Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (375)

Search Parameters:
Keywords = tumor-immune microenvironments (TIME)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
55 pages, 2103 KiB  
Review
Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics
by Manisha Nigam, Bajrang Punia, Deen Bandhu Dimri, Abhay Prakash Mishra, Andrei-Flavius Radu and Gabriela Bungau
Cells 2025, 14(15), 1207; https://doi.org/10.3390/cells14151207 - 6 Aug 2025
Abstract
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment [...] Read more.
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment dynamics remain unclear. Specifically, the spatial and temporal aspects of ROS regulation (i.e., the distinct effects of mitochondrial versus cytosolic ROS on the PI3K/Akt and NF-κB pathways, and the differential cellular outcomes driven by acute versus chronic ROS exposure) have been underexplored. Additionally, the specific contributions of ROS-generating enzymes, like NOX isoforms and xanthine oxidase, to tumor microenvironment remodeling and immune modulation remain poorly understood. This review synthesizes current findings with a focus on these critical gaps, offering novel mechanistic insights into the dualistic nature of ROS in cancer biology. By systematically integrating data on ROS source-specific functions and redox-sensitive signaling pathways, the complex interplay between ROS concentration, localization, and persistence is elucidated, revealing how these factors dictate the paradoxical support of tumor progression or induction of cancer cell death. Particular attention is given to antioxidant mechanisms, including NRF2-mediated responses, that may undermine the efficacy of ROS-targeted therapies. Recent breakthroughs in redox biosensors (i.e., redox-sensitive fluorescent proteins, HyPer variants, and peroxiredoxin–FRET constructs) enable precise, real-time ROS imaging across subcellular compartments. Translational advances, including redox-modulating drugs and synthetic lethality strategies targeting glutathione or NADPH dependencies, further highlight actionable vulnerabilities. This refined understanding advances the field by highlighting context-specific vulnerabilities in tumor redox biology and guiding more precise therapeutic strategies. Continued research on redox-regulated signaling and its interplay with inflammation and therapy resistance is essential to unravel ROS dynamics in tumors and develop targeted, context-specific interventions harnessing their dual roles. Full article
Show Figures

Figure 1

18 pages, 13869 KiB  
Article
Spatial Omics Profiling of Treatment-Naïve Lung Adenocarcinoma with Brain Metastasis as the Initial Presentation
by Seoyeon Gwon, Inju Cho, Jieun Lee, Seung Yun Lee, Kyue-Hee Choi and Tae-Jung Kim
Cancers 2025, 17(15), 2529; https://doi.org/10.3390/cancers17152529 - 31 Jul 2025
Viewed by 287
Abstract
Background/Objectives: Brain metastasis (BM) is a common and often early manifestation in lung adenocarcinoma (LUAD), yet its tumor microenvironment remains poorly defined at the time of initial diagnosis. This study aims to characterize early immune microenvironmental alterations in synchronous BM using spatial proteomic [...] Read more.
Background/Objectives: Brain metastasis (BM) is a common and often early manifestation in lung adenocarcinoma (LUAD), yet its tumor microenvironment remains poorly defined at the time of initial diagnosis. This study aims to characterize early immune microenvironmental alterations in synchronous BM using spatial proteomic profiling. Methods: We performed digital spatial proteomic profiling using the NanoString GeoMx platform on formalin-fixed paraffin-embedded tissues from five treatment-naïve LUAD patients in whom BM was the initial presenting lesion. Paired primary lung and brain metastatic samples were analyzed across tumor and stromal compartments using 68 immune- and tumor-related protein markers. Results: Spatial profiling revealed distinct expression patterns between primary tumors and brain metastases. Immune regulatory proteins—including IDO-1, PD-1, PD-L1, STAT3, PTEN, and CD44—were significantly reduced in brain metastases (p < 0.01), whereas pS6, a marker of activation-induced T-cell death, was significantly upregulated (p < 0.01). These alterations were observed in both tumor and stromal regions, suggesting a more immunosuppressive and apoptotic microenvironment in brain lesions. Conclusions: This study provides one of the first spatially resolved proteomic characterizations of synchronous BM at initial LUAD diagnosis. Our findings highlight early immune escape mechanisms and suggest the need for site-specific immunotherapeutic strategies in patients with brain metastasis. Full article
(This article belongs to the Special Issue Lung Cancer Proteogenomics: New Era, New Insights)
Show Figures

Figure 1

20 pages, 3005 KiB  
Review
EUS-Guided Pancreaticobiliary Ablation: Is It Ready for Prime Time?
by Nina Quirk, Rohan Ahuja and Nirav Thosani
Immuno 2025, 5(3), 30; https://doi.org/10.3390/immuno5030030 - 25 Jul 2025
Viewed by 286
Abstract
Despite advances in surgery, chemotherapy, and radiation treatments for pancreatic ductal adenocarcinoma (PDAC), 5-year survival rates remain at nearly 11%. Cholangiocarcinoma, while not as severe, also possesses similar survival rates. Fewer than 20% of patients are surgical candidates at time of diagnosis; therefore, [...] Read more.
Despite advances in surgery, chemotherapy, and radiation treatments for pancreatic ductal adenocarcinoma (PDAC), 5-year survival rates remain at nearly 11%. Cholangiocarcinoma, while not as severe, also possesses similar survival rates. Fewer than 20% of patients are surgical candidates at time of diagnosis; therefore, it is imperative that alternative therapies are effective for non-surgical patients. There are several thermal ablative techniques, including radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), microwave ablation (MWA), alcohol ablation, stereotactic body radiotherapy (SBRT), cryoablation, irreversible electroporation (IRE), biliary intraluminal brachytherapy, and biliary photodynamic therapy (PDT). Emerging literature in animal models and human patients has demonstrated that endoscopic ultrasound (EUS)-guided RFA (EUS-RFA) prevents tumor progression through coagulative necrosis, protein denaturation, and activation of anticancer immunity in local and distant tumor tissue (abscopal effect). RFA treatment has been shown to not only reduce tumor-associated immunosuppressive cells but also increase functional T cells in distant tumor cells not treated with RFA. The remarkable ability to reduce tumor progression and promote tumor microenvironment (TME) remodeling makes RFA a very promising non-surgical therapy technique that has the potential to reduce mortality in this patient population. EUS-RFA offers superior precision and safety compared to other ablation techniques for pancreatic and biliary cancers, due to real-time imaging capabilities and minimally invasive nature. Future research should focus on optimizing RFA protocols, exploring combination therapies with chemotherapy or immunotherapy, and expanding its use in patients with metastatic disease. This review article will explore the current data and underlying pathophysiology of EUS-RFA while also highlighting the role of ablative therapies as a whole in immune activation response. Full article
Show Figures

Figure 1

21 pages, 13833 KiB  
Article
Machine Learning-Based Prognostic Signature in Breast Cancer: Regulatory T Cells, Stemness, and Deep Learning for Synergistic Drug Discovery
by Samina Gul, Jianyu Pang, Yongzhi Chen, Qi Qi, Yuheng Tang, Yingjie Sun, Hui Wang, Wenru Tang and Xuhong Zhou
Int. J. Mol. Sci. 2025, 26(14), 6995; https://doi.org/10.3390/ijms26146995 - 21 Jul 2025
Viewed by 330
Abstract
Regulatory T cells (Tregs) have multiple roles in the tumor microenvironment (TME), which maintain a balance between autoimmunity and immunosuppression. This research aimed to investigate the interaction between cancer stemness and Regulatory T cells (Tregs) in the breast cancer tumor immune microenvironment. Breast [...] Read more.
Regulatory T cells (Tregs) have multiple roles in the tumor microenvironment (TME), which maintain a balance between autoimmunity and immunosuppression. This research aimed to investigate the interaction between cancer stemness and Regulatory T cells (Tregs) in the breast cancer tumor immune microenvironment. Breast cancer stemness was calculated using one-class logistic regression. Twelve main cell clusters were identified, and the subsequent three subsets of Regulatory T cells with different differentiation states were identified as being closely related to immune regulation and metabolic pathways. A prognostic risk model including MEA1, MTFP1, PASK, PSENEN, PSME2, RCC2, and SH2D2A was generated through the intersection between Regulatory T cell differentiation-related genes and stemness-related genes using LASSO and univariate Cox regression. The patient’s total survival times were predicted and validated with AUC of 0.96 and 0.831 in both training and validation sets, respectively; the immunotherapeutic predication efficacy of prognostic signature was confirmed in four ICI RNA-Seq cohorts. Seven drugs, including Ethinyl Estradiol, Epigallocatechin gallate, Cyclosporine, Gentamicin, Doxorubicin, Ivermectin, and Dronabinol for prognostic signature, were screened through molecular docking and found a synergistic effect among drugs with deep learning. Our prognostic signature potentially paves the way for overcoming immune resistance, and blocking the interaction between cancer stemness and Tregs may be a new approach in the treatment of breast cancer. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

24 pages, 850 KiB  
Review
Platelets in Hepatocellular Carcinoma—From Pathogenesis to Targeted Therapy
by Natalia Kluz, Hanna Grabowska, Paulina Chmiel, Kornelia Rynkiewicz, Alicja Skrobucha, Ewa Wysokińska, Łukasz Szymański, Piotr Tomasz Wysocki, Aleksandra Semeniuk-Wojtaś and Leszek Kraj
Cancers 2025, 17(14), 2391; https://doi.org/10.3390/cancers17142391 - 18 Jul 2025
Viewed by 380
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with a complex pathogenesis, course, and prognosis with increasing incidence. The most significant contributing factor to the development of HCC is the chronic process of inflammation and remodeling of the cirrhotic liver, in which the interaction between [...] Read more.
Hepatocellular carcinoma (HCC) is a malignancy with a complex pathogenesis, course, and prognosis with increasing incidence. The most significant contributing factor to the development of HCC is the chronic process of inflammation and remodeling of the cirrhotic liver, in which the interaction between the tumor microenvironment (TME) and cancer cells plays a pivotal role. In recent years, increasing focus has been directed toward the role of platelets (PLTs) in mediating interactions between tumor cells and the TME and in the progression and spread of HCC, as well as other cancers. Due to their abundance in the bloodstream and intracellular granules rich in mediators facilitating their ability to modulate the immune system, PLTs play a significant role in carcinogenesis. In the context of HCC, the role of PLTs in the healing and regeneration processes of the liver has been recognized for some time. In recent years, there has been an increasing utilization of PLTs in prognostic models for patients with HCC. Given their role and the availability of clinical options that block PLTs’ action, clinical trials of platelet blockers in the adjunctive treatment of HCC are becoming increasingly common. However, further research, both preclinical and clinical, is necessary to fully elucidate the role of PLTs in HCC and their potential use as a therapeutic target. In this literature review, we summarize the current knowledge on PLTs in HCC and focus on their potential use in everyday clinical practice. Full article
Show Figures

Figure 1

15 pages, 1192 KiB  
Review
Natural Killer Cell and Extracellular Vesicle-Based Immunotherapy in Thyroid Cancer: Advances, Challenges, and Future Perspectives
by Kruthika Prakash, Ramya Lakshmi Rajendran, Sanjana Dhayalan, Prakash Gangadaran, Byeong-Cheol Ahn and Kandasamy Nagarajan Aruljothi
Cells 2025, 14(14), 1087; https://doi.org/10.3390/cells14141087 - 16 Jul 2025
Viewed by 596
Abstract
Thyroid cancer, the most frequently occurring endocrine neoplasm, comprises a heterogeneous group of histological subtypes, spanning from the indolent papillary thyroid carcinoma (PTC) to the rapidly progressive and lethal anaplastic thyroid carcinoma (ATC). Although conventional therapies, such as surgery and radioactive iodine (RAI), [...] Read more.
Thyroid cancer, the most frequently occurring endocrine neoplasm, comprises a heterogeneous group of histological subtypes, spanning from the indolent papillary thyroid carcinoma (PTC) to the rapidly progressive and lethal anaplastic thyroid carcinoma (ATC). Although conventional therapies, such as surgery and radioactive iodine (RAI), are effective for differentiated thyroid cancers, treatment resistance and poor prognosis remain major challenges in advanced and undifferentiated forms. In current times, growing attention has been directed toward the potential of Natural Killer (NK) cells as a promising immunotherapeutic avenue. These innate immune cells are capable of direct cytotoxicity against tumor cells, but their efficiency is frequently compromised by the immunosuppressive tumor microenvironment (TME), which inhibits NK cell activation, infiltration, and persistence. This review explores the dynamic interaction between NK cells and the TME in thyroid cancer, detailing key mechanisms of immune evasion, including the impact of suppressive cytokines, altered chemokine landscapes, and inhibitory ligand expression. We further discuss latest advancements in NK cell-based immunotherapies, including strategies for ex vivo expansion, genetic modification, and combinatorial approaches with checkpoint inhibitors or cytokines. Additionally, emerging modalities, such as NK cell-derived extracellular vesicles, are addressed. By combining mechanistic insights with advancing therapeutic techniques, this review provides a comprehensive perspective on NK cell-based interventions and their future potential in improving outcomes for patients with thyroid cancer. Full article
Show Figures

Figure 1

22 pages, 1013 KiB  
Article
Selection of Stable Reference Genes for Gene Expression Studies in Activated and Non-Activated PBMCs Under Normoxic and Hypoxic Conditions
by Artur Wardaszka, Anna Smolarska, Piotr Bednarczyk and Joanna Katarzyna Bujak
Int. J. Mol. Sci. 2025, 26(14), 6790; https://doi.org/10.3390/ijms26146790 - 15 Jul 2025
Viewed by 379
Abstract
Immunotherapy has emerged as a key modality in cancer treatment, yet its effectiveness varies significantly among patients, often due to the metabolic stress imposed by the tumor microenvironment. Hypoxia, a major factor in the tumor microenvironment, results from the high metabolic rate of [...] Read more.
Immunotherapy has emerged as a key modality in cancer treatment, yet its effectiveness varies significantly among patients, often due to the metabolic stress imposed by the tumor microenvironment. Hypoxia, a major factor in the tumor microenvironment, results from the high metabolic rate of tumor cells and inadequate vascularization, impairing immune cells’ function and potentially influencing gene expression profiles. Despite the widespread use of quantitative real-time PCR in immunological studies, to the best of our knowledge, data on reference gene stability in human peripheral blood mononuclear cells under hypoxic conditions is limited. In our study, we assessed the expression stability of commonly used reference genes (S18, HPRT, IPO8, RPL13A, SDHA, PPIA, and UBE2D2) in both non-stimulated and CD3/CD28-activated peripheral blood mononuclear cells cultured under normoxic, hypoxic (1% O2), and chemically induced hypoxic conditions for 24 h. Analysis using four different algorithms—delta Ct, geNorm, NormFinder, and BestKeeper—identified RPL13A, S18, and SDHA as the most suitable reference genes for human peripheral blood mononuclear cells under hypoxic conditions. In contrast, IPO8 and PPIA were found to be the least suitable housekeeping genes. The study provides essential insights into the stability of reference genes in peripheral blood mononuclear cells under hypoxic conditions, a critical but understudied aspect of immunological research. Given the significant impact of hypoxia on T cell metabolism and function in the tumor microenvironment, selecting reliable reference genes is crucial for accurate gene expression analysis. Our findings will be valuable for future studies investigating hypoxia-driven metabolic reprogramming in immune cells, ultimately contributing to a better understanding of T cell responses in cancer immunotherapy. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

18 pages, 8113 KiB  
Article
An Interpretable Machine Learning Model Based on Inflammatory–Nutritional Biomarkers for Predicting Metachronous Liver Metastases After Colorectal Cancer Surgery
by Hao Zhu, Danyang Shen, Xiaojie Gan and Ding Sun
Biomedicines 2025, 13(7), 1706; https://doi.org/10.3390/biomedicines13071706 - 12 Jul 2025
Viewed by 437
Abstract
Objective: Tumor progression is regulated by systemic immune status, nutritional metabolism, and the inflammatory microenvironment. This study aims to investigate inflammatory–nutritional biomarkers associated with metachronous liver metastasis (MLM) in colorectal cancer (CRC) and develop a machine learning model for accurate prediction. Methods [...] Read more.
Objective: Tumor progression is regulated by systemic immune status, nutritional metabolism, and the inflammatory microenvironment. This study aims to investigate inflammatory–nutritional biomarkers associated with metachronous liver metastasis (MLM) in colorectal cancer (CRC) and develop a machine learning model for accurate prediction. Methods: This study enrolled 680 patients with CRC who underwent curative resection, randomly allocated into a training set (n = 477) and a validation set (n = 203) in a 7:3 ratio. Feature selection was performed using Boruta and Lasso algorithms, identifying nine core prognostic factors through variable intersection. Seven machine learning (ML) models were constructed using the training set, with the optimal predictive model selected based on comprehensive evaluation metrics. An interactive visualization tool was developed to interpret the dynamic impact of key features on individual predictions. The partial dependence plots (PDPs) revealed a potential dose–response relationship between inflammatory–nutritional markers and MLM risk. Results: Among 680 patients with CRC, the cumulative incidence of MLM at 6 months postoperatively was 39.1%. Multimodal feature selection identified nine key predictors, including the N stage, vascular invasion, carcinoembryonic antigen (CEA), systemic immune–inflammation index (SII), albumin–bilirubin index (ALBI), differentiation grade, prognostic nutritional index (PNI), fatty liver, and T stage. The gradient boosting machine (GBM) demonstrated the best overall performance (AUROC: 0.916, sensitivity: 0.772, specificity: 0.871). The generalized additive model (GAM)-fitted SHAP analysis established, for the first time, risk thresholds for four continuous variables (CEA > 8.14 μg/L, PNI < 44.46, SII > 856.36, ALBI > −2.67), confirming their significant association with MLM development. Conclusions: This study developed a GBM model incorporating inflammatory-nutritional biomarkers and clinical features to accurately predict MLM in colorectal cancer. Integrated with dynamic visualization tools, the model enables real-time risk stratification via a freely accessible web calculator, guiding individualized surveillance planning and optimizing clinical decision-making for precision postoperative care. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

17 pages, 1039 KiB  
Review
Immune Microenvironment in Oral Potentially Malignant Disorders and Oral Cancer: A Narrative Review
by Aiman Ali, Graziella Rigueira Molska, Huiling Yeo, Najmeh Esfandiari, Will Jeong, Michelle Huang and Marco Magalhaes
Int. J. Mol. Sci. 2025, 26(14), 6650; https://doi.org/10.3390/ijms26146650 - 11 Jul 2025
Viewed by 375
Abstract
Multiple studies have investigated the impact of the tumor immune microenvironment (TIME) on oral squamous cell carcinoma (OSCC), with most focusing on three key cellular components: lymphocytes, macrophages, and neutrophils, as well as the molecular mechanisms underlying inflammation-mediated OSCC invasion. Although the specific [...] Read more.
Multiple studies have investigated the impact of the tumor immune microenvironment (TIME) on oral squamous cell carcinoma (OSCC), with most focusing on three key cellular components: lymphocytes, macrophages, and neutrophils, as well as the molecular mechanisms underlying inflammation-mediated OSCC invasion. Although the specific roles of each cell type vary depending on their subtypes and the characteristics of OSCC, several consistent patterns have been identified. TIME plays a critical role at every stage of OSCC progression, from tumor initiation and growth to invasion and metastasis. Understanding the communication signals–the language–between tumor cells and the TIME, encoded through various proteins secreted by immune cells, is essential for controlling tumor progression and developing effective treatments for OSCC. This review provides an overview of how TIME influences the progression of the Oral Potentially Malignant Disorders (OPMDs) to OSCC as well as OSCC’s invasion, focusing on the contributions of various immune cells within the TIME. Additionally, we discuss recent advances in immunotherapy for OSCC, highlighting strategies to enhance immune responses and improve treatment outcomes. Full article
Show Figures

Figure 1

20 pages, 960 KiB  
Review
Zebrafish as a Model for Translational Immuno-Oncology
by Gabriela Rodrigues Barbosa, Augusto Monteiro de Souza, Priscila Fernandes Silva, Caroline Santarosa Fávero, José Leonardo de Oliveira, Hernandes F. Carvalho, Ana Carolina Luchiari and Leonardo O. Reis
J. Pers. Med. 2025, 15(7), 304; https://doi.org/10.3390/jpm15070304 - 11 Jul 2025
Viewed by 582
Abstract
Despite remarkable progress in cancer immunotherapy, many agents that show efficacy in murine or in vitro models fail to translate clinically. Zebrafish (Danio rerio) have emerged as a powerful complementary model that addresses several limitations of traditional systems. Their optical transparency, [...] Read more.
Despite remarkable progress in cancer immunotherapy, many agents that show efficacy in murine or in vitro models fail to translate clinically. Zebrafish (Danio rerio) have emerged as a powerful complementary model that addresses several limitations of traditional systems. Their optical transparency, genetic tractability, and conserved immune and oncogenic signaling pathways enable high-resolution, real-time imaging of tumor–immune interactions in vivo. Importantly, zebrafish offer a unique opportunity to study the core mechanisms of health and sickness, complementing other models and expanding our understanding of fundamental processes in vivo. This review provides an overview of zebrafish immune system development, highlighting tools for tracking innate and adaptive responses. We discuss their application in modeling immune evasion, checkpoint molecule expression, and tumor microenvironment dynamics using transgenic and xenograft approaches. Platforms for high-throughput drug screening and personalized therapy assessment using patient-derived xenografts (“zAvatars”) are evaluated, alongside limitations, such as temperature sensitivity, immature adaptive immunity in larvae, and interspecies differences in immune responses, tumor complexity, and pharmacokinetics. Emerging frontiers include humanized zebrafish, testing of next-generation immunotherapies, such as CAR T/CAR NK and novel checkpoint inhibitors (LAG-3, TIM-3, and TIGIT). We conclude by outlining the key challenges and future opportunities for integrating zebrafish into the immuno-oncology pipeline to accelerate clinical translation. Full article
(This article belongs to the Special Issue Advances in Animal Models and Precision Medicine for Cancer Research)
Show Figures

Figure 1

18 pages, 11393 KiB  
Article
Expression Characteristics and Prognostic Value of KLRG2 in Endometrial Cancer: A Comprehensive Analysis Based on Multi-Omics Data
by Xiaoyan Huang, Ailian Li and Dianbo Xu
Biomedicines 2025, 13(7), 1592; https://doi.org/10.3390/biomedicines13071592 - 30 Jun 2025
Viewed by 397
Abstract
Background: Endometrial cancer (EC) remains a major gynecologic malignancy with limited biomarkers for risk stratification. While killer cell lectin-like receptor G2 (KLRG2) exhibits oncogenic properties in other cancers, its clinical significance and mechanistic roles in EC are unknown. This study aims to [...] Read more.
Background: Endometrial cancer (EC) remains a major gynecologic malignancy with limited biomarkers for risk stratification. While killer cell lectin-like receptor G2 (KLRG2) exhibits oncogenic properties in other cancers, its clinical significance and mechanistic roles in EC are unknown. This study aims to systematically characterize KLRG2 expression in EC, evaluate its prognostic significance, decipher underlying molecular mechanisms, and explore its role in tumor immune microenvironment regulation. Methods: We performed integrated multi-omics analyses using TCGA-UCEC (n = 552), GTEx, and GEO cohorts (GSE106191), complemented by qPCR validation (14 EC vs. 14 normal samples). Prognostic models were constructed via Cox regression and time-dependent ROC analysis. Epigenetic regulation was assessed through methylation profiling (UALCAN/MethSurv), and immune correlations were evaluated using TIMER/ESTIMATE algorithms. Results: KLRG2 was significantly overexpressed in EC tissues compared to normal endometrium (p < 0.001), validated by immunohistochemistry and qPCR. High KLRG2 expression independently predicted worse overall survival (HR = 3.08, 95% CI = 1.92–4.96) and progression-free interval (HR = 1.98, 95% CI = 1.37–2.87). Furthermore, elevated KLRG2 levels were significantly associated with advanced-stage disease (p < 0.001), deep myometrial invasion (p < 0.05), and high-grade histology (p < 0.001). Mechanistically, promoter hypomethylation was associated with KLRG2 overexpression (p < 0.001), while hypermethylation at three CpG sites (cg04915254, cg04520485, cg23104233) correlated with poor prognosis. Functional enrichment linked KLRG2 to cell cycle checkpoints and G Protein-Coupled Receptor signaling. Immune profiling revealed cytotoxic lymphocyte depletion (CD8+ T cells: Spearman’s ρ = −0.247, p < 0.001; NK CD56bright cells: Spearman’s ρ = −0.276, p < 0.001) and Th2 polarization (Spearman’s ρ = 0.117, p = 0.006). Conclusions: This comprehensive EC study establishes KLRG2 as a dual diagnostic/prognostic biomarker and immunomodulatory target. These findings provide a rationale for developing KLRG2-directed therapies to counteract tumor-intrinsic proliferation and microenvironmental immune suppression. Future single-cell analyses are warranted to dissect KLRG2-mediated tumor-immune crosstalk. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

30 pages, 2884 KiB  
Review
Silibinin Anticancer Effects Through the Modulation of the Tumor Immune Microenvironment in Triple-Negative Breast Cancer
by Shubham D. Mishra, Patricia Mendonca, Sukhmandeep Kaur and Karam F. A. Soliman
Int. J. Mol. Sci. 2025, 26(13), 6265; https://doi.org/10.3390/ijms26136265 - 28 Jun 2025
Viewed by 1038
Abstract
Triple-negative breast cancer (TNBC), characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), remains a therapeutic challenge due to its aggressive nature, limited treatment options, and high recurrence rates. Current therapies, including chemotherapy [...] Read more.
Triple-negative breast cancer (TNBC), characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), remains a therapeutic challenge due to its aggressive nature, limited treatment options, and high recurrence rates. Current therapies, including chemotherapy and immune checkpoint inhibitors, face resistance driven by tumor heterogeneity, immunosuppressive signaling, and dysregulated redox pathways. This review explores silibinin’s potential to modulate the tumor immune microenvironment (TIME) and overcome therapeutic resistance in TNBC. Silibinin exerts multifaceted anticancer effects by suppressing PD-L1 expression through the inhibition of JAK/STAT3 signaling and MUC1-C interaction, attenuating NF-κB-driven inflammation, and downregulating CCL2-mediated recruitment of tumor-associated macrophages (TAMs). Additionally, silibinin disrupts redox adaptation by targeting the Nrf2-EGFR-MYC-TXNIP axis, enhancing oxidative stress and chemosensitivity. Preclinical studies highlight its ability to inhibit epithelial–mesenchymal transition (EMT), reduce cancer stem cell (CSC) populations, and synergize with existing therapies like PD-1 inhibitors. Despite its low bioavailability, advanced formulations such as liposomes and nanoparticles show promise in improving delivery and efficacy. By reshaping TIME through dual antioxidant and immunomodulatory mechanisms, silibinin emerges as a viable adjunct therapy to reverse immunosuppression and chemoresistance in TNBC. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Anticancer Effects)
Show Figures

Figure 1

17 pages, 623 KiB  
Review
A Review of Emerging Immunotherapeutic Strategies for IDH-Mutant Glioma
by Masih Tazhibi, Eric P. Grewal, Rishab Ramapriyan, Leland G. K. Richardson, Gust Vandecandelaere, Adrian Kalaw, Parker Kotlarz, Samuel J. Steuart, Jing Sun, Matthew Gaffey, Daniel P. Cahill, Julie J. Miller, William T. Curry and Bryan D. Choi
Cancers 2025, 17(13), 2178; https://doi.org/10.3390/cancers17132178 - 27 Jun 2025
Viewed by 718
Abstract
IDH-mutant gliomas (IMGs) are a unique subset of diffuse gliomas that follow a relatively indolent course compared to IDH-wildtype glioblastoma (GBM) but inevitably progress, often to a higher histologic grade. Current standard therapies, including surgery, chemoradiation, and the recently approved mutant IDH inhibitor [...] Read more.
IDH-mutant gliomas (IMGs) are a unique subset of diffuse gliomas that follow a relatively indolent course compared to IDH-wildtype glioblastoma (GBM) but inevitably progress, often to a higher histologic grade. Current standard therapies, including surgery, chemoradiation, and the recently approved mutant IDH inhibitor (mIDHi) vorasidenib, provide limited disease control and are not curative. Given the immunosuppressive tumor microenvironment (TME) driven by the mutant IDH enzyme and its associated oncometabolite 2-hydroxyglutarate (2-HG), novel immunotherapies offer a promising avenue for treatment. The goal of this paper is to review the main immunologic characteristics that distinguish IMG from GBM, including reduced T cell infiltration and function, fewer myeloid cells, and increased immune-dampening signaling. We also evaluate the preclinical and clinical evidence for immunotherapeutic approaches with the most potential to induce meaningful clinical activity, such as immune checkpoint inhibitors, CAR T cells, tumor vaccines, myeloid redirection, and oncolytic viruses. Despite significant advances in immunotherapy for IMG, fundamental questions persist, including optimal timing and combination strategies, mechanisms underpinning treatment resistance, and strategies to overcome the suppressive microenvironment. Future exploration of these treatment modalities, with a focus on mitigating soluble immunosuppressive factors in the TME, enhancing in situ T cell persistence, and leveraging novel antigen targets, is critical for advancing the state of therapy for this presently incurable group of tumors. Full article
(This article belongs to the Special Issue Emerging Research on Primary Brain Tumors)
Show Figures

Figure 1

47 pages, 706 KiB  
Review
Overcoming Barriers in Cancer Biology Research: Current Limitations and Solutions
by Giovanni Colonna
Cancers 2025, 17(13), 2102; https://doi.org/10.3390/cancers17132102 - 23 Jun 2025
Viewed by 665
Abstract
Cancer research faces significant biological, technological, and systemic limitations that hinder the development of effective therapies and improved patient outcomes. Traditional preclinical models, such as 2D and 3D cell cultures, murine xenografts, and organoids, often fail to reflect the complexity of human tumor [...] Read more.
Cancer research faces significant biological, technological, and systemic limitations that hinder the development of effective therapies and improved patient outcomes. Traditional preclinical models, such as 2D and 3D cell cultures, murine xenografts, and organoids, often fail to reflect the complexity of human tumor architecture, microenvironment, and immune interactions. This discrepancy results in promising laboratory findings not always translating effectively into clinical success. A core obstacle is tumor heterogeneity, characterized by diverse genetic, epigenetic, and phenotypic variations within tumors, which complicates treatment strategies and contributes to drug resistance. Hereditary malignancies and cancer stem cells contribute strongly to generating this complex panorama. Current early detection technologies lack sufficient sensitivity and specificity, impeding timely diagnosis. The tumor microenvironment, with its intricate interactions and resistance-promoting factors, further promotes treatment failure. Additionally, we only partially understand the biological processes driving metastasis, limiting therapeutic advances. Overcoming these barriers involves not only the use of new methodological approaches and advanced technologies, but also requires a cultural effort by researchers. Many cancer studies are still essentially observational. While acknowledging their significance, it is crucial to recognize the shift from deterministic to indeterministic paradigms in biomedicine over the past two to three decades, a transition facilitated by systems biology. It has opened the doors of deep metabolism where the functional processes that control and regulate cancer progression operate. Beyond biological barriers, systemic challenges include limited funding, regulatory complexities, and disparities in cancer care access across different populations. These socio-economic factors exacerbate research stagnation and hinder the translation of scientific innovations into clinical practice. Overcoming these obstacles requires multidisciplinary collaborations, advanced modeling techniques that better emulate human cancer, and innovative technologies for early detection and targeted therapy. Strategic policy initiatives must address systemic barriers, promoting health equity and sustainable research funding. While the complexity of cancer biology and systemic challenges are formidable, ongoing scientific progress and collaborative efforts inspire hope for breakthroughs that can transform cancer diagnosis, treatment, and survival outcomes worldwide. Full article
(This article belongs to the Section Methods and Technologies Development)
17 pages, 8009 KiB  
Article
Metformin-Sensitized Chemotherapy of Docetaxel Nanoemulsions Based on a Sequential Administration
by Junlei Zhang, Jiapeng Mao, Yilong Hu, Xingze Huang, Jian You and Lihua Luo
Pharmaceutics 2025, 17(7), 812; https://doi.org/10.3390/pharmaceutics17070812 - 23 Jun 2025
Viewed by 310
Abstract
Background: Chemotherapy has a broad-spectrum anti-tumor effect and is still the core strategy for cancer treatment. However, the side effects caused by its cytotoxicity, the chemoresistance caused by tumor heterogeneity and abnormal microenvironment seriously restrict the efficacy of chemotherapy. Metformin presents the ability [...] Read more.
Background: Chemotherapy has a broad-spectrum anti-tumor effect and is still the core strategy for cancer treatment. However, the side effects caused by its cytotoxicity, the chemoresistance caused by tumor heterogeneity and abnormal microenvironment seriously restrict the efficacy of chemotherapy. Metformin presents the ability to sensitize chemotherapy by interfering with metabolic processes of tumor cells. However, as a dynamic process, metabolic intervention requires a specific time sequence law to optimize its role. Methods: Different administration sequences were screened by in vitro experiments to determine the optimal sequence of metformin and docetaxel. The anti-tumor effect of administration sequence in vivo was investigated in mouse models. The therapeutic advantages were comprehensively evaluated by tumor size, weight change, and survival rate. The immunofluorescent staining and transcriptome analysis were performed to study the mechanisms of the sequential administration strategy. Results: Compared with the subsequent administration and concurrent administration, pretreatment with metformin exhibited a stronger ability toward cell cycle arrest and tumor inhibition with low-dose docetaxel. Moreover, this pre-administration sequence could enhance the anti-tumor immune responses and prevent postoperative recurrence. Conclusions: The optimized chemotherapy sensitization mediated by metabolic intervention required an appropriate administration sequence, which also strengthened the anti-tumor immune responses. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

Back to TopTop