Zebrafish as a Model for Translational Immuno-Oncology
Abstract
1. Introduction
2. Zebrafish as a Model in Biomedical Research
2.1. General Advantages and Applications
2.2. Optical Transparency and Experimental Accessibility
2.3. Genetic and Genomic Conservation with Humans
2.4. Advanced Imaging and Reporter Lines
2.5. Xenograft Models and Drug Screening
3. The Zebrafish Immune System
3.1. Immune System Composition and Development in Zebrafish
3.1.1. Lymphoid Organs and Tissue Architecture
3.1.2. Molecular Pattern Recognition and Cytokine Signaling
3.1.3. Adaptive Immunity in Zebrafish
3.2. Mechanisms of Tumor Immune Evasion and Immune Response
3.3. Expression of Immune Checkpoints in the Zebrafish Model
3.4. Impact of the Tumor Microenvironment on Immune Responses
4. Cancer Models in Zebrafish
4.1. Modeling Solid Tumors
4.1.1. Transgenic Zebrafish for Tumor Initiation Studies
4.1.2. Xenograft Models for Translational Oncology
4.2. Modeling Hematologic Malignancies and Immuno-Oncology
5. zAvatars: Zebrafish Patient-Derived Xenografts for Functional Precision Oncology
5.1. zAvatars for Real-Time Personalized Drug Testing
5.2. Preclinical Validation of Novel Immunotherapeutic Strategies
5.2.1. Genetic Tools for Tumor–Immune Interrogation
5.2.2. Modeling Adoptive Cell Therapies
6. Testing Cancer Treatments in the Zebrafish Model
6.1. Zebrafish as a Platform for Drug Screening in Immunotherapy
6.2. High-Throughput Screening Capabilities
6.3. Immune Modulation Assessment
6.4. Combination Therapies
6.5. Assessment of Drug Delivery and Preliminary Pharmacokinetics
6.6. Implications for Personalized Immuno-Oncology
7. Limitations and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AML | Acute Myeloid Leukemia |
ALL | Acute Lymphoblastic Leukemia |
BTLA | B- and T-Lymphocyte Attenuator |
CAFs | Cancer-Associated Fibroblasts |
CAR | Chimeric Antigen Receptor |
CAR NKs | Chimeric Antigen Receptor–Engineered Natural Killer Cells |
CAR Ts | Chimeric Antigen Receptor T Cells |
ECM | Extracellular Matrix |
FAP | Fibroblast Activation Protein |
GFP | Green Fluorescent Protein |
GIALT | Gill-Associated Lymphoid Tissue |
HPF | Hours Post-Fertilization |
IL | Interleukin |
ICIs | Immune Checkpoint Inhibitors |
ICD | Immunogenic Cell Death |
JAK/STAT | Janus Kinase/Signal Transducer and Activator of Transcription |
LGALS1 | Galectin-1 |
MALTs | Mucosa-Associated Lymphoid Tissues |
MAPK | Mitogen-Activated Protein Kinase |
MMP | Matrix Metalloproteinase |
NELO | Nemausean Lymphoid Organ |
NALT | Nasal-Associated Lymphoid Tissue |
NK cells | Natural Killer Cells |
PAMPs | Pathogen-Associated Molecular Patterns |
PD-1 | Programmed Cell Death Protein 1 |
PD-L1 | Programmed Death-Ligand 1 |
PDX | Patient-Derived Xenograft |
PK/PD | Pharmacokinetics/Pharmacodynamics |
PRRs | Pattern Recognition Receptors |
RFP | Red Fluorescent Protein |
SALT | Skin-Associated Lymphoid Tissue |
SDF-1 | Stromal-Cell-Derived Factor 1 |
TAMs | Tumor-Associated Macrophages |
TANs | Tumor-Associated Neutrophils |
TGF-β | Transforming Growth Factor Beta |
TIGIT | T-Cell Immunoreceptor with Ig and ITIM Domains |
TIM-3 | T-Cell Immunoglobulin and Mucin Domain-3 |
TLA | Three-Letter Acronym |
TME | Tumor Microenvironment |
VEGF | Vascular Endothelial Growth Factor |
zAvatar | Zebrafish Avatar (Patient-Derived Xenograft in Zebrafish) |
References
- Sharma, P.; Allison, J.P. The Future of Immune Checkpoint Therapy. Science (1979) 2015, 348, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Restifo, N.P. Adoptive Cell Transfer as Personalized Immunotherapy for Human Cancer. Science (1979) 2015, 348, 62–68. [Google Scholar] [CrossRef]
- Melief, C.J.M.; Van Hall, T.; Arens, R.; Ossendorp, F.; Van Der Burg, S.H. Therapeutic Cancer Vaccines. J. Clin. Investig. 2015, 125, 3401–3412. [Google Scholar] [CrossRef]
