Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = tube bundles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2560 KiB  
Article
Numerical Simulation Study of Heat Transfer Fluid Boiling Effects on Phase Change Material in Latent Heat Thermal Energy Storage Units
by Minghao Yu, Xun Zheng, Jing Liu, Dong Niu, Huaqiang Liu and Hongtao Gao
Energies 2025, 18(14), 3836; https://doi.org/10.3390/en18143836 - 18 Jul 2025
Viewed by 239
Abstract
The innovation in thermal storage systems for solar thermal power generation is crucial for achieving efficient utilization of new energy sources. Molten salt has been extensively studied as a phase change material (PCM) for latent heat thermal energy storage systems. In this study, [...] Read more.
The innovation in thermal storage systems for solar thermal power generation is crucial for achieving efficient utilization of new energy sources. Molten salt has been extensively studied as a phase change material (PCM) for latent heat thermal energy storage systems. In this study, a two-dimensional model of a vertical shell-and-tube heat exchanger is developed, utilizing water-steam as the heat transfer fluid (HTF) and phase change material for heat transfer analysis. Through numerical simulations, we explore the interplay between PCM solidification and HTF boiling. The transient results show that tube length affects water boiling duration and PCM solidification thickness. Higher heat transfer fluid flow rates lower solidified PCM temperatures, while lower heat transfer fluid inlet temperatures delay boiling and shorten durations, forming thicker PCM solidification layers. Adding fins to the tube wall boosts heat transfer efficiency by increasing contact area with the phase change material. This extension of boiling time facilitates greater PCM solidification, although it may not always optimize the alignment of bundles within the thermal energy storage system. Full article
(This article belongs to the Special Issue New Advances in Heat Transfer, Energy Conversion and Storage)
Show Figures

Figure 1

22 pages, 6213 KiB  
Article
Mechanistic Insights into Ammonium Chloride Particle Deposition in Hydrogenation Air Coolers: Experimental and CFD-DEM Analysis
by Haoyu Yin, Haozhe Jin, Xiaofei Liu, Chao Wang, Wei Chen, Fengguan Chen, Shuangqing Xu and Shuangquan Li
Processes 2025, 13(6), 1816; https://doi.org/10.3390/pr13061816 - 8 Jun 2025
Cited by 1 | Viewed by 654
Abstract
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in [...] Read more.
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in hydrogenation air coolers, along with the factors influencing this process, using a combination of experimental analyses and CFD-DEM coupled simulations. Numerical simulations indicated that gas velocity is the primary factor that governs the NH4Cl deposition behavior, whereas the NH4Cl particle size significantly affects the deposition propensity. Under turbulent conditions, larger particles (>300 μm) exhibit a greater deposition tendency due to increased inertial effects. A power-law equation (R2 > 0.75) fitted to the experimental data effectively predicts the variations in the deposition rates across tube bundles. This study offers a theoretical foundation and predictive framework for optimizing anti-clogging design and maintenance strategies in industrial air coolers. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

24 pages, 11957 KiB  
Article
DoDELLA-GAI2 Integrates Gibberellin and Ethylene Signaling to Regulate Chinese Yam (Dioscorea opposita) Tuber Development
by Mingran Ge, Yanfang Zhang, Yanping Xing, Linan Xing, Huiqin Miao and Xiuwen Huo
Biology 2025, 14(6), 635; https://doi.org/10.3390/biology14060635 - 30 May 2025
Viewed by 478
Abstract
Yam (Dioscorea opposita) tuber development is a complex process regulated by various phytohormones, with gibberellin (GA) playing a crucial role. However, the underlying mechanisms and interaction of GA with other phytohormone pathways on yam tuber development remain incompletely understood. This study [...] Read more.
Yam (Dioscorea opposita) tuber development is a complex process regulated by various phytohormones, with gibberellin (GA) playing a crucial role. However, the underlying mechanisms and interaction of GA with other phytohormone pathways on yam tuber development remain incompletely understood. This study investigated the regulatory role of GA and its crosstalk with other phytohormones during yam tuber growth through phenotypic, cytological, physiological, and transcriptomic as well as targeted phytohormone metabolomics analyses. The results reveal that exogenous GA promoted tuber enlargement increases vascular bundle and the number and diameter of sieve tubes, and alters the expression of GA anabolism genes and GA signal transduction pathways. Integrated transcriptome and targeted metabolomics analyses revealed coordinated changes in GA and ethylene (ETH) biosynthesis and signaling pathways during tuber development, particularly DELLA-GAI2 acting as a negative regulator of GA signaling. Overexpression of DoDELLA-GAI2 in transgenic tobacco significantly reduced GA level, starch, cytokinin (CTK), and ETH content, as well as aerenchyma tissue growth and parenchyma cell size. Exogenous GA and ethephon treatments increased GA, starch, CTK, and ETH content, and downregulated DoDELLA-GAI2 gene expression. The yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays confirmed a direct interaction between DoDELLA-GAI2 and DoMTCPB, an upstream gene-encoding key enzyme in ETH biosynthesis. DoDELLA-GAI2 acts as a negative regulator of ETH synthesis by interacting with DoMTCPB. GA-induced degradation of DoDELLA-GAI2 relieves this inhibition, promoting ETH production and contributing to tuber growth. Taken together, our findings reveal a novel mechanism based on DoDELLA-GAI2 integrating the GA and ETH signaling processes to regulate tuber development in D. opposita, offering a potential target for improving yam crop productivity. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

21 pages, 11237 KiB  
Article
Investigation of Heat Transfer Enhancement Mechanisms in Elastic Tube Bundles Subjected to Exogenous Self-Excited Fluid Oscillation
by Jing Hu, Lei Guo and Shusheng Zhang
Fluids 2025, 10(5), 122; https://doi.org/10.3390/fluids10050122 - 8 May 2025
Viewed by 439
Abstract
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This [...] Read more.
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This study proposes a novel passive heat transfer enhancement paradigm for elastic tube bundles based on externally induced self-excited oscillations of fluid. By constructing a non-contact energy transfer system, the external oscillation energy is directed into the elastic tube bundle heat exchanger, achieving dynamic stress buffering and breaking through the steady-state flow heat transfer boundary layer. A three-dimensional fluid–structure interaction numerical model is established using Star CCM+2021.3 (16.06.008) to conduct a comparative analysis of the flow characteristics and heat transfer performance between the original structure without an oscillator and the improved structure equipped with a fluid oscillator. The results indicate that the improved structure, through the periodic unsteady jet induced by the fluid oscillator, significantly enhances the turbulence intensity of the shell-side fluid, with the turbulent kinetic energy increasing by over 50%. The radial flow area is notably expanded, thereby reducing the thermal resistance of the boundary layer. At cooling fluid velocities of 6 to 9 m/s, the heat transfer capability of the improved structure is enhanced by more than 50%. Compared with the original structure, the new structure, due to the loading of an external oscillation structure, causes the cold air to present a periodic up and down jet phenomenon. This jet phenomenon, on the one hand, increases the heat exchange area between the cold air and the outer surface of the tube bundle, thereby enhancing the heat exchange capacity. On the other hand, the large-area impact of the fluid reduces the thickness of the boundary layer, lowers the thermal resistance and thereby enhances the heat exchange capacity. Furthermore, this improved structure buffers the mechanical vibrations through self-excited oscillations of the fluid medium, ensuring that the stress levels in the tube bundle remain below the fatigue threshold, effectively mitigating the failure risks associated with traditional active vibration strategies. Full article
Show Figures

Figure 1

21 pages, 4530 KiB  
Article
Leaf Morpho-Anatomy of Twelve Cymbidium (Orchidaceae) Species from China and Their Taxonomic Significance
by Xiangke Hu, Lei Tao, Jialin Huang, Kaifeng Tao, Dong Ma and Lu Li
Plants 2025, 14(9), 1396; https://doi.org/10.3390/plants14091396 - 6 May 2025
Viewed by 599
Abstract
Cymbidium are endangered and ornamental orchids, and the taxonomy and species identification of this genus have been debated due to some overlapping morphological features between taxa and limited data being available. The leaf morpho-anatomy of 12 Cymbidium species from China was investigated using [...] Read more.
Cymbidium are endangered and ornamental orchids, and the taxonomy and species identification of this genus have been debated due to some overlapping morphological features between taxa and limited data being available. The leaf morpho-anatomy of 12 Cymbidium species from China was investigated using light microscopy and paraffin sectioning. Based on a comparative analysis, some leaf morphological features that varied between species were selected and used for taxonomic differentiation as follows: (1) The shape and structure of leaves were varied and could be used for species delimitation. (2) Microscopic characteristics show that the leaves lacked trichomes and displayed polygonal to rectangular epidermal cells on both surfaces, with larger adaxial cells and more abaxial stigmata. Stomata were mostly distributed only on the abaxial side, but on both sides in Cymbidium mastersii, which exhibited a rare amphistomatic type. The stomatal complex was uniformly tetracytic in 11 species, while it was observed to be anomocytic in C. floribundum. (3) Anatomically, two distinct midrib configurations were identified, a shallow V-shape and V-shape. The mesophyll cells were homogeneous in 10 species, with the exception of a layer of parenchyma cells resembling palisade cells occurring in C. lancifolium and C. qiubeiense. The thickness of the cuticle varied between species, with the adaxial surface covered by a thicker cuticle than the abaxial surface and displaying either a smooth or corrugated surface. A fiber bundle was observed in six species, but absent in the other six. In the former group, the fiber bundle occurred adjacent to both epidermal cells in C. mastersii and C. hookerianum, while it was adjacent to the abaxial epidermis in four other species. The stegmata, with conical, spherical silica bodies, were associated with fiber bundles and mesophyll in seven species, but absent in the other five (C. kanran, C. defoliatum, C. floribundum, C. lancifolium, and C. serratum). Three kinds of crystals were identified, namely the terete bundle, the long tube bundle, and the raphide. (4) It was suggested that some of these variable features could be selected and used for the delimitation of the species and taxonomy of Cymbidium. In addition, a key to the 12 Cymbidium species based on their leaf morpho-anatomic features was proposed, which could lead to a better understanding of the taxonomy and conservation of Orchidaceae. Full article
(This article belongs to the Special Issue Plant Taxonomy, Phylogeny, and Evolution)
Show Figures

Figure 1

15 pages, 7332 KiB  
Article
Functional Characterization of PeVLN4 Involved in Regulating Pollen Tube Growth from Passion Fruit
by Hanbing Yang, Xiuqing Wei, Lifeng Wang, Ping Zheng, Junzhang Li, Yutong Zou, Lulu Wang, Xinyuan Feng, Jiahui Xu, Yuan Qin and Yuhui Zhuang
Int. J. Mol. Sci. 2025, 26(5), 2348; https://doi.org/10.3390/ijms26052348 - 6 Mar 2025
Viewed by 664
Abstract
Passion fruit (Passiflora edulis), mainly distributed in tropical and subtropical regions, is popular for its unique flavor and health benefits. The actin cytoskeleton plays a crucial role in plant growth and development, and villin is a key regulator of actin dynamics. [...] Read more.
Passion fruit (Passiflora edulis), mainly distributed in tropical and subtropical regions, is popular for its unique flavor and health benefits. The actin cytoskeleton plays a crucial role in plant growth and development, and villin is a key regulator of actin dynamics. However, the mechanism underlying the actin filament regulation of reproductive development in passion fruit remains poorly understood. Here, we characterized a villin isovariant in passion fruit, Passiflora edulis VLN4 (PeVLN4), highly and preferentially expressed in pollen. Subcellular localization analysis showed that PeVLN4 decorated distinct filamentous structures in pollen tubes. We next introduced PeVLN4 into Arabidopsis villin mutants to explore its functions on the growing pollen tubes. PeVLN4 rescued defects in the elongation of villin mutant pollen tubes. Pollen tubes expressing PeVLN4 were revealed to be less sensitive to latrunculin B, and PeVLN4 partially rescued defects in the actin filament organization of villin mutant pollen tubes. Additionally, biochemical assays revealed that PeVLN4 bundles actin filaments in vitro. Thus, PeVLN4 is an important regulator of F-actin stability and is required for normal pollen tube growth in passion fruit. This study provides a new insight into the function of the actin regulator villin involved in the reproduction development of passion fruit. Full article
(This article belongs to the Special Issue Molecular Advances in Plant Reproductive Development)
Show Figures

Figure 1

15 pages, 5312 KiB  
Article
Iron Oxide Scale Formation Mechanism and Anti-Corrosion Technology from Induction Remelting of Boiler Coating in Waste Incineration Power Plant
by Zuopeng Qu and Xinli Tian
Molecules 2025, 30(3), 689; https://doi.org/10.3390/molecules30030689 - 4 Feb 2025
Viewed by 834
Abstract
High-frequency induction welding technology represents the development direction of the high-temperature corrosion protection technology for the heating surfaces of the boiler “four tubes”. However, when the high-frequency induction coil heats and remelts the coating on the tube’s outer wall, the tube’s inner wall [...] Read more.
High-frequency induction welding technology represents the development direction of the high-temperature corrosion protection technology for the heating surfaces of the boiler “four tubes”. However, when the high-frequency induction coil heats and remelts the coating on the tube’s outer wall, the tube’s inner wall is also heated, causing an iron oxide scale to form on the tube’s inner wall. When the remelting temperature rises and the temperature of the tube’s inner wall exceeds 580 °C, three layers of oxide films, FeO, Fe3O4, and Fe2O3 are arranged in sequence from the substrate surface of the tube’s inner wall to the outside, with a thickness ratio of approximately 1:10:100. From the XRD spectra of tube iron oxide scale, it can be seen that the oxidation of the tube. The skin is mainly composed of Fe3O4, with a certain amount of Fe2O3 and trace amounts of FeO. The iron in the diffraction peak originates from the metal matrix. However, when the remelting temperature continues to rise and the temperature of the tube’s inner wall exceeds 580 °C, the oxide film begins to thicken significantly, that is, the oxide film begins to transform into an oxide scale. Under the continuous action of high-temperature induction remelting, the reaction between iron and oxygen is accelerated, but because the oxygen ions of water slowly diffuse through two outer layers of oxide films, with a low oxygen concentration. Although the FeO film is thin, it has a loose structure and numerous lattice defects, is unstable and easy to decompose, and easily peels off from the tube’s inner wall. For a pipe wall thickness of 5 mm, if the thinning rate of the inner wall caused by detachment reaches 0.8 mm/year, it is highly likely to cause pipe burst accidents within 4–5 years. The influence of the iron oxide scale on the performance of the tube’s inner wall was evaluated by testing indexes, such as surface hardness and decarburization layer depth. Although the oxide scale reduces the surface hardness of the tube’s inner wall, the surface decarburization layer is very thin, so the effect on the mechanical properties of the tube’s substrate is limited. The technology of inhibiting the formation of the iron oxide scale in induction remelting is briefly introduced. During the high-frequency remelting process of water-cooled walls, as the tube bank moves forward relative to the high-frequency heating coil, nitrogen protection is used to suppress the formation of oxide scale, effectively eliminating the troubles caused by high-frequency induction remelting and achieving the goal of improving the service life of the tube bank. This technology of the nitrogen protection method is used to inhibit the formation of iron oxide scale, not only inhibiting the formation of the iron oxide scale on the tube inner wall and the back of the tube bundle, with remarkable experimental results and broad application prospects. Full article
Show Figures

Figure 1

11 pages, 505 KiB  
Article
Quality Improvement Project to Improve Adherence to Best Practices to Decrease Incidence of Necrotizing Enterocolitis in Preterm Infants
by Ahreen Allana, Sidra Bashir and Ivan Hand
Children 2025, 12(2), 176; https://doi.org/10.3390/children12020176 - 30 Jan 2025
Cited by 3 | Viewed by 1499
Abstract
Background/Objectives: Necrotizing enterocolitis (NEC) is one of the most devastating gastrointestinal emergencies in preterm infants. This quality improvement (QI) project aimed to increase the utilization of accepted evidence-based practices in our neonatal intensive care unit (NICU) to ultimately decrease the incidence of NEC [...] Read more.
Background/Objectives: Necrotizing enterocolitis (NEC) is one of the most devastating gastrointestinal emergencies in preterm infants. This quality improvement (QI) project aimed to increase the utilization of accepted evidence-based practices in our neonatal intensive care unit (NICU) to ultimately decrease the incidence of NEC in our level III NICU. Methods: Our QI team implemented a bundle of nine of these evidenced-based practices for NEC prevention and disseminated information among the NICU team. Items in the bundle included delayed cord clamping, parental education on the importance of breast milk, obtaining early consent for donor breast milk, adherence to the unit’s feeding protocol, avoiding routine gastric residual checks, the discontinuation of antibiotics at 48 h once blood cultures were negative, restricting the use of antacids, nasogastric tube (NGT) replacement every 72 h and the removal of central lines once a feeding volume of 100 mL/kg/day was attained. The baseline incidence of clinically proven NEC was found to be 7% at the start of the intervention. We conducted two Plan-Do-Study-Act (PDSA) cycles over a 2-year period from 1 January 2021 to 31 December 2022. Results: There were 74 infants who met the inclusion criteria of being <1500 g and/or at <32 weeks of gestation. The adherence to our process measures improved over the course of our two PDSA cycles from 78% adherence to 91.6%, p < 0.05. The incidence of NEC decreased from 7% to 5.3% following the first PDSA cycle, a 24% reduction. Following the second PDSA cycle, the incidence decreased even further from 5.3% to 2.8%, a 60% reduction from baseline, although this was not statistically significant due to the small sample size. Conclusions: In this QI initiative, we achieved improved adherence to several evidence-based interventions over a two-year period with the aim of reducing the incidence of NEC at our institution. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

24 pages, 5893 KiB  
Article
Eddy Current Measurement of Electrical Resistivity in Heat-Treated Zr-2.5%Nb Pressure Tubes
by W. G. Thorpe, P. R. Underhill and T. W. Krause
Sensors 2024, 24(23), 7426; https://doi.org/10.3390/s24237426 - 21 Nov 2024
Viewed by 1158
Abstract
Zr-2.5%Nb pressure tubes (PTs) house uranium fuel bundles in the fuel channels of CANDU® nuclear reactors. Preventing a failure mode caused by contact of the PT with an outer calandria tube (CT) is performed by inspection using eddy current (EC) testing and [...] Read more.
Zr-2.5%Nb pressure tubes (PTs) house uranium fuel bundles in the fuel channels of CANDU® nuclear reactors. Preventing a failure mode caused by contact of the PT with an outer calandria tube (CT) is performed by inspection using eddy current (EC) testing and ultrasonic testing (UT) to measure the PT-CT gap. EC gap measurements are particularly sensitive to circumferential variation of the PT’s electrical resistivity due to microstructural variations. A full-factorial experiment was performed to examine the statistical significance of variations in the EC test parameters and manufacturing conditions on the average circumferential electrical resistivity of as-manufactured PTs. It was found that 79% of the variance in the data could be attributed to variations caused by any of the test factors or combinations of test factors. The parameters that accounted for the majority of the variance were: (1) heat treatment (HT); (2) HT and EC frequency; (3) probe inner or outer surface placement; and (4) EC frequency. Measurements of circumferential resistivity showed up to ±2.3% variation from the average of either surface. HT caused the average PT resistivity to decrease at a rate of 1.53±0.08 μΩ·cmloghr and 1.1±0.4μΩ·cmloghr for inner and outer PT surfaces, respectively. The results are correlated with differences reported in the literature in the average βZr ribbon thickness in the axial-transverse cross-section between inner and outer PT surfaces. The results demonstrate potential for EC-based resistivity measurements to characterize variations and changes in the microstructure of Zr-2.5%Nb PT material. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

14 pages, 13828 KiB  
Article
Study on the Effects of Structural Parameters of the Pre-Cooler on the Performance of Combined Power Generation Engines
by Yujie Li, Shunlin Jiang, Xudong Chen, Fengyuan Sun, Shan Wang and Yeming Lu
Symmetry 2024, 16(11), 1471; https://doi.org/10.3390/sym16111471 - 5 Nov 2024
Cited by 1 | Viewed by 956
Abstract
The pre-cooler is a key component of the pre-cooled turbine combined cycle engine, and its performance significantly impacts the overall engine performance. To clarify the flow and heat transfer characteristics of the pre-cooler and the effects of its key structural parameters on engine [...] Read more.
The pre-cooler is a key component of the pre-cooled turbine combined cycle engine, and its performance significantly impacts the overall engine performance. To clarify the flow and heat transfer characteristics of the pre-cooler and the effects of its key structural parameters on engine performance, the pre-cooler of the SABRE engine (Synergetic Air-Breathing Rocket Engine) was analyzed using numerical simulation methods to investigate the influences of air crossflow tube bundles and tube spacing on pre-cooler performance. The results indicate that increasing the number of air crossflow tubes significantly enhances heat transfer capacity; however, it also leads to an increase in the total pressure drop. Specifically, as the number of air crossflow tubes increases from 24 to 48, the overall heat transfer capacity improves by 42.1%, while the total pressure loss coefficient nearly doubles. Additionally, increasing tube spacing reduces the overall pressure drop, but this comes at the cost of decreasing heat transfer capacity and structural compactness. When the total pressure loss coefficient was reduced by approximately 29.8%, the overall heat transfer capacity decreased by 4.9%. Notably, the impact of tube spacing on flow resistance is greater than its effect on heat transfer, suggesting that the total pressure loss can be minimized by optimizing tube spacing. Therefore, both performance and structural integrity must be considered in pre-cooler design. Finally, selecting appropriate structural parameters based on operating conditions is essential to optimize heat transfer efficiency and overall design quality. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

18 pages, 4744 KiB  
Article
Heat Transfer Enhancement in a 3D-Printed Compact Heat Exchanger
by Marcin Kruzel, Tadeusz Bohdal and Krzysztof Dutkowski
Energies 2024, 17(18), 4754; https://doi.org/10.3390/en17184754 - 23 Sep 2024
Cited by 2 | Viewed by 2493
Abstract
The study describes experimental data on thermal tests during the condensation of HFE7100 refrigerant in a compact heat exchanger. The heat exchanger was manufactured using the additive 3D printing in metal. The material is AISI 316L steel. MPCM slurry was used as the [...] Read more.
The study describes experimental data on thermal tests during the condensation of HFE7100 refrigerant in a compact heat exchanger. The heat exchanger was manufactured using the additive 3D printing in metal. The material is AISI 316L steel. MPCM slurry was used as the heat exchanger coolant, and water was used as the reference medium. The refrigerant was condensed on a bundle of circular tubes made of steel with an internal/external diameter of di/de = 2/3 mm, while a mixture of water and phase change materials as the coolant flowed through the channels. Few studies consider the heat exchange in condensation using phase change materials; furthermore, there is also a lack of description of heat exchange in small-sized exchangers printed from metal. Most papers deal with computer research, including flow simulations of heat exchange. The study describes the process of heat exchange enhancement using the phase transition of coolant. Experimental data for the mPCM slurry coolant flow was compared to the data of pure water flow as a reference liquid. The tests were carried out under the following thermal and flow conditions: G = 10–450 [kg m−² s−1], q = 2000–25,000 [W m²], and ts = 30–40 [°C]. The conducted research provided many quantities describing the heat exchange in compact heat exchangers, including heat exchanger heat power, heat exchange coefficient, and heat exchange coefficients for working media. Based on these factors, the thermal performance of the heat exchanger was described. External characteristics include the value of the thermal power and the heat exchange coefficient as a function of the mass flow density of the working medium and the average logarithmic temperature difference. The performance of the heat exchanger was presented as the dependencies of the heat exchange coefficients on the mass flux density and the heat flux density on the heat exchange surface. The thickness of the refrigerant’s condensate film was also determined. Furthermore, a model was proposed to determine the heat exchange coefficient value for the condensing HFE7100 refrigerant on the outer surface of a bundle of smooth tubes inside a compact heat exchanger. According to experimental data, the calculation results were in good agreement with each other, with a range of 25%. These data can be used to design mini condensers that are widely used in practice. Full article
Show Figures

Figure 1

26 pages, 37606 KiB  
Review
Nanomaterials for Modified Asphalt and Their Effects on Viscosity Characteristics: A Comprehensive Review
by Hualong Huang, Yongqiang Wang, Xuan Wu, Jiandong Zhang and Xiaohan Huang
Nanomaterials 2024, 14(18), 1503; https://doi.org/10.3390/nano14181503 - 16 Sep 2024
Cited by 8 | Viewed by 3635
Abstract
The application of nanomaterials as modifiers in the field of asphalt is increasingly widespread, and this paper aims to systematically review research on the impact of nanomaterials on asphalt viscosity. The results find that nanomaterials tend to increase asphalt’s viscosity, enhancing its resistance [...] Read more.
The application of nanomaterials as modifiers in the field of asphalt is increasingly widespread, and this paper aims to systematically review research on the impact of nanomaterials on asphalt viscosity. The results find that nanomaterials tend to increase asphalt’s viscosity, enhancing its resistance to high-temperature rutting and low-temperature cracking. Zero-dimension nanomaterials firmly adhere to the asphalt surface, augmenting non-bonding interactions through van der Waals forces and engaging in chemical reactions to form a spatial network structure. One-dimensional nanomaterials interact with non-polar asphalt molecules, forming bonds between tube walls, thereby enhancing adhesion, stability, and resistance to cyclic loading. Meanwhile, these bundled materials act as reinforcement to transmit stress, preventing or delaying crack propagation. Two-dimensional nanomaterials, such as graphene and graphene oxide, participate in chemical interactions, forming hydrogen bonds and aromatic deposits with asphalt molecules, affecting asphalt’s surface roughness and aggregate movement, which exhibit strong adsorption capacity and increase the viscosity of asphalt. Polymers reduce thermal movement and compact asphalt structures, absorbing light components and promoting the formation of a cross-linked network, thus enhancing high-temperature deformation resistance. However, challenges such as poor compatibility and dispersion, high production costs, and environmental and health concerns currently hinder the widespread application of nanomaterial-modified asphalt. Consequently, addressing these issues through comprehensive economic and ecological evaluations is crucial before large-scale practical implementation. Full article
Show Figures

Figure 1

13 pages, 8131 KiB  
Article
Study on Flow Heat Transfer and Particle Deposition Characteristics in a Kettle Reboiler
by Xue Liu, Qi Sun, Hui Tang, Wei Peng, Mingbao Zhang, Gang Zhao and Tairan Fu
Energies 2024, 17(16), 4183; https://doi.org/10.3390/en17164183 - 22 Aug 2024
Viewed by 1668
Abstract
A kettle reboiler uses the latent heat from the condensation of high-temperature and high-pressure steam in the tube to produce low-pressure saturated steam in the outer shell. The deposition of particles on the tube may change the boiling heat transfer mode from nucleate [...] Read more.
A kettle reboiler uses the latent heat from the condensation of high-temperature and high-pressure steam in the tube to produce low-pressure saturated steam in the outer shell. The deposition of particles on the tube may change the boiling heat transfer mode from nucleate boiling to natural convection, thereby deteriorating the heat transfer performance of the kettle reboiler. Therefore, it is very important to explore the deposition characteristics of particles in the kettle reboiler. In this study, the RPI boiling model based on the Euler–Euler method is used to analyze the water boiling process on the surface of the tube bundle. The DRW model and critical adhesion velocity model based on the Euler–Lagrangian method are used to calculate the motion of particles during the boiling process and the deposition (rebound) behavior. The results show that the boiling of liquid water enhances the local flow velocity of the fluid, so that the maximum flow velocity appears around the near-wall region. The local high-speed flow disperses the particles in the wake flow of the tube bundle, which inhibits the impact of particles on the wall. As the particle size increases, the wall adhesion and fluid drag on the particles are weakened, and the gravity effect gradually becomes dominant, increasing the residence time of the particles in the tube bundle and the frequency of particle impact on the wall. The particle deposition ratio first decreases and then increases. Ultimately, most particles will be deposited in the low-speed area at the end of the tube bundle. Full article
(This article belongs to the Special Issue Heat Transfer and Multiphase Flow)
Show Figures

Figure 1

14 pages, 6387 KiB  
Article
A Study on the Development of the Stainless Steel Tube Bundle Structure Detecting System Using Ultrasonic Guided Wave
by Jeongnam Kim, Jiannan Zhang, Azamatjon Kakhramon ugli Malikov and Younho Cho
Sensors 2024, 24(16), 5278; https://doi.org/10.3390/s24165278 - 15 Aug 2024
Viewed by 1199
Abstract
In this study, an ultrasonic guided wave system that can be used to detect broken tubes in stainless steel tube bundle structures (e.g., heat exchangers) with fairly narrow spacing between the tubes was designed. The interval between the tubes was 1.5 mm, and [...] Read more.
In this study, an ultrasonic guided wave system that can be used to detect broken tubes in stainless steel tube bundle structures (e.g., heat exchangers) with fairly narrow spacing between the tubes was designed. The interval between the tubes was 1.5 mm, and the thickness of the strip with a transducer that can be inspected by passing between the tubes was designed to be 1 mm. The damaged specimen was filled with water, and it was confirmed that the signal amplitude was smaller than that of the normal specimen filled with air. The ultrasonic properties of stainless steel were analyzed using the developed system, and it is expected that this will contribute to breakage inspection for tube bundles with narrow spacing. Full article
Show Figures

Figure 1

14 pages, 11338 KiB  
Article
Experimental Permeability and Porosity Determination of All-Oxide Ceramic Matrix Composite Material
by Ryszard Szwaba, Pawel Madejski, Piotr Kaczynski, Marcin Kurowski, Mathias Kunz, Katarzyna Berent and Tomasz Ochrymiuk
Materials 2024, 17(14), 3612; https://doi.org/10.3390/ma17143612 - 22 Jul 2024
Cited by 1 | Viewed by 1291
Abstract
This paper presents an investigation into the water permeability of an all-oxide ceramic matrix composite. To determine the parameters and characterize the water permeability of the ceramic composite material, an experimental study was carried out in which a dedicated test rig was constructed [...] Read more.
This paper presents an investigation into the water permeability of an all-oxide ceramic matrix composite. To determine the parameters and characterize the water permeability of the ceramic composite material, an experimental study was carried out in which a dedicated test rig was constructed and commissioned. A total of five different configurations of composite tubes were tested. They differed in fibre roving strength, winding angle, fibre bundle arrangement during winding, and matrix grain size distribution. To better understand the internal structure of the analysed ceramic matrix composite material, the experimental study used scanning electron microscopy for microstructure and porosity observation. The tested tubes will be used as liners in an oxy-combustion chamber in future studies. The experiments obtained new and interesting results regarding the water permeability of the ceramic matrix composite with different structural parameters. It was also observed that, as with some porous materials, the permeability of ceramic matrix composites decreases with time as more and more liquid is pressed through it. Full article
Show Figures

Figure 1

Back to TopTop