Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = truncated transporter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4703 KiB  
Article
Nanoparticle-Free 3D-Printed Hydrophobic Surfaces for Ice Mitigation Applications
by Ranim Zgaren, Maryam Hosseini, Reza Jafari and Gelareh Momen
Molecules 2025, 30(15), 3185; https://doi.org/10.3390/molecules30153185 - 30 Jul 2025
Viewed by 156
Abstract
Ice accumulation on exposed surfaces presents substantial economic and safety challenges across various industries. To overcome limitations associated with traditional anti-icing methods, such as the use of nanoparticles, this study introduces a novel and facile approach for fabricating superhydrophobic and anti-icing microstructures using [...] Read more.
Ice accumulation on exposed surfaces presents substantial economic and safety challenges across various industries. To overcome limitations associated with traditional anti-icing methods, such as the use of nanoparticles, this study introduces a novel and facile approach for fabricating superhydrophobic and anti-icing microstructures using cost-effective LCD 3D printing technology. The influence of diverse pillar geometries, including square, cylindrical, hexagonal, and truncated conical forms, was analyzed to assess their effects on the hydrophobic and anti-icing/icephobic performance in terms of wettability, ice adhesion strength, and icing delay time. The role of microstructure topography was further investigated through cylindrical patterns with varying geometric parameters to identify optimal designs for enhancing hydrophobic and icephobic characteristics. Furthermore, the effectiveness of surface functionalization using a low surface energy material was evaluated. Our findings demonstrate that the synergistic combination of tailored microscale geometries and surface functionalization significantly enhances anti-icing performance with reliable repeatability, achieving ice adhesion of 13.9 and 17.9 kPa for square and cylindrical pillars, respectively. Critically, this nanoparticle-free 3D printing and low surface energy treatment method offers a scalable and efficient route for producing high-performance hydrophobic/icephobic surfaces, opening promising avenues for applications in sectors where robust anti-icing capabilities are crucial, such as renewable energy and transportation. Full article
(This article belongs to the Special Issue Micro/Nano-Materials for Anti-Icing and/or De-Icing Applications)
Show Figures

Figure 1

25 pages, 5824 KiB  
Article
Identifying Hubs Through Influential Nodes in Transportation Network by Using a Gravity Centrality Approach
by Worawit Tepsan, Aniwat Phaphuangwittayakul, Saronsad Sokantika and Napat Harnpornchai
Algorithms 2025, 18(6), 356; https://doi.org/10.3390/a18060356 - 10 Jun 2025
Viewed by 1219
Abstract
Hubs are strategic locations that function as central nodes within clusters of cities, playing a pivotal role in the distribution of goods, services, and connectivity. Identifying these vital hubs—through analyzing influential locations within transportation networks—is essential for effective urban planning, logistics optimization, and [...] Read more.
Hubs are strategic locations that function as central nodes within clusters of cities, playing a pivotal role in the distribution of goods, services, and connectivity. Identifying these vital hubs—through analyzing influential locations within transportation networks—is essential for effective urban planning, logistics optimization, and enhancing infrastructure resilience. This task becomes even more crucial in developing and less-developed countries, where such hubs can significantly accelerate urban growth and drive economic development. However, existing hub identification approaches face notable limitations. Traditional centrality measures often yield low variance in node scores, making it difficult to distinguish truly influential nodes. Moreover, these methods typically rely solely on either local metrics or global network structures, limiting their effectiveness. To address these challenges, we propose a novel method called Hybrid Community-based Gravity Centrality (HCGC), which integrates local influence measures, community detection, and gravity-based modeling to more effectively identify influential nodes in complex networks. Through extensive experiments, we demonstrate that HCGC consistently outperforms existing methods in terms of spreading ability across varying truncation radii. To further validate our approach, we introduce ThaiNet, a newly constructed real-world transportation network dataset. The results show that HCGC not only preserves the strengths of traditional local approaches but also captures broader structural patterns, making it a powerful and practical tool for real-world network analysis. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

