A Prediction of the Shooting Trajectory for a Tuna Purse Seine Using the Double Deep Q-Network (DDQN) Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Shooting Trajectory
2.2. DDQN (Double Deep Q-Network) Algorithm
2.3. Problem Definition for Learning-Based Shooting Trajectory
2.3.1. Hyperparameters
2.3.2. Observation States
2.3.3. Action
2.3.4. Reward
2.4. Fishing Gear Specifications Used for Analysis
2.5. Numerical Analysis Method
3. Results
3.1. Simulation Results
3.1.1. Sinking Speed at Measurement Points
3.1.2. Sinking Depth at Measurement Points
3.2. Results of Reinforcement Learning
3.2.1. Shooting Trajectories Based on Eccentricity
3.2.2. Shooting Area Based on Eccentricity
3.2.3. Towline Length Based on Eccentricity
3.2.4. Comparison of Trajectories Derived from DDQN and Traditional Methods
3.3. The Sinking Depth of the Fishing Gear Based on Fish Reactive Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Igor, G.; Leticia, H.; Zigor, U.; Jose, A.F. A fishing route optimization decision support system: The case of the tuna purse seiner. Eur. J. Oper. Res. 2024, 312, 718–732. [Google Scholar] [CrossRef]
- Oihane, C.B.; Gorka, G.; Jon, L.; Igor, G.; Hilario, M.; Jose, A.F.; Inigo, K.; Jon, R.; Zigor, U. Fuel consumption of free-swimming school versus FAD strategies in tropical tuna purse seine fishing. Fish. Res. 2022, 245, 106139. [Google Scholar] [CrossRef]
- WCPFC. Conservation and management measure for bigeye, yellowfin and skipjack tuna in the Western and Central Pacific Ocean. CMM 2023, 1, 1–17. [Google Scholar]
- Lee, M.K.; Lee, S.I.; Lee, C.W.; Kim, D.N.; Ku, J.E. Study on fishing characteristics and strategies of Korean tuna purse seine fishery in the Western and Central Pacific Ocean Fisheries Commission. Korean Soc. Fish. Ocean Technol. 2016, 52, 197–208. [Google Scholar] [CrossRef]
- Ben-Yami, M. Purse Seine Manual; FAO, Fishing News Book; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Lee, C.W.; Lee, J.H.; Park, S.B. Prediction of shooting trajectory of tuna purse seine fishing. Fish. Res. 2018, 208, 189–201. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, C.W.; Choi, K.S.; Jang, Y.S. Analysis of the elliptical shooting trajectory for tuna purse seine. Korean Soc. Fish. Ocean Technol. 2020, 56, 1–10. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with deep reinforcement learning. arXiv 2013, arXiv:1312.5602. [Google Scholar] [CrossRef]
- Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-learning. AAAI Conf. Artif. Intell. 2016, 30, 2094–2100. [Google Scholar] [CrossRef]
- Yuen, H.S.H. Swimming speeds of yellowfin and skipjack tuna. Trans. Am. Fish. Soc. 2011, 95, 203–209. [Google Scholar] [CrossRef]
- Guinet, C.; Domenici, P.; De Stephanis, R.; Barrett-Lennard, L.; Ford, J.K.B.; Verborgh, P. Killer whale predation on bluefin tuna: Exploring the hypothesis of the endurance-exhaustion technique. Mar. Ecol. Prog. Ser. 2007, 347, 111–119. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Lee, C.W.; Kim, H.S.; Lee, J.; Lee, G.H. The sinking performance of the tuna purse seine gear with large-meshed panels using numerical method. Fish. Sci. 2011, 77, 503–520. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, Y.B.; Lee, G.H.; Choi, M.Y.; Lee, M.K.; Koo, K.Y. Dynamic simulation of a fish cage system subjected to currents and waves. Ocean Eng. 2008, 35, 1521–1532. [Google Scholar] [CrossRef]
- Wakaba, L.; Balanchandar, S. On the added mass force at finite Reynolds and acceleration numbers. Theor. Comput. Fluid Dyn. 2007, 21, 147–153. [Google Scholar] [CrossRef]
- Takaki, T.; Shimizu, T.; Suzuki, K.; Hirashi, T.; Yamamoto, K. Validity and layout of “NaLA”: A net configuration and loading analysis system. Fish. Res. 2004, 66, 235–243. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Ehsani, J. An investigation of reactive behavior of yellowfin tuna schools to the purse seining process. Iran. J. Fish. Sci. 2014, 13, 330–340. [Google Scholar] [CrossRef]
Eccentricity | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
---|---|---|---|---|---|---|
Shooting Area(m2) | 373,252 | 373,169 | 352,757 | 327,536 | 303,629 | 281,278 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, D.; Lee, J. A Prediction of the Shooting Trajectory for a Tuna Purse Seine Using the Double Deep Q-Network (DDQN) Algorithm. J. Mar. Sci. Eng. 2025, 13, 530. https://doi.org/10.3390/jmse13030530
Cho D, Lee J. A Prediction of the Shooting Trajectory for a Tuna Purse Seine Using the Double Deep Q-Network (DDQN) Algorithm. Journal of Marine Science and Engineering. 2025; 13(3):530. https://doi.org/10.3390/jmse13030530
Chicago/Turabian StyleCho, Daeyeon, and Jihoon Lee. 2025. "A Prediction of the Shooting Trajectory for a Tuna Purse Seine Using the Double Deep Q-Network (DDQN) Algorithm" Journal of Marine Science and Engineering 13, no. 3: 530. https://doi.org/10.3390/jmse13030530
APA StyleCho, D., & Lee, J. (2025). A Prediction of the Shooting Trajectory for a Tuna Purse Seine Using the Double Deep Q-Network (DDQN) Algorithm. Journal of Marine Science and Engineering, 13(3), 530. https://doi.org/10.3390/jmse13030530