- Olson, B.; Li, Y.; Lin, Y.; Liu, E.T.; Patnaik, A. Mouse Models for Cancer Immunotherapy Research. Cancer Discov. 2018, 8, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- LeSavage, B.L.; Suhar, R.A.; Broguiere, N.; Lutolf, M.P.; Heilshorn, S.C. Next-Generation Cancer Organoids. Nat. Mater. 2021, 21, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Shalabi, A.; Hubbard-Lucey, V.M. Comprehensive Analysis of the Clinical Immuno-Oncology Landscape. Ann. Oncol. 2018, 29, 84–91. [Google Scholar] [CrossRef]
- Reis, L.O.; Pereira, T.C.; Favaro, W.J.; Cagnon, V.H.A.; Lopes-Cendes, I.; Ferreira, U. Experimental Animal Model and RNA Interference: A Promising Association for Bladder Cancer Research. World J. Urol. 2009, 27, 353–361. [Google Scholar] [CrossRef]
- Salustiano, A.C.C.; Riccetto, E.; Kiehl, I.G.; Ossick, M.V.; Ferrari, K.L.; Denardi, F.; Reis, L.O. Autochthonous Male Urothelial Carcinoma Immune Competent Model: From Induction to BCG Transurethral Treatment. Int. J. Clin. Exp. Pathol. 2021, 14, 980. [Google Scholar]
- Ossick, M.V.; Ferrari, K.L.; Nunes-Silva, I.; Denardi, F.; Reis, L.O. Chorioallantoic Urothelial Tumor Avatar. A Clinical Tool for Phenotype-Based Therapy. Acta Cir. Bras. 2019, 34, e201901207. [Google Scholar] [CrossRef]
- Lieschke, G.J.; Currie, P.D. Animal Models of Human Disease: Zebrafish Swim into View. Nat. Rev. Genet. 2007, 8, 353–367. [Google Scholar] [CrossRef]
- Hason, M.; Bartůnĕk, P. Zebrafish Models of Cancer—New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate. Genes 2019, 10, 935. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, S.A.; Trede, N.S. A Model 450 Million Years in the Making: Zebrafish and Vertebrate Immunity. DMM Dis. Models Mech. 2012, 5, 38–47. [Google Scholar] [CrossRef]
- Dee, C.T.; Nagaraju, R.T.; Athanasiadis, E.I.; Gray, C.; Fernandez del Ama, L.; Johnston, S.A.; Secombes, C.J.; Cvejic, A.; Hurlstone, A.F.L. CD4-Transgenic Zebrafish Reveal Tissue-Resident Th2- and Regulatory T Cell–like Populations and Diverse Mononuclear Phagocytes. J. Immunol. 2016, 197, 3520–3530. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an Emerging Model for Studying Complex Brain Disorders. Trends Pharmacol. Sci. 2014, 35, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef]
- White, R.M.; Sessa, A.; Burke, C.; Bowman, T.; LeBlanc, J.; Ceol, C.; Bourque, C.; Dovey, M.; Goessling, W.; Burns, C.E.; et al. Transparent Adult Zebrafish as a Tool for In Vivo Transplantation Analysis. Cell Stem Cell 2008, 2, 183–189. [Google Scholar] [CrossRef]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of Embryonic Development of the Zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef]
- MacRae, C.A.; Peterson, R.T. Zebrafish as Tools for Drug Discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef]
- Santoriello, C.; Zon, L.I. Hooked! Modeling Human Disease in Zebrafish. J. Clin. Investig. 2012, 122, 2337–2343. [Google Scholar] [CrossRef]
- Ellett, F.; Pase, L.; Hayman, J.W.; Andrianopoulos, A.; Lieschke, G.J. Mpeg1 Promoter Transgenes Direct Macrophage-Lineage Expression in Zebrafish. Blood 2011, 117, e49–e56. [Google Scholar] [CrossRef]
- Lawson, N.D.; Weinstein, B.M. In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. Dev. Biol. 2002, 248, 307–318. [Google Scholar] [CrossRef]
- Fior, R.; Póvoa, V.; Mendes, R.V.; Carvalho, T.; Gomes, A.; Figueiredo, N.; Ferreira, F.R. Single-Cell Functional and Chemosensitive Profiling of Combinatorial Colorectal Therapy in Zebrafish Xenografts. Proc. Natl. Acad. Sci. USA 2017, 114, E8234–E8243. [Google Scholar] [CrossRef]
- Barriuso, J.; Nagaraju, R.; Hurlstone, A. Zebrafish: A New Companion for Translational Research in Oncology. Clin. Cancer Res. 2015, 21, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, Y.; Yao, T.; Jia, R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front. Cell Dev. Biol. 2021, 9, 616551. [Google Scholar] [CrossRef]
- Varela, M.; Figueras, A.; Novoa, B. Modelling Viral Infections Using Zebrafish: Innate Immune Response and Antiviral Research. Antivir. Res. 2017, 139, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Miao, K.Z.; Kim, G.Y.; Meara, G.K.; Qin, X.; Feng, H. Tipping the Scales with Zebrafish to Understand Adaptive Tumor Immunity. Front. Cell Dev. Biol. 2021, 9, 660969. [Google Scholar] [CrossRef]
- Page, D.M.; Wittamer, V.; Bertrand, J.Y.; Lewis, K.L.; Pratt, D.N.; Delgado, N.; Schale, S.E.; McGue, C.; Jacobsen, B.H.; Doty, A.; et al. An Evolutionarily Conserved Program of B-Cell Development and Activation in Zebrafish. Blood 2013, 122, e1–e11. [Google Scholar] [CrossRef] [PubMed]
- Bjørgen, H.; Koppang, E.O. Anatomy of Teleost Fish Immune Structures and Organs. Immunogenetics 2021, 73, 53–63. [Google Scholar] [CrossRef]
- Speirs, Z.C.; Loynes, C.A.; Mathiessen, H.; Elks, P.M.; Renshaw, S.A.; Jørgensen, L. von G. What Can We Learn about Fish Neutrophil and Macrophage Response to Immune Challenge from Studies in Zebrafish. Fish. Shellfish. Immunol. 2024, 148, 109490. [Google Scholar] [CrossRef]
- Zapata, A.; Diez, B.; Cejalvo, T.; Gutiérrez-De Frías, C.; Cortés, A. Ontogeny of the Immune System of Fish. Fish. Shellfish. Immunol. 2006, 20, 126–136. [Google Scholar] [CrossRef]
- Lam, S.H.; Chua, H.L.; Gong, Z.; Lam, T.J.; Sin, Y.M. Development and Maturation of the Immune System in Zebrafish, Danio Rerio: A Gene Expression Profiling, in Situ Hybridization and Immunological Study. Dev. Comp. Immunol. 2004, 28, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Trede, N.S.; Langenau, D.M.; Traver, D.; Look, A.T.; Zon, L.I. The Use of Zebrafish to Understand Immunity. Immunity 2004, 20, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Meijer, A.H.; Spaink, H.P. Host-Pathogen Interactions Made Transparent with the Zebrafish Model. Curr. Drug Targets 2011, 12, 1000–1017. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, D.M.; Zaccone, G.; Alesci, A.; Kuciel, M.; Hussein, M.T.; Sayed, R.K.A. Main Components of Fish Immunity: An Overview of the Fish Immune System. Fishes 2023, 8, 93. [Google Scholar] [CrossRef]
- Barraza, F.; Montero, R.; Wong-Benito, V.; Valenzuela, H.; Godoy-Guzmán, C.; Guzmán, F.; Köllner, B.; Wang, T.; Secombes, C.J.; Maisey, K.; et al. Revisiting the Teleost Thymus: Current Knowledge and Future Perspectives. Biology 2021, 10, 8. [Google Scholar] [CrossRef]
- Salinas, I. The Mucosal Immune System of Teleost Fish. Biology 2015, 4, 525–539. [Google Scholar] [CrossRef]
- Rességuier, J.; Dalum, A.S.; Du Pasquier, L.; Zhang, Y.; Koppang, E.O.; Boudinot, P.; Wiegertjes, G.F. Lymphoid Tissue in Teleost Gills: Variations on a Theme. Biology 2020, 9, 127. [Google Scholar] [CrossRef]
- Resseguier, J.; Nguyen-Chi, M.; Wohlmann, J.; Rigaudeau, D.; Salinas, I.; Oehlers, S.H.; Wiegertjes, G.F.; Johansen, F.E.; Qiao, S.W.; Koppang, E.O.; et al. Identification of a Pharyngeal Mucosal Lymphoid Organ in Zebrafish and Other Teleosts: Tonsils in Fish? Sci. Adv. 2023, 9, eadj0101. [Google Scholar] [CrossRef]
- Dalum, A.S.; Kraus, A.; Khan, S.; Davydova, E.; Rigaudeau, D.; Bjørgen, H.; López-Porras, A.; Griffiths, G.; Wiegertjes, G.F.; Koppang, E.O.; et al. High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel Lymphoid Structure, the Amphibranchial Lymphoid Tissue. Front. Immunol. 2021, 12, 769901. [Google Scholar] [CrossRef]
- Castranova, D.; Kenton, M.I.; Kraus, A.; Dell, C.W.; Park, J.S.; Venero Galanternik, M.; Park, G.; Lumbantobing, D.N.; Dye, L.; Marvel, M.; et al. The Axillary Lymphoid Organ Is an External, Experimentally Accessible Immune Organ in the Zebrafish. J. Exp. Med. 2025, 222, e20241435. [Google Scholar] [CrossRef]
- Sullivan, C.; Soos, B.L.; Millard, P.J.; Kim, C.H.; King, B.L. Modeling Virus-Induced Inflammation in Zebrafish: A Balance Between Infection Control and Excessive Inflammation. Front. Immunol. 2021, 12, 636623. [Google Scholar] [CrossRef] [PubMed]
- Falcão, M.A.P.; Dantas, M.C. dos S.; Rios, C.T.; Borges, L.P.; Serafini, M.R.; Guimarães, A.G.; Walker, C.I.B. Zebrafish as a Tool for Studying Inflammation: A Systematic Review. Rev. Fish. Sci. Aquac. 2022, 30, 101–122. [Google Scholar] [CrossRef]
- Levraud, J.-P.; Jouneau, L.; Briolat, V.; Laghi, V.; Boudinot, P. IFN-Stimulated Genes in Zebrafish and Humans Define an Ancient Arsenal of Antiviral Immunity. J. Immunol. 2019, 203, 3361–3373. [Google Scholar] [CrossRef]
- Wittamer, V.; Bertrand, J.Y.; Gutschow, P.W.; Traver, D. Characterization of the Mononuclear Phagocyte System in Zebrafish. Blood 2011, 117, 7126–7135. [Google Scholar] [CrossRef]
- García-Moreno, D.; Tyrkalska, S.D.; Valera-Pérez, A.; Gómez-Abenza, E.; Pérez-Oliva, A.B.; Mulero, V. The Zebrafish: A Research Model to Understand the Evolution of Vertebrate Immunity. Fish. Shellfish. Immunol. 2019, 90, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Bobrovskikh, A.V.; Zubairova, U.S.; Naumenko, L.G.; Doroshkov, A.V. Catching the Big Fish in Big Data: A Meta-Analysis of Zebrafish Kidney ScRNA-Seq Datasets Highlights Conserved Molecular Profiles of Macrophages and Neutrophils in Vertebrates. Biology 2024, 13, 773. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Z.; Zhang, X.M.; Nakamura, M.; Sun, M.; Hartman, J.; Harris, R.A.; Sun, Y.; Cao, Y. Novel Mechanism of Macrophage-Mediated Metastasis Revealed in a Zebrafish Model of Tumor Development. Cancer Res. 2015, 75, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ma, J.; Groenewoud, A.; Ren, J.; Liu, S.; Snaar-Jagalska, B.E.; ten Dijke, P. Establishment of Embryonic Zebrafish Xenograft Assays to Investigate TGF-β Family Signaling in Human Breast Cancer Progression. Methods Mol. Biol. 2022, 2488, 67–80. [Google Scholar] [CrossRef]
- He, S.; Lamers, G.E.M.; Beenakker, J.W.M.; Cui, C.; Ghotra, V.P.S.; Danen, E.H.J.; Meijer, A.H.; Spaink, H.P.; Snaar-Jagalska, B.E. Neutrophil-Mediated Experimental Metastasis Is Enhanced by VEGFR Inhibition in a Zebrafish Xenograft Model. J. Pathol. 2012, 227, 431. [Google Scholar] [CrossRef]
- Roh-Johnson, M.; Shah, A.N.; Stonick, J.A.; Poudel, K.R.; Kargl, J.; Yang, G.H.; di Martino, J.; Hernandez, R.E.; Gast, C.E.; Zarour, L.R.; et al. Macrophage-Dependent Cytoplasmic Transfer during Melanoma Invasion In Vivo. Dev. Cell 2017, 43, 549–562.e6. [Google Scholar] [CrossRef]
- Hu, C.; Huang, C.; Wang, J.; Hong, Y.; Fan, D.; Chen, Y.; Lin, A.; Xiang, L.; Shao, J. PD-L1/BTLA Checkpoint Axis Exploited for Bacterial Immune Escape by Restraining CD8+ T Cell–Initiated Adaptive Immunity in Zebrafish. J. Immunol. 2023, 211, 816–835. [Google Scholar] [CrossRef] [PubMed]
- Finotto, L.; Cole, B.; Giese, W.; Baumann, E.; Claeys, A.; Vanmechelen, M.; Decraene, B.; Derweduwe, M.; Lakic, N.D.; Shankar, G.; et al. Single-cell Profiling and Zebrafish Avatars Reveal LGALS1 as Immunomodulating Target in Glioblastoma. EMBO Mol. Med. 2023, 15, e18144. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Y.; Lim, S.; Hosaka, K.; Yang, Y.; Pavlova, T.; Alkasalias, T.; Hartman, J.; Jensen, L.; Xing, X.; et al. A Zebrafish Model Discovers a Novel Mechanism of Stromal Fibroblast-Mediated Cancer Metastasis. Clin. Cancer Res. 2017, 23, 4769–4779. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huang, X.; Ding, T.W.; Gong, Z. Enhanced Angiogenesis, Hypoxia and Neutrophil Recruitment during Myc-Induced Liver Tumorigenesis in Zebrafish. Sci. Rep. 2016, 6, 31952. [Google Scholar] [CrossRef]
- Hua, X.; Wu, X.; Xu, K.; Zhan, P.; Liu, H.; Zhang, F.; Lv, T.; Song, Y. Zebrafish Patient-Derived Xenografts Accurately and Quickly Reproduce Treatment Outcomes in Non–Small Cell Lung Cancer Patients. Exp. Biol. Med. 2022, 248, 361. [Google Scholar] [CrossRef]
- Patton, E.E.; Widlund, H.R.; Kutok, J.L.; Kopani, K.R.; Amatruda, J.F.; Murphey, R.D.; Berghmans, S.; Mayhall, E.A.; Traver, D.; Fletcher, C.D.M.; et al. BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with P53 in the Genesis of Melanoma. Curr. Biol. 2005, 15, 249–254. [Google Scholar] [CrossRef]
- Cabezas-Sáinz, P.; Pensado-López, A.; Sáinz, B.; Sánchez, L. Modeling Cancer Using Zebrafish Xenografts: Drawbacks for Mimicking the Human Microenvironment. Cells 2020, 9, 1978. [Google Scholar] [CrossRef]
- Yen, J.; White, R.M.; Stemple, D.L. Zebrafish Models of Cancer: Progress and Future Challenges. Curr. Opin. Genet. Dev. 2014, 24, 38–45. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Emelyanov, A.; Koh, C.H.V.; Spitsbergen, J.M.; Parinov, S.; Gong, Z. An Inducible KrasV12 Transgenic Zebrafish Model for Liver Tumorigenesis and Chemical Drug Screening. Dis. Model. Mech. 2012, 5, 63–72. [Google Scholar] [CrossRef]
- Kowald, S.; Huge, Y.; Tandiono, D.; Ali, Z.; Vazquez-Rodriguez, G.; Erkstam, A.; Fahlgren, A.; Sherif, A.; Cao, Y.; Jensen, L.D. Novel Zebrafish Patient-Derived Tumor Xenograft Methodology for Evaluating Efficacy of Immune-Stimulating BCG Therapy in Urinary Bladder Cancer. Cells 2023, 12, 508. [Google Scholar] [CrossRef]
- Ding, Y.; van der Kolk, K.-J.; van der Ent, W.; Scotto di Mase, M.; Kowald, S.; Huizing, J.; Vidal Teuton, J.M.; Mishra, G.; Kempers, M.; Almter, R.; et al. Automated Microinjection for Zebrafish Xenograft Models. npj Biomed. Innov. 2025, 2, 13. [Google Scholar] [CrossRef]
- Lu, J.W.; Hsieh, M.S.; Liao, H.A.; Yang, Y.J.; Ho, Y.J.; Lin, L.I. Zebrafish as a Model for the Study of Human Myeloid Malignancies. Biomed. Res. Int. 2015, 2015, 641475. [Google Scholar] [CrossRef]
- Molina, B.; Chavez, J.; Grainger, S. Zebrafish Models of Acute Leukemias: Current Models and Future Directions. Wiley Interdiscip. Rev. Dev. Biol. 2021, 10, e400. [Google Scholar] [CrossRef] [PubMed]
- Langenau, D.M.; Traver, D.; Ferrando, A.A.; Kutok, J.L.; Aster, J.C.; Kanki, J.P.; Lin, S.; Prochownik, E.; Trede, N.S.; Zon, L.I.; et al. Myc-Induced T Cell Leukemia in Transgenic Zebrafish. Science (1979) 2003, 299, 887–890. [Google Scholar] [CrossRef]
- Pruvot, B.; Jacquel, A.; Droin, N.; Auberger, P.; Bouscary, D.; Tamburini, J.; Muller, M.; Fontenay, M.; Chluba, J.; Solary, E. Leukemic Cell Xenograft in Zebrafish Embryo for Investigating Drug Efficacy. Haematologica 2011, 96, 612–616. [Google Scholar] [CrossRef]
- Bentley, V.L.; Veinotte, C.J.; Corkery, D.P.; Pinder, J.B.; Leblanc, M.A.; Bedard, K.; Weng, A.P.; Berman, J.N.; Dellaire, G. Focused Chemical Genomics Using Zebrafish Xenotransplantation as a Pre-Clinical Therapeutic Platform for T-Cell Acute Lymphoblastic Leukemia. Haematologica 2015, 100, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mahajan, N.K.; Sinha, P.; Jayandharan, G.R. An Efficient Method to Generate Xenograft Tumor Models of Acute Myeloid Leukemia and Hepatocellular Carcinoma in Adult Zebrafish. Blood Cells Mol. Dis. 2019, 75, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Glasgow, E.; Agarwal, S. Zebrafish Xenografts for Drug Discovery and Personalized Medicine. Trends Cancer 2020, 6, 569. [Google Scholar] [CrossRef]
- Corsinovi, D.; Usai, A.; De Sarlo, M.; Giannaccini, M.; Ori, M. Zebrafish Avatar to Develop Precision Breast Cancer Therapies. Anticancer Agents Med. Chem. 2021, 22, 748–759. [Google Scholar] [CrossRef]
- Costa, B.; Estrada, M.F.; Gomes, A.; Fernandez, L.M.; Azevedo, J.M.; Póvoa, V.; Fontes, M.; Alves, A.; Galzerano, A.; Castillo-Martin, M.; et al. Zebrafish Avatar-Test Forecasts Clinical Response to Chemotherapy in Patients with Colorectal Cancer. Nat. Commun. 2024, 15, 4771. [Google Scholar] [CrossRef]
- Marin-Acevedo, J.A.; Dholaria, B.; Soyano, A.E.; Knutson, K.L.; Chumsri, S.; Lou, Y. Next Generation of Immune Checkpoint Therapy in Cancer: New Developments and Challenges. J. Hematol. Oncol. 2018, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel Immune Checkpoint Targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 155. [Google Scholar] [CrossRef] [PubMed]
- Ansori, A.N.M.; Antonius, Y.; Susilo, R.J.K.; Hayaza, S.; Kharisma, V.D.; Parikesit, A.A.; Zainul, R.; Jakhmola, V.; Saklani, T.; Rebezov, M.; et al. Application of CRISPR-Cas9 Genome Editing Technology in Various Fields: A Review. Narra J. 2023, 3, e184. [Google Scholar] [CrossRef] [PubMed]
- Raby, L.; Völkel, P.; Le Bourhis, X.; Angrand, P.O. Genetic Engineering of Zebrafish in Cancer Research. Cancers 2020, 12, 2168. [Google Scholar] [CrossRef]
- De Vrieze, E.; de Bruijn, S.E.; Reurink, J.; Broekman, S.; van de Riet, V.; Aben, M.; Kremer, H.; van Wijk, E. Efficient Generation of Knock-in Zebrafish Models for Inherited Disorders Using Crispr-cas9 Ribonucleoprotein Complexes. Int. J. Mol. Sci. 2021, 22, 9429. [Google Scholar] [CrossRef]
- Mayrhofer, M.; Mione, M. The Toolbox for Conditional Zebrafish Cancer Models. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2016; Volume 916, pp. 21–59. [Google Scholar]
- Kohn, D.B.; Dotti, G.; Brentjens, R.; Savoldo, B.; Jensen, M.; Cooper, L.J.N.; June, C.H.; Rosenberg, S.; Sadelain, M.; Heslop, H.E. CARs on Track in the Clinic. Mol. Ther. 2011, 19, 432–438. [Google Scholar] [CrossRef]
- Peng, L.; Sferruzza, G.; Yang, L.; Zhou, L.; Chen, S. CAR-T and CAR-NK as Cellular Cancer Immunotherapy for Solid Tumors. Cell Mol. Immunol. 2024, 21, 1089–1108. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, L.; Zhang, H.; Chen, S.; Xiao, Y. CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Front. Immunol. 2022, 13, 927153. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, J.; Hong, J.; Chen, S.; Chen, M.; Wang, L.; Lin, W.; Ye, Y. Interleukin-15 and Chemokine Ligand 19 Enhance Cytotoxic Effects of Chimeric Antigen Receptor T Cells Using Zebrafish Xenograft Model of Gastric Cancer. Front. Immunol. 2022, 13, 1002361. [Google Scholar] [CrossRef]
- Pascoal, S.; Salzer, B.; Scheuringer, E.; Wenninger-Weinzierl, A.; Sturtzel, C.; Holter, W.; Taschner-Mandl, S.; Lehner, M.; Distel, M. A Preclinical Embryonic Zebrafish Xenograft Model to Investigate CAR T Cells In Vivo. Cancers 2020, 12, 567. [Google Scholar] [CrossRef]
- Morris, E.C.; Neelapu, S.S.; Giavridis, T.; Sadelain, M. Cytokine Release Syndrome and Associated Neurotoxicity in Cancer Immunotherapy. Nat. Rev. Immunol. 2022, 22, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Sturtzel, C.; Grissenberger, S.; Bozatzi, P.; Scheuringer, E.; Wenninger-Weinzierl, A.; Zajec, Z.; Dernovšek, J.; Pascoal, S.; Gehl, V.; Kutsch, A.; et al. Refined High-Content Imaging-Based Phenotypic Drug Screening in Zebrafish Xenografts. NPJ Precis. Oncol. 2023, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Estrada, M.F.; Mendes, R.V.; Fior, R. Zebrafish Avatars towards Personalized Medicine—A Comparative Review between Avatar Models. Cells 2020, 9, 293. [Google Scholar] [CrossRef]
- Lessman, C.A. The Developing Zebrafish (Danio rerio): A Vertebrate Model for High-Throughput Screening of Chemical Libraries. Birth Defects Res. C Embryo Today 2011, 93, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Dang, M.; Fogley, R.; Zon, L.I. Identifying Novel Cancer Therapies Using Chemical Genetics and Zebrafish. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2016; Volume 916, pp. 103–124. [Google Scholar]
- White, D.T.; Eroglu, A.U.; Wang, G.; Zhang, L.; Sengupta, S.; Ding, D.; Rajpurohit, S.K.; Walker, S.L.; Ji, H.; Qian, J.; et al. ARQiv-HTS, a Versatile Whole-Organism Screening Platform Enabling In Vivo Drug Discovery at High-Throughput Rates. Nat. Protoc. 2016, 11, 2432–2453. [Google Scholar] [CrossRef]
- Truong, L.; Bugel, S.M.; Chlebowski, A.; Usenko, C.Y.; Simonich, M.T.; Simonich, S.L.M.; Tanguay, R.L. Optimizing Multi-Dimensional High Throughput Screening Using Zebrafish. Reprod. Toxicol. 2016, 65, 139–147. [Google Scholar] [CrossRef]
- Mandrell, D.; Truong, L.; Jephson, C.; Sarker, M.R.; Moore, A.; Lang, C.; Simonich, M.T.; Tanguay, R.L. Automated Zebrafish Chorion Removal and Single Embryo Placement: Optimizing Throughput of Zebrafish Developmental Toxicity Screens. J. Lab. Autom. 2012, 17, 66–74. [Google Scholar] [CrossRef]
- Kim, R.; Heo, Y.; Yoon, H.; Park, J.W. Dechorionated Zebrafish Embryos Improve Evaluation of Nanotoxicity. Front. Toxicol. 2024, 6, 1476110. [Google Scholar] [CrossRef]
- D’Alençon, C.A.; Peña, O.A.; Wittmann, C.; Gallardo, V.E.; Jones, R.A.; Loosli, F.; Liebel, U.; Grabher, C.; Allende, M.L. A High-Throughput Chemically Induced Inflammation Assay in Zebrafish. BMC Biol. 2010, 8, 151. [Google Scholar] [CrossRef]
- Morales Castro, R.A.; Kern, B.C.; Díaz-Basabe, A.; Meinen, E.R.; Zhao, D.; Zhou, Y.; Castillo, F.; Monasterio, G.; Farcas, V.; Chávez, M.N.; et al. A Zebrafish Model of Intestinal Epithelial Damage Reveals Macrophages and Igfbp1a as Major Modulators of Mucosal Healing. Mucosal Immunol. 2025; in press. [Google Scholar] [CrossRef]
- Trede, N.S.; Heaton, W.; Ridges, S.; Sofla, H.; Cusick, M.; Bearss, D.; Jones, D.; Fujinami, R.S. Discovery of Biologically Active Oncologic and Immunologic Small Molecule Therapies Using Zebrafish: Overview and Example of Modulation of T Cell Activation. Curr. Protoc. Pharmacol. 2013, 60, 14–24. [Google Scholar] [CrossRef]
- Hall, C.J.; Boyle, R.H.; Sun, X.; Wicker, S.M.; Misa, J.P.; Krissansen, G.W.; Print, C.G.; Crosier, K.E.; Crosier, P.S. Epidermal Cells Help Coordinate Leukocyte Migration during Inflammation through Fatty Acid-Fuelled Matrix Metalloproteinase Production. Nat. Commun. 2014, 5, 3880. [Google Scholar] [CrossRef] [PubMed]
- Morel, V.J.; Rössler, J.; Bernasconi, M. Targeted Immunotherapy and Nanomedicine for Rhabdomyosarcoma: The Way of the Future. Med. Res. Rev. 2024, 44, 2730–2773. [Google Scholar] [CrossRef] [PubMed]
- Ghiringhelli, F.; Rébé, C. Using Immunogenic Cell Death to Improve Anticancer Efficacy of Immune Checkpoint Inhibitors: From Basic Science to Clinical Application. Immunol. Rev. 2024, 321, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Birnboim-Perach, R.; Benhar, I. Using Combination Therapy to Overcome Diverse Challenges of Immune Checkpoint Inhibitors Treatment. Int. J. Biol. Sci. 2024, 20, 3911–3922. [Google Scholar] [CrossRef]
- Seliger, B. Combinatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity. Front. Immunol. 2019, 10, 999. [Google Scholar] [CrossRef]
- Lee, K.Y.; Jang, G.H.; Byun, C.H.; Jeun, M.; Searson, P.C.; Lee, K.H. Zebrafish Models for Functional and Toxicological Screening of Nanoscale Drug Delivery Systems: Promoting Preclinical Applications. Biosci. Rep. 2017, 37, BSR20170199. [Google Scholar] [CrossRef]
- McGrath, P.; Li, C.Q. Zebrafish: A Predictive Model for Assessing Drug-Induced Toxicity. Drug Discov. Today 2008, 13, 394–401. [Google Scholar] [CrossRef]
- Guarin, M.; Ny, A.; De Croze, N.; Maes, J.; Léonard, M.; Annaert, P.; de Witte, P.A.M. Pharmacokinetics in Zebrafish Embryos (Zfe) Following Immersion and Intrayolk Administration: A Fluorescence-Based Analysis. Pharmaceuticals 2021, 14, 576. [Google Scholar] [CrossRef]
- Martinez-Lopez, M.; Póvoa, V.; Fior, R. Generation of Zebrafish Larval Xenografts and Tumor Behavior Analysis. J. Vis. Exp. 2021, 2021, e62373. [Google Scholar] [CrossRef]
- Mendes, R.V.; Ribeiro, J.M.; Gouveia, H.; Rebelo de Almeida, C.; Castillo-Martin, M.; Brito, M.J.; Canas-Marques, R.; Batista, E.; Alves, C.; Sousa, B.; et al. Zebrafish Avatar Testing Preclinical Study Predicts Chemotherapy Response in Breast Cancer. NPJ Precis. Oncol. 2025, 9, 94. [Google Scholar] [CrossRef]
- De Paolo, R. Zebrafish Models in Melanoma Research: Analysis of Coding and Non-Coding BRAFV600E; Usiena: Sienna, Italy, 2022. [Google Scholar] [CrossRef]
- Study Details. Evaluation of Metastatic Disease and Oncological Treatment in Patients with Colon Cancer Using Zebra Fish Avatars. ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06270017?intr=zebrafish&rank=3 (accessed on 12 June 2025).
- Study Details. Evaluation of Consistency of PDX Model for Predicting Therapeutic Effect of Gastric Cancer. ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05616533?intr=zebrafish&rank=4 (accessed on 12 June 2025).
- Yan, C.; Brunson, D.C.; Tang, Q.; Do, D.; Iftimia, N.A.; Moore, J.C.; Hayes, M.N.; Welker, A.M.; Garcia, E.G.; Dubash, T.D.; et al. Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish. Cell 2019, 177, 1903–1914.e14. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, G.; Miskolci, V.; Hunter, M.; Giese, M.A.; Münch, D.; Hou, Y.; Eliceiri, K.W.; Lasarev, M.R.; White, R.M.; Huttenlocher, A. Real-Time Imaging Reveals a Role for Macrophage Protrusive Motility in Melanoma Invasion. J. Cell Biol. 2025, 224, e202403096. [Google Scholar] [CrossRef] [PubMed]
- Bader, A.; Gao, J.; Rivière, T.; Schmid, B.; Walzog, B.; Maier-Begandt, D. Molecular Insights into Neutrophil Biology from the Zebrafish Perspective: Lessons from CD18 Deficiency. Front. Immunol. 2021, 12, 677994. [Google Scholar] [CrossRef]
- Oh, S.; Park, J.T. Zebrafish Model of KRAS-Initiated Pancreatic Endocrine Tumor. Anim. Cells Syst. 2019, 23, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Borga, C.; Park, G.; Foster, C.; Burroughs-Garcia, J.; Marchesin, M.; Shah, R.; Hasan, A.; Ahmed, S.T.; Bresolin, S.; Batchelor, L.; et al. Simultaneous B and T Cell Acute Lymphoblastic Leukemias in Zebrafish Driven by Transgenic MYC: Implications for Oncogenesis and Lymphopoiesis. Leukemia 2019, 33, 333–347. [Google Scholar] [CrossRef]
- Haney, M.G.; Moore, L.H.; Blackburn, J.S. Drug Screening of Primary Patient Derived Tumor Xenografts in Zebrafish. J. Vis. Exp. 2020, 2020, e60996. [Google Scholar] [CrossRef]
- Almstedt, E.; Rosen, E.; Gloger, M.; Stockgard, R.; Hekmati, N.; Koltowska, K.; Krona, C.; Nelander, S. Real-Time Evaluation of Glioblastoma Growth in Patient-Specific Zebrafish Xenografts. Neuro Oncol. 2022, 24, 726–738. [Google Scholar] [CrossRef]
Tumor Type | Model Type | Genetic Driver/Cell Line | Method/ Injection Site | Key Findings |
---|---|---|---|---|
Melanoma | Transgenic | mitfa:BRAFV600E, p53−/− | Stable transgenic line | Mimics melanoma development: cooperation between BRAFV600E and p53 loss induces aggressive tumors [56]. |
Melanoma | Xenograft | A375 (human melanoma) | Perivitelline space (48 hpf) | Supports real-time tracking of invasion and response to BRAF/MEK inhibition [16]. |
Liver Cancer | Transgenic | fabp10:KRASG12V | Liver-specific expression | Induces liver tumorigenesis and response to MEK inhibitors [59]. |
Colorectal Cancer | Xenograft | Patient-derived tumor cells | Perivitelline space (48 hpf) | Enabled single-cell analysis of tumor behavior and prediction of chemotherapy responses in vivo [22]. |
Bladder Cancer | Xenograft | UM-UC-3; patient-derived tumor fragments | Perivitelline space (48 hpf) | Co-injection of viable BCG with tumor cells; significant tumor regression; the model accurately predicts patient responses to BCG therapy [60]. |
Breast Cancer | Xenograft | MDA-MB-231 | Automated microinjection into Duct of Cuvier or Perivitelline space | High-throughput xenografts; models tumor growth, metastasis, and drug responses; improves reproducibility for preclinical drug screening [61]. |
Glioblastoma | Xenograft | U87 patient-derived cells | Brain ventricle or yolk sac | Models infiltration and therapy resistance; useful for drug screening [7]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, G.R.; de Souza, A.M.; Silva, P.F.; Fávero, C.S.; de Oliveira, J.L.; Carvalho, H.F.; Luchiari, A.C.; Reis, L.O. Zebrafish as a Model for Translational Immuno-Oncology. J. Pers. Med. 2025, 15, 304. https://doi.org/10.3390/jpm15070304
Barbosa GR, de Souza AM, Silva PF, Fávero CS, de Oliveira JL, Carvalho HF, Luchiari AC, Reis LO. Zebrafish as a Model for Translational Immuno-Oncology. Journal of Personalized Medicine. 2025; 15(7):304. https://doi.org/10.3390/jpm15070304
Chicago/Turabian StyleBarbosa, Gabriela Rodrigues, Augusto Monteiro de Souza, Priscila Fernandes Silva, Caroline Santarosa Fávero, José Leonardo de Oliveira, Hernandes F. Carvalho, Ana Carolina Luchiari, and Leonardo O. Reis. 2025. "Zebrafish as a Model for Translational Immuno-Oncology" Journal of Personalized Medicine 15, no. 7: 304. https://doi.org/10.3390/jpm15070304
APA StyleBarbosa, G. R., de Souza, A. M., Silva, P. F., Fávero, C. S., de Oliveira, J. L., Carvalho, H. F., Luchiari, A. C., & Reis, L. O. (2025). Zebrafish as a Model for Translational Immuno-Oncology. Journal of Personalized Medicine, 15(7), 304. https://doi.org/10.3390/jpm15070304