9 pages, 2524 KiB  
Communication
Expression of Tailored α-N-Acetylglucosaminidase in Escherichia coli for Synthesizing Mannose-6-Phosphate on N-Linked Oligosaccharides of Lysosomal Enzymes
by Yunsong Cao and Wei Wang
Bioengineering 2025, 12(4), 425; https://doi.org/10.3390/bioengineering12040425 - 17 Apr 2025
Viewed by 473
Abstract
Lysosomal enzymes are synthesized as N-glycosylated glycoproteins with mannose-6-phosphate (M6P) moieties, which are responsible for their binding to M6P receptors and transporting to the lysosome. In the M6P biosynthetic pathway, a Man8GlcNAc2 glycoform is converted to M6P groups through two [...] Read more.
Lysosomal enzymes are synthesized as N-glycosylated glycoproteins with mannose-6-phosphate (M6P) moieties, which are responsible for their binding to M6P receptors and transporting to the lysosome. In the M6P biosynthetic pathway, a Man8GlcNAc2 glycoform is converted to M6P groups through two consecutive enzymatic reactions, including N-acetylglucosamine (GlcNAc)-1-phosphotransferase (GNPT), transferring GlcNAc-1-phosphate from UDP-GlcNAc to the C6 hydroxyl groups of mannose residues, and then, removal of the covering GlcNAc moiety from the GlcNAc-P-mannose phosphodiester was carried out using an α-N-acetylglucosaminidase (referred to as ‘uncovering enzyme’, UCE) in the trans-Golgi network (TGN). Here, we expressed differently tailored versions of the UCE, including four truncated variants, in Escherichia coli. The four variants with the signal peptide, transmembrane domain, propiece and cytoplasmic tail truncated, respectively, were purified by affinity chromatography, and their enzymatic activities were assayed using a UDP-Glo kit. By fusing a maltose-binding protein (MBP) in the N-terminus of the UCE variants, the fusion proteins could be soluble when expressed in E. coli. The highest concentration of the purified enzyme was 80.5 mg/L of fermentation broth. Furthermore, the UCE with the core catalytic domain exhibited the highest uncovering activity. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Graphical abstract

14 pages, 288 KiB  
Article
Economic Contribution, Characterization, and Motivations of Tourists: The Raymi Llaqta in Peru
by Franklin Omar Zavaleta Chavez Arroyo, Alex Javier Sánchez Pantaleón, Milena Leticia Weepiu Samekash, Jhunniors Puscan Visalot and Rosse Marie Esparza-Huamanchumo
Heritage 2024, 7(11), 6243-6256; https://doi.org/10.3390/heritage7110293 - 5 Nov 2024
Viewed by 2223
Abstract
This study assesses the economic contribution and motivations of tourists attending the Raymi Llaqta festival in Chachapoyas, Peru. This study used an econometric analysis based on the application of two types of regression models: non-zero truncated Poisson regression and zero-truncated negative binomial regression. [...] Read more.
This study assesses the economic contribution and motivations of tourists attending the Raymi Llaqta festival in Chachapoyas, Peru. This study used an econometric analysis based on the application of two types of regression models: non-zero truncated Poisson regression and zero-truncated negative binomial regression. Data were collected through face-to-face structured interviews with domestic and foreign tourists who visited Chachapoyas during the festival. Results indicate significant spending on accommodation, food, transportation, and activities. Tourist satisfaction averaged 3.7, with notable appreciation for the festival’s variety, authenticity, local hospitality, and safety. While both foreign and domestic tourists expressed positive views on the cultural representation and organization of the event, they suggested improvements in hygiene and promotional efforts. Despite using a structured questionnaire, response bias could affect the accuracy of self-reported experiences. This research provides valuable insights into the festival’s direct economic impact on the local economy and highlights the importance of high tourist satisfaction for effective marketing strategies. Full article
(This article belongs to the Special Issue Heritage Tourism and Sustainable City Dynamics)
20 pages, 6111 KiB  
Article
Preliminary Study on Multi-Scale Modeling of Asphalt Materials: Evaluation of Material Behavior through an RVE-Based Approach
by Ahmed Ibrahim Hassanin Mohamed, Oliver Giraldo-Londoño, Baolin Deng, Zhen Chen, Punyaslok Rath and William G. Buttlar
Materials 2024, 17(20), 5041; https://doi.org/10.3390/ma17205041 - 15 Oct 2024
Cited by 4 | Viewed by 1500
Abstract
This study employs a microstructure-based finite element modeling approach to understand the mechanical behavior of asphalt mixtures across different length scales. Specifically, this work aims to develop a multi-scale modeling approach employing representative volume elements (RVEs) of optimal size; this is a key [...] Read more.
This study employs a microstructure-based finite element modeling approach to understand the mechanical behavior of asphalt mixtures across different length scales. Specifically, this work aims to develop a multi-scale modeling approach employing representative volume elements (RVEs) of optimal size; this is a key issue in asphalt modeling for high-fidelity fracture modeling of heterogeneous asphalt mixtures. To determine the optimal RVE size, a convergence analysis of homogenized elastic properties is conducted using two types of RVEs, one made with polydisperse spherical inclusions, and another made with polydisperse truncated cylindrical inclusions, each aligned with the American Association of State Highway and Transportation Official’s maximum density gradation curve for a 12.5 mm Nominal Maximum Aggregate Size (NMAS). The minimum RVE lengths for this NMAS were found to be in the range of 32–34 mm. After the optimal RVE size for each inclusion shape is obtained, computational models of heterogeneous Indirect Tensile Asphalt Cracking Test samples are then generated. These models include the components of viscoelastic mastic, linear elastic aggregates, and cohesive zone modeling to simulate the rate-dependent failure evolution from micro- to macro-cracking. Examination of load-displacement responses at multiple loading rates shows that both heterogeneous models replicate experimentally measured data satisfactorily. Through micro- and macro-level analyses, this study enhances our understanding of the composition-performance relationships in asphalt pavement materials. The procedure proposed in this study allows us to identify the optimal RVE sizes that preserve computational efficiency without significantly compromising their ability to capture the asphalt material behavior under specific operational conditions. Full article
(This article belongs to the Special Issue Mechanical Property Research of Advanced Asphalt-Based Materials)
Show Figures

