characteristics of the thermocline in the main yellowfin tuna purse-seine fishing grounds in the western and central Pacific Ocean during La Niña and El Niño years were studied using [...] Read more.
To explore the impact of climate change on fishery resources, the temporal and spatial characteristics of the thermocline in the main yellowfin tuna purse-seine fishing grounds in the western and central Pacific Ocean during La Niña and El Niño years were studied using the 2008–2017 Argo grid data (BOA_Argo) and the log data of commercial fishing vessels. A generalized additive model (GAM) was used to analyze the variables affecting yellowfin tuna fishing grounds. The results showed that in La Niña years, the catch per unit effort (CPUE) moved westward as the high-value zone of the upper boundary contracted westward to 145° E, and in the El Niño years this moved eastward to 165° E. Compared with normal years, the upper boundary depth difference of the thermocline on the east and west sides of the equatorial Pacific was larger in La Niña years, and the upper boundary depth of 80–130 m shifted westward. The thermocline strength was generally weaker in the west and stronger in the east. The thermocline had two band-like distribution structures with an axis at 15° N and 15° S. The CPUE was distributed from 120 m to 200 m. The CPUE distribution was dense when the temperature range of the upper boundary of the thermocline was 27.5–29.5 °C, and the intensity was 0.08–0.13 °C·m−1. The upper-boundary temperature had the greatest impact on the CPUE. The eastward shift of the CPUE during El Niño and the westward shift during La Niña were associated with the optimal thermocline parameter values. The factor of year had a fluctuating effect on the CPUE, and the influence of the La Niña years was greater. The areas with high abundance were 5° N–5° S and 150° E–175° E. The results showed that the changes in the thermocline caused by abnormal climate events significantly affected the CPUE. Full article
(This article belongs to the Special Issue Sustainability with Changing Climate and Extremes)
Show Figures

Figure 1

12 pages, 4497 KiB  
Article
Application of Feature Point Matching Technology to Identify Images of Free-Swimming Tuna Schools in a Purse Seine Fishery
by Qinglian Hou, Cheng Zhou, Rong Wan, Junbo Zhang and Feng Xue
J. Mar. Sci. Eng. 2021, 9(12), 1357; https://doi.org/10.3390/jmse9121357 - 1 Dec 2021
Cited by 3 | Viewed by 2520
Abstract
Tuna fish school detection provides information on the fishing decisions of purse seine fleets. Here, we present a recognition system that included fish shoal image acquisition, point extraction, point matching, and data storage. Points are a crucial characteristic for images of free-swimming tuna [...] Read more.
Tuna fish school detection provides information on the fishing decisions of purse seine fleets. Here, we present a recognition system that included fish shoal image acquisition, point extraction, point matching, and data storage. Points are a crucial characteristic for images of free-swimming tuna schools, and point algorithm analysis and point matching were studied for their applications in fish shoal recognition. The feature points were obtained by using one of the best point algorithms (scale invariant feature transform, speeded up robust features, oriented fast and rotated brief). The k-nearest neighbors (KNN) algorithm uses ‘feature similarity’ to predict the values of new points, which means that new data points will be assigned a value based on how closely they match the points that exist in the database. Finally, we tested the model, and the experimental results show that the proposed method can accurately and effectively recognize tuna free-swimming schools. Full article
(This article belongs to the Special Issue Artificial Intelligence in Marine Science and Engineering)
Show Figures

Figure 1

19 pages, 5109 KiB  
Article
Spatial Analysis of the Fishing Behaviour of Tuna Purse Seiners in the Western and Central Pacific Based on Vessel Trajectory Data
by Han Zhang, Sheng-Long Yang, Wei Fan, Hui-Min Shi and San-Ling Yuan
J. Mar. Sci. Eng. 2021, 9(3), 322; https://doi.org/10.3390/jmse9030322 - 15 Mar 2021
Cited by 23 | Viewed by 4249
Abstract
The Western and Central Pacific Oceans are the primary operational areas of tuna purse seiners worldwide. Describing and analysing the fishing behaviour of vessels is highly significant for the protection of sustainable tuna resources. This study uses Automatic Identification System (AIS) data of [...] Read more.
The Western and Central Pacific Oceans are the primary operational areas of tuna purse seiners worldwide. Describing and analysing the fishing behaviour of vessels is highly significant for the protection of sustainable tuna resources. This study uses Automatic Identification System (AIS) data of 130 tuna purse seiners from July 2017 to May 2018 and uses data mining methods to identify the operating status of tuna purse seiners; describes the spatial characteristics of fishing intensity and the distribution of hot spots; and analyses vessel spatial characteristics to describe their fishing behaviour. The results show that the tuna purse seiner speed has a marked bimodal distribution, which corresponds to high-speed transiting and low-speed seine operation. Additionally, from July to September 2017, the amount of fishing effort invested by tuna purse seiners was lower than that in other months. The tuna purse seiner activity range includes 120° E–60° W, 30° S–30° N, and the activities for fish and seine operations are primarily concentrated at 140° E–150° W, 15° S–15° N. There are differences between the space for fishing search operations and space where fishing events took place in each month. Spatial analysis shows that the high-speed transiting fishing effort map covers a large area, while seine fishing covers a small area. The global spatial autocorrelation analysis shows that the fishing effort devoted to searching for fish stocks has a spatial distribution pattern of aggregation and close aggregation. The results of a hot-spot analysis show that the hot spots on a heat map for finding fish, which are closely spatially clustered, correspond to vessels searching for fish concentration areas and seine operation areas. Correlation testing shows that under a 5° × 5° grid, there is a high positive correlation between the fishing effort invested in finding fish stocks and the yield data, nets (r > 0.8), and a moderate correlation with catch per unit of effort(CPUE) (r > 0.3). Based on vessel behaviour, the location of the fish school can be directly determined, and the distribution of fish clusters and fishing grounds can be predicted. This study can aid in managing tuna purse seiners in the Western and Central Pacific Oceans and analysing changes in fishery resources. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

16 pages, 7726 KiB  
Article
Predicting Skipjack Tuna Fishing Grounds in the Western and Central Pacific Ocean Based on High-Spatial-Temporal-Resolution Satellite Data
by Tung-Yao Hsu, Yi Chang, Ming-An Lee, Ren-Fen Wu and Shih-Chun Hsiao
Remote Sens. 2021, 13(5), 861; https://doi.org/10.3390/rs13050861 - 25 Feb 2021
Cited by 44 | Viewed by 6757
Abstract
Skipjack tuna are the most abundant commercial species in Taiwan’s pelagic purse seine fisheries. However, the rapidly changing marine environment increases the challenge of locating target fish in the vast ocean. The aim of this study was to identify the potential fishing grounds [...] Read more.
Skipjack tuna are the most abundant commercial species in Taiwan’s pelagic purse seine fisheries. However, the rapidly changing marine environment increases the challenge of locating target fish in the vast ocean. The aim of this study was to identify the potential fishing grounds of skipjack tuna in the Western and Central Pacific Ocean (WCPO). The fishing grounds of skipjack tuna were simulated using the habitat suitability index (HSI) on the basis of global fishing activities and remote sensing data from 2012 to 2015. The selected environmental factors included sea surface temperature and front, sea surface height, sea surface salinity, mixed layer depth, chlorophyll a concentration, and finite-size Lyapunov exponents. The final input factors were selected according to their percentage contribution to the total efforts. Overall, 68.3% of global datasets and 35.7% of Taiwanese logbooks’ fishing spots were recorded within 5 km of suitable habitat in the daily field. Moreover, 94.9% and 79.6% of global and Taiwan data, respectively, were identified within 50 km of suitable habitat. Our results showed that the model performed well in fitting daily forecast and actual fishing position data. Further, results from this study could benefit habitat monitoring and contribute to managing sustainable fisheries for skipjack tuna by providing wide spatial coverage information on habitat variation. Full article
(This article belongs to the Special Issue Optical Oceanographic Observation)
Show Figures

Figure 1

18 pages, 4435 KiB  
Article
Identifying the Design Alternatives and Flow Interference of Tuna Purse Seine by the Numerical Modelling Approach
by Cheng Zhou, Liuxiong Xu, Hao Tang, Fuxiang Hu, Pingguo He, Taisei Kumazawa, Xuefang Wang, Rong Wan and Shuchuang Dong
J. Mar. Sci. Eng. 2019, 7(11), 405; https://doi.org/10.3390/jmse7110405 - 8 Nov 2019
Cited by 11 | Viewed by 3717
Abstract
Dynamic responses of tuna purse seine to currents were numerically studied with regard to the vertical subsidence and global load distribution, and determinant attributes were identified. We rebuilt the submerged geometry of a purse seine net using the lumped mass method with hydrodynamic [...] Read more.
Dynamic responses of tuna purse seine to currents were numerically studied with regard to the vertical subsidence and global load distribution, and determinant attributes were identified. We rebuilt the submerged geometry of a purse seine net using the lumped mass method with hydrodynamic coefficients obtained from measurements of the prototype material, as well as a mesh grouping method, which corrects the twine diameter and netting material density for the equivalent net by introducing the compensation coefficient. Uneven tension distribution showed that it was vulnerable to high loads in the bunt area at shooting and along the lead line at pursing. High loads were present at the convex sections of net circles in the direction of the current. Higher shooting speeds resulted in well-balanced sinking, while a reduced hanging ratio of netting panels was beneficial to faster sinking. While large mesh sizes reduce water resistance and increase sinking velocity, extensive use should be cautioned in terms of the sensibility to stress. Comparing two options of different proportions of large-mesh panels, mesh sizes doubled for 15 strips versus 5 strips, suggesting that the 15 strip option would pose a higher risk of strand vulnerability, while the 5 strip option may be a more balanced alternative with a lower mesh density and a lower mesh stress. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop