The Environmental Niche of the Tuna Purse Seine Fleet in the Western and Central Pacific Ocean Based on Different Fisheries Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. FE Data, Study Area and Commercial Fishery Data
2.2. Environmental Data
2.3. Geographic and Topographic Variables
2.4. Data Processing
2.5. MaxEnt Model Construction
2.6. Model Selection and Validation
3. Results
3.1. Multicollinearity
3.2. Modelling Performance
3.3. Relative Importance of Environmental Factors
3.4. Purse Seine Tuna Distribution in Relation to Important Environmental Variables
3.5. Prediction of Habitat Suitability
4. Discussion
4.1. MaxEnt Model Construction
4.2. Spatial Scale Effects
4.3. The Contribution of Environmental Factors
4.4. Distribution of Vessel Operations in Relation to Environmental Variables
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zainuddin, M.; Saitoh, K.; Saitoh, S.-I. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fish. Oceanogr. 2008, 17, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Nieto, K.; Xu, Y.; Teo, S.L.H.; McClatchie, S.; Holmes, J. How important are coastal fronts to albacore tuna (Thunnus alalunga) habitat in the Northeast Pacific Ocean? Prog. Oceanogr. 2017, 150, 62–71. [Google Scholar] [CrossRef]
- Arrizabalaga, H.; Dufour, F.; Kell, L.; Merino, G.; Ibaibarriaga, L.; Chust, G.; Irigoien, X.; Santiago, J.; Murua, H.; Fraile, I.; et al. Global habitat preferences of commercially valuable tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 113, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Lopez, J.; Gala, M.; Lennert-Cody, C.; Maunder, M.; Sancristobal, I.; Caballero, A.; Dagorn, L. Environmental preferences of tuna and non-tuna species associated with drifting fish aggregating devices (DFADs) in the Atlantic Ocean, ascertained through fishers’ echo-sounder buoys. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2017, 140, 127–138. [Google Scholar] [CrossRef]
- Zhang, T.; Song, L.; Yuan, H.; Song, B.; Ebango Ngando, N. A comparative study on habitat models for adult bigeye tuna in the Indian Ocean based on gridded tuna longline fishery data. Fish. Oceanogr. 2021, 30, 584–607. [Google Scholar] [CrossRef]
- Taconet, M.; Kroodsma, D.; Fernandes, J.A. Global Atlas of AIS-Based Fishing Activity—Challenges and Opportunities; FAO: Rome, Italy, 2019. [Google Scholar]
- Crespo, G.O.; Dunn, D.C.; Reygondeau, G.; Boerder, K.; Worm, B.; Cheung, W.; Tittensor, D.P.; Halpin, P.N. The environmental niche of the global high seas pelagic longline fleet. Sci. Adv. 2018, 4, eaat3681. [Google Scholar] [CrossRef] [Green Version]
- Natale, F.; Gibin, M.; Alessandrini, A.; Vespe, M.; Paulrud, A. Mapping Fishing Effort through AIS Data. PLoS ONE 2015, 10, e0130746. [Google Scholar] [CrossRef] [Green Version]
- Ferrà, C.; Tassetti, A.N.; Grati, F.; Pellini, G.; Polidori, P.; Scarcella, G.; Fabi, G. Mapping change in bottom trawling activity in the Mediterranean Sea through AIS data. Mar. Policy 2018, 94, 275–281. [Google Scholar] [CrossRef]
- James, M.; Mendo, T.; Jones, E.L.; Orr, K.; McKnight, A.; Thompson, J. AIS data to inform small scale fisheries management and marine spatial planning. Mar. Policy 2018, 91, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Kroodsma, D.A.; Mayorga, J.; Hochberg, T.; Miller, N.A.; Boerder, K.; Ferretti, F.; Wilson, A.; Bergman, B.; White, T.D.; Block, B.A.; et al. Tracking the global footprint of fisheries. Science 2018, 359, 904–908. [Google Scholar] [CrossRef]
- Cimino, M.A.; Anderson, M.; Schramek, T.; Merrifield, S.; Terrill, E.J. Towards a Fishing Pressure Prediction System for a Western Pacific EEZ. Sci. Rep. 2019, 9, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Tixerant, M.; Le Guyader, D.; Gourmelon, F.; Queffelec, B. How can Automatic Identification System (AIS) data be used for maritime spatial planning? Ocean Coast. Manag. 2018, 66, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Debrah, E.A.; Wiafe, G.; Agyekum, K.A.; Aheto, D.W. An Assessment of the Potential for Mapping Fishing Zones off the Coast of Ghana. West Afr. J. Appl. Ecol. 2018, 26, 26–43. [Google Scholar]
- Russo, E.; Monti, M.A.; Mangano, M.C.; Raffaetà, A.; Sarà, G.; Silvestri, C.; Pranovi, F. Temporal and spatial patterns of trawl fishing activities in the Adriatic Sea (Central Mediterranean Sea, GSA17). Ocean. Coast. Manag. 2015, 192, 105231. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2020. [Google Scholar]
- Willams, P.G.; Terawasi, P. Overview of Tuna Fisheries in the Western and Central Pacific Ocean, Including Economic Conditions–2020[R].WCPFC-SC18-2022/GN IP-1. 2022. Available online: https://meetings.wcpfc.int/node/12527 (accessed on 17 January 2023).
- Amoroso, R.O.; Parma, A.M.; Pitcher, C.R.; Mcconnaughey, R.A.; Jennings, S. Comment on “tracking the global footprint of fisheries”. Science 2018, 361, eaat6713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Rincón, R.O.; Ortega-García, S.; Vaca-Rodríguez, J.G. Comparative performance of generalized additive models and boosted regression trees for statistical modeling of incidental catch of wahoo (Acanthocybium solandri) in the Mexican tuna purse-seine fishery. Ecol. Model. 2012, 233, 20–25. [Google Scholar] [CrossRef]
- Briand, K.; Molony, B.; Lehodey, P. A study on the variability of albacore (Thunnus alalunga) longline catch rates in the southwest Pacific Ocean. Fish. Oceanogr. 2011, 20, 517–529. [Google Scholar] [CrossRef]
- Yen, K.W.; Lu, H.J. Spatial-temporal variations in primary productivity and population dynamics of skipjack tuna Katsuwonus pelamis in the western and central Pacific Ocean. Fish. Sci. 2016, 82, 563–571. [Google Scholar] [CrossRef]
- Lan, K.-W.; Shimada, T.; Lee, M.-A.; Su, N.-J.; Chang, Y. Using Remote-Sensing Environmental and Fishery Data to Map Potential Yellowfin Tuna Habitats in the Tropical Pacific Ocean. Remote Sens. 2017, 9, 444. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.L.; Song, L.M.; Zhang, Y.; Fan, W.; Zhang, B.B.; Dai, Y.; Zhang, H.; Zhang, S.; Wu, Y. The Potential Vertical Distribution of Bigeye Tuna (Thunnus obesus) and Its Influence on the Spatial Distribution of CPUEs in the Tropical Atlantic Ocean. J. Ocean Univ. China 2020, 19, 669–680. [Google Scholar] [CrossRef]
- Stephanie, B.; Jacox, M.G.; Bograd, S.J.; Heather, W.; Heidi, D.; Scales, K.L.; Maxwell, S.M.; Briscoe, D.M.; Edwards, C.A.; Crowder, L.B. Integrating dynamic subsurface habitat metrics into species distribution models. Front. Mar. Sci. 2018, 5, 219. [Google Scholar]
- Melo-Merino, S.M.; Reyes-Bonilla, H.; Lira-Noriega, A. Ecological niche models species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 2020, 415, 108837. [Google Scholar] [CrossRef]
- Hsu, T.-Y.; Chang, Y.; Lee, M.-A.; Wu, R.-F.; Hsiao, S.-C. Predicting Skipjack Tuna Fishing Grounds in the Western and Central Pacific Ocean Based on High-Spatial-Temporal-Resolution Satellite Data. Remote Sens. 2021, 13, 861. [Google Scholar] [CrossRef]
- Belkin, I.M.; O’Reilly, J.E. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Mar. Syst. 2009, 78, 319–326. [Google Scholar] [CrossRef]
- Fiedler, P.C. Comparison of objective descriptions of the thermocline. Limnol. Oceanogr.-Methods 2010, 8, 313–325. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Manel, S.; Williams, H.C.; Ormerod, S.J. Evaluating presence-absence models in ecology: The need to account for prevalence. J. Appl. Ecol. 2001, 38, 921–931. [Google Scholar] [CrossRef]
- Renner, I.W.; Warton, D.I. Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology. Biometrics 2013, 69, 274–281. [Google Scholar] [CrossRef]
- Bertrand, A.; Josse, E.; Bach, P.; Gros, P.; Dagorn, L. Hydrological and trophic characteristics of tuna habitat: Consequences on tuna distribution and longline catchability. Can. J. Fish. Aquat. Sci. 2002, 59, 1002–1013. [Google Scholar] [CrossRef] [Green Version]
- Maunder, M.N.; Sibert, J.R.; Fonteneau, A.; Hampton, J.; Kleiber, P.; Harley, S.J. Interpreting catch per unit effort data to assess the status of individual stocks and communities. ICES J. Mar. Sci. 2006, 63, 1373–1385. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.; Drazen, J.C.; Radford, B.T.; Kelley, C.; Newman, S.J. Improving essential fish habitat designation to support sustainable ecosystem-based fisheries management. Mar. Policy 2016, 69, 32–41. [Google Scholar] [CrossRef]
- Brill, R.W.; Bigelow, K.A.; Musyl, M.K.; Fritsches, K.A.; Warrant, E. Bigeye Tuna behavior and physiology. Their relevance to stock assessments and fishery biology. Collect. Vol. Sci. Pap. 2005, 57, 142–161. [Google Scholar]
- Evans, K.; Langley, A.; Clear, N.P.; Williams, P.; Patterson, T.; Sibert, J.; Hampton, J.; Gunn, J.S.G.S. Behaviour and habitat preferences of bigeye tuna (Thunnus obesus) and their influence on longline fishery catches in the western Coral Sea. Can. J. Fish. Aquat. Sci. 2008, 65, 2427–2443. [Google Scholar] [CrossRef]
- Howell, E.A.; Hawn, D.R.; Polovina, J.J. Spatiotemporal variability in bigeye tuna (Thunnus obesus) dive behavior in the central North Pacific Ocean. Prog. Oceanogr. 2010, 86, 81–93. [Google Scholar] [CrossRef]
- Schaefer, K.M.; Fuller, D.W.; Aldana, G. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in waters surrounding the Revillagigedo Islands Archipelago Biosphere Reserve, Mexico. Fish. Oceanogr. 2014, 23, 65–82. [Google Scholar] [CrossRef]
- Fuller, D.W.; Schaefer, K.M.; Hampton, J.; Caillot, S.; Leroy, B.M.; Itano, D.G. Vertical movements, behavior, and habitat of bigeye tuna (Thunnus obesus) in the equatorial central Pacific Ocean. Fish. Res. 2015, 172, 57–70. [Google Scholar] [CrossRef]
- Matsumoto, T.; Satoh, K.; Semba, Y.; Toyonaga, M. Comparison of the behavior of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye (T. obesus) tuna associated with drifting FADs in the equatorial central Pacific Ocean. Fish. Oceanogr. 2016, 25, 565–581. [Google Scholar] [CrossRef]
- Deary, A.L.; Moret-Ferguson, S.; Engels, M.; Zettler, E.; Jaroslow, G.; Sancho, G. Influence of Central Pacific Oceanographic Conditions on the Potential Vertical Habitat of Four Tropical Tuna Species. Pac. Sci. 2015, 69, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Abascal, F.J.; Peatman, T.; Leroy, B.; Nicol, S.; Schaefer, K.; Fuller, D.W.; Hampton, J. Spatiotemporal variability in bigeye vertical distribution in the Pacific Ocean. Fish. Res. 2018, 204, 371–379. [Google Scholar] [CrossRef]
- Prince, E.D.; Goodyear, C.P. Hypoxia-based habitat compression of tropical pelagic fishes. Fish. Oceanogr. 2006, 15, 451–464. [Google Scholar] [CrossRef]
- Prince, E.D.; Luo, J.; Phillip Goodyear, C.; Hoolihan, J.P.; Snodgrass, D.; Orbesen, E.S.; Serafy, J.E.; Ortiz, M.; Schirripa, M.J. Ocean scale hypoxia-based habitat compression of Atlantic istiophorid billfishes. Fish. Oceanogr. 2010, 19, 448–462. [Google Scholar] [CrossRef]
- Lehodey, P.; Senina, I.; Calmettes, B.; Hampton, J.; Nicol, S. Modelling the impact of climate change on Pacific skipjack tuna population and fisheries. Clim. Chang. 2013, 119, 95–109. [Google Scholar] [CrossRef]
- Tseng, C.T.; Sun, C.L.; Yeh, S.Z.; Chen, S.C.; Su, W.C. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data. Int. J. Remote Sens. 2010, 31, 4543–4558. [Google Scholar] [CrossRef]
- Schaefer, K.; Fuller, D.; Hampton, J.; Caillot, S.; Leroy, B.; Itano, D. Movements, dispersion, and mixing of bigeye tuna (Thunnus obesus) tagged and released in the equatorial Central Pacific Ocean, with conventional and archival tags. Fish. Res. 2015, 161, 336–355. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.H.; Cui, X.S.; Yang, S.L.; Zhou, W.F.; Cheng, T.F.; Wu, Z.; Zhang, H. GIS analysis on effect of temporal and spatial patterns of marine environment on purse seine fishery in the western and central Pacific. South China Fish. Sci. 2014, 10, 18–26. [Google Scholar] [CrossRef]
Scale | Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.25° | AUC | 0.888 | 0.885 | 0.879 | 0.882 | 0.879 | 0.878 | 0.901 | 0.898 | 0.902 | 0.881 | 0.881 | 0.880 |
SD | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | |
0.5° | AUC | 0.857 | 0.854 | 0.858 | 0.855 | 0.850 | 0.850 | 0.884 | 0.875 | 0.879 | 0.861 | 0.862 | 0.863 |
SD | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | |
1° | AUC | 0.801 | 0.795 | 0.783 | 0.788 | 0.786 | 0.775 | 0.828 | 0.809 | 0.829 | 0.792 | 0.800 | 0.807 |
SD | 0.011 | 0.012 | 0.012 | 0.011 | 0.011 | 0.011 | 0.011 | 0.011 | 0.011 | 0.012 | 0.011 | 0.011 |
Variable | GFW_0.25° | GFW_0.5° | GFW_1° | WCPFC |
---|---|---|---|---|
DPT | 0.37 | 0.29 | 0.49 | 0.53 |
DSH | 4.41 | 2.65 | 0.01 | 1.20 |
EKE | 4.00 | 3.51 | 1.81 | 2.38 |
Chl100 | 0.69 | 0.77 | 0.59 | 1.23 |
Chl200 | 0.93 | 0.96 | 0.78 | 0.99 |
depth | 0.10 | 0.08 | 0.08 | 0.42 |
Mld | 2.19 | 2.50 | 0.75 | 3.09 |
Dox | 1.84 | 1.30 | 2.13 | 1.92 |
O100 | 15.74 | 23.95 | 6.69 | 16.84 |
O200 | 4.08 | 4.20 | 31.08 | 3.94 |
PP | 23.51 | 19.58 | 27.58 | 16.71 |
PP100 | 0.92 | 1.03 | 2.54 | 5.24 |
PP200 | 1.04 | 0.98 | 1.06 | 1.44 |
S100 | 1.07 | 1.24 | 2.95 | 1.39 |
S200 | 2.28 | 1.35 | 2.47 | 2.01 |
SSH | 0.70 | 0.48 | 0.64 | 1.28 |
SSS | 2.04 | 2.16 | 2.18 | 1.19 |
SST | 15.83 | 12.53 | 5.06 | 19.27 |
SSTf | 0.10 | 0.28 | 0.17 | 1.07 |
T100 | 17.49 | 19.88 | 10.45 | 15.15 |
U | 0.45 | 0.14 | 0.33 | 2.49 |
V | 0.22 | 0.13 | 0.16 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Yu, L.; Wang, F.; Chen, T.; Fei, Y.; Zhang, S.; Fan, W. The Environmental Niche of the Tuna Purse Seine Fleet in the Western and Central Pacific Ocean Based on Different Fisheries Data. Fishes 2023, 8, 78. https://doi.org/10.3390/fishes8020078
Yang S, Yu L, Wang F, Chen T, Fei Y, Zhang S, Fan W. The Environmental Niche of the Tuna Purse Seine Fleet in the Western and Central Pacific Ocean Based on Different Fisheries Data. Fishes. 2023; 8(2):78. https://doi.org/10.3390/fishes8020078
Chicago/Turabian StyleYang, Shenglong, Linlin Yu, Fei Wang, Tianfei Chen, Yingjie Fei, Shengmao Zhang, and Wei Fan. 2023. "The Environmental Niche of the Tuna Purse Seine Fleet in the Western and Central Pacific Ocean Based on Different Fisheries Data" Fishes 8, no. 2: 78. https://doi.org/10.3390/fishes8020078
APA StyleYang, S., Yu, L., Wang, F., Chen, T., Fei, Y., Zhang, S., & Fan, W. (2023). The Environmental Niche of the Tuna Purse Seine Fleet in the Western and Central Pacific Ocean Based on Different Fisheries Data. Fishes, 8(2), 78. https://doi.org/10.3390/fishes8020078