Figure 1

13 pages, 2386 KiB  
Article
Tsg101 UEV Interaction with Nedd4 HECT Relieves E3 Ligase Auto-Inhibition, Promoting HIV-1 Assembly and CA-SP1 Maturation Cleavage
by Susan M. Watanabe, David A. Nyenhuis, Mahfuz Khan, Lorna S. Ehrlich, Irene Ischenko, Michael D. Powell, Nico Tjandra and Carol A. Carter
Viruses 2024, 16(10), 1566; https://doi.org/10.3390/v16101566 - 2 Oct 2024
Cited by 3 | Viewed by 1425
Abstract
Tsg101, a component of the endosomal sorting complex required for transport (ESCRT), is responsible for recognition of events requiring the machinery, as signaled by cargo tagging with ubiquitin (Ub), and for recruitment of downstream acting subunits to the site. Although much is known [...] Read more.
Tsg101, a component of the endosomal sorting complex required for transport (ESCRT), is responsible for recognition of events requiring the machinery, as signaled by cargo tagging with ubiquitin (Ub), and for recruitment of downstream acting subunits to the site. Although much is known about the latter function, little is known about its role in the earlier event. The N-terminal domain of Tsg101 is a structural homologue of Ub conjugases (E2 enzymes) and the protein associates with Ub ligases (E3 enzymes) that regulate several cellular processes including virus budding. A pocket in the domain recognizes a motif, PT/SAP, that permits its recruitment. PT/SAP disruption makes budding dependent on Nedd4L E3 ligases. Using HIV-1 encoding a PT/SAP mutation that makes budding Nedd4L-dependent, we identified as critical for rescue the residues in the catalytic (HECT) domain of the E3 enzyme that lie in proximity to sites in Tsg101 that bind Ub non-covalently. Mutation of these residues impaired rescue by Nedd4L but the same mutations had no apparent effect in the context of a Nedd4 isomer, Nedd4-2s, whose N-terminal (C2) domain is naturally truncated, precluding C2-HECT auto-inhibition. Surprisingly, like small molecules that disrupt Tsg101 Ub-binding, small molecules that interfered with Nedd4 substrate recognition arrested budding at an early stage, supporting the conclusion that Tsg101–Ub–Nedd4 interaction promotes enzyme activation and regulates Nedd4 signaling for viral egress. Tsg101 regulation of E3 ligases may underlie its broad ability to function as an effector in various cellular activities, including viral particle assembly and budding. Full article
Show Figures

Figure 1

20 pages, 4706 KiB  
Article
Screening and Engineering Yeast Transporters to Improve Cellobiose Fermentation by Recombinant Saccharomyces cerevisiae
by Leonardo G. Kretzer, Marilia M. Knychala, Lucca C. da Silva, Isadora C. C. da Fontoura, Maria José Leandro, César Fonseca, Kevin J. Verstrepen and Boris U. Stambuk
Fermentation 2024, 10(9), 490; https://doi.org/10.3390/fermentation10090490 - 22 Sep 2024
Cited by 1 | Viewed by 1589
Abstract
Developing recombinant Saccharomyces cerevisiae strains capable of transporting and fermenting cellobiose directly is a promising strategy for second-generation ethanol production from lignocellulosic biomass. In this study, we cloned and expressed in the S. cerevisiae CEN.PK2-1C strain an intracellular β-glucosidase (SpBGL7) from [...] Read more.
Developing recombinant Saccharomyces cerevisiae strains capable of transporting and fermenting cellobiose directly is a promising strategy for second-generation ethanol production from lignocellulosic biomass. In this study, we cloned and expressed in the S. cerevisiae CEN.PK2-1C strain an intracellular β-glucosidase (SpBGL7) from Spathaspora passalidarum and co-expressed the cellobiose transporter SiHXT2.4 from Scheffersomyces illinoinensis, and two putative transporters, one from Candida tropicalis (CtCBT1 gene), and one from Meyerozyma guilliermondii (MgCBT2 gene). While all three transporters allowed cell growth on cellobiose, only the MgCBT2 permease allowed cellobiose fermentation, although cellobiose consumption was incomplete. The analysis of the β-glucosidase and transport activities revealed that the cells stopped consuming cellobiose due to a drop in the transport activity. Since ubiquitinylation of lysine residues at the N- or C-terminal domains of the permease are involved in the endocytosis and degradation of sugar transporters, we constructed truncated versions of the permease lacking lysine residues at the C-terminal domain (MgCBT2ΔC), and at both the C- and N-terminal domain (MgCBT2ΔNΔC) and co-expressed these permeases with the SpBGL7 β-glucosidase in an industrial strain. While the strain harboring the MgCBT2ΔC transporter continued to produce incomplete cellobiose fermentations as the wild-type MgCBT2 permease, the strain with the MgCBT2ΔNΔC permease was able to consume and ferment all the cellobiose present in the medium. Thus, our results highlight the importance of expressing cellobiose transporters lacking lysine at the N- and C-terminal domains for efficient cellobiose fermentation by recombinant S. cerevisiae. Full article
Show Figures

Figure 1

12 pages, 7383 KiB  
Article
Phase Dependence of Surface Charge Measurement on Epoxy Insulator in C4F7N/CO2 under AC Voltage
by Shuangying Li, Yu Gao, Di Lu, Pinhao Huang and Boxue Du
Polymers 2024, 16(18), 2585; https://doi.org/10.3390/polym16182585 - 13 Sep 2024
Cited by 1 | Viewed by 999
Abstract
The application of binary gas mixtures consisting of heptafluorobutyronitrile (C4F7N) and carbon dioxide (CO2) in AC GIS is currently attracting much attention. Therefore, the evaluation of the gas–solid interface charge distribution characteristics of epoxy resin is indispensable. [...] Read more.
The application of binary gas mixtures consisting of heptafluorobutyronitrile (C4F7N) and carbon dioxide (CO2) in AC GIS is currently attracting much attention. Therefore, the evaluation of the gas–solid interface charge distribution characteristics of epoxy resin is indispensable. Additionally, the phase-dependency of the charging behavior remains not fully understood. We simulated coaxial electrode structure in GIS and investigated the surface charge distribution on a down-scaled epoxy insulator. The influence of the truncated phase angle and duration of AC voltage on charge behavior were analyzed, and the charge transport mechanism under AC voltage was theoretically analyzed. The results showed that there was a noticeable negative charge speckle with the presence of the metal particle and the accumulated negative charge on the insulator surface far exceeded that of the positive charge. The maximum surface charge density and the amount of surface charge accumulated first increased and then decreased over time. It was found that the phase angle has a negligible influence on the surface charge distribution at the cut-off moment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 868 KiB  
Article
A Double Legendre Polynomial Order N Benchmark Solution for the 1D Monoenergetic Neutron Transport Equation in Plane Geometry
by Barry D. Ganapol
Foundations 2024, 4(3), 422-441; https://doi.org/10.3390/foundations4030027 - 21 Aug 2024
Viewed by 1093
Abstract
As more and more numerical and analytical solutions to the linear neutron transport equation become available, verification of the numerical results becomes increasingly important. This presentation concerns the development of another benchmark for the linear neutron transport equation in a benchmark series, each [...] Read more.
As more and more numerical and analytical solutions to the linear neutron transport equation become available, verification of the numerical results becomes increasingly important. This presentation concerns the development of another benchmark for the linear neutron transport equation in a benchmark series, each employing a different method of solution. In 1D, there are numerous ways of analytically solving the monoenergetic transport equation, such as the Wiener–Hopf method, based on the analyticity of the solution, the method of singular eigenfunctions, inversion of the Laplace and Fourier transform solutions, and analytical discrete ordinates in the limit, which is arguably one of the most straightforward, to name a few. Another potential method is the PN (Legendre polynomial order N) method, where one expands the solution in terms of full-range orthogonal Legendre polynomials, and with orthogonality and series truncation, the moments form an open set of first-order ODEs. Because of the half-range boundary conditions for incoming particles, however, full-range Legendre expansions are inaccurate near material discontinuities. For this reason, a double PN (DPN) expansion in half-range Legendre polynomials is more appropriate, where one separately expands incoming and exiting flux distributions to preserve the discontinuity at material interfaces. Here, we propose and demonstrate a new method of solution for the DPN equations for an isotropically scattering medium. In comparison to a well-established fully analytical response matrix/discrete ordinate solution (RM/DOM) benchmark using an entirely different method of solution for a non-absorbing 1 mfp thick slab with both isotropic and beam sources, the DPN algorithm achieves nearly 8- and 7-place precision, respectively. Full article
Show Figures

Figure 1

16 pages, 2258 KiB  
Article
Analysis of Entropy Generation via Non-Similar Numerical Approach for Magnetohydrodynamics Casson Fluid Flow with Joule Heating
by Hanen Louati, Sajid Khan, Muavia Mansoor, Shreefa O. Hilali and Ameni Gargouri
Entropy 2024, 26(8), 702; https://doi.org/10.3390/e26080702 - 19 Aug 2024
Cited by 3 | Viewed by 1426
Abstract
This analysis emphasizes the significance of radiation and chemical reaction effects on the boundary layer flow (BLF) of Casson liquid over a linearly elongating surface, as well as the properties of momentum, entropy production, species, and thermal dispersion. The mass diffusion coefficient and [...] Read more.
This analysis emphasizes the significance of radiation and chemical reaction effects on the boundary layer flow (BLF) of Casson liquid over a linearly elongating surface, as well as the properties of momentum, entropy production, species, and thermal dispersion. The mass diffusion coefficient and temperature-dependent models of thermal conductivity and species are used to provide thermal transportation. Nonlinear partial differential equations (NPDEs) that go against the conservation laws of mass, momentum, heat, and species transportation are the form arising problems take on. A set of coupled dimensionless partial differential equations (PDEs) are obtained from a set of convective differential equations by applying the proper non-similar transformations. Local non-similarity approaches provide an analytical approximation of the dimensionless non-similar system up to two degrees of truncations. The built-in Matlab (Version: 7.10.0.499 (R2010a)) solver bvp4c is used to perform numerical simulations of the local non-similar (LNS) truncations. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

13 pages, 2481 KiB  
Article
Molecular Modification Enhances Xylose Uptake by the Sugar Transporter KM_SUT5 of Kluyveromyces marxianus
by Xiuyuan Luo, Xi Tao, Guangyao Ran, Yuanzhen Deng, Huanyuan Wang, Liyan Tan and Zongwen Pang
Int. J. Mol. Sci. 2024, 25(15), 8322; https://doi.org/10.3390/ijms25158322 - 30 Jul 2024
Cited by 1 | Viewed by 1168
Abstract
This research cloned and expressed the sugar transporter gene KM_SUT5 from Kluyveromyces marxianus GX-UN120, which displayed remarkable sugar transportation capabilities, including pentose sugars. To investigate the impact of point mutations on xylose transport capacity, we selected four sites, predicted the suitable amino acid [...] Read more.
This research cloned and expressed the sugar transporter gene KM_SUT5 from Kluyveromyces marxianus GX-UN120, which displayed remarkable sugar transportation capabilities, including pentose sugars. To investigate the impact of point mutations on xylose transport capacity, we selected four sites, predicted the suitable amino acid sites by molecular docking, and altered their codons to construct the corresponding mutants, Q74D, Y195K, S460H, and Q464F, respectively. Furthermore, we conducted site-directed truncation on six sites of KM_SUT5p. The molecular modification resulted in significant changes in mutant growth and the D-xylose transport rate. Specifically, the S460H mutant exhibited a higher growth rate and demonstrated excellent performance across 20 g L−1 xylose, achieving the highest xylose accumulation under xylose conditions (49.94 μmol h−1 gDCW-1, DCW mean dry cell weight). Notably, mutant delA554-, in which the transporter protein SUT5 is truncated at position delA554-, significantly increased growth rates in both D-xylose and D-glucose substrates. These findings offer valuable insights into potential modifications of other sugar transporters and contribute to a deeper understanding of the C-terminal function of sugar transporters. Full article
Show Figures

Figure 1

15 pages, 1323 KiB  
Article
Cancerous Conditions Accelerate the Aging of Skeletal Muscle via Mitochondrial DNA Damage
by Yi Luo, Rina Fujiwara-Tani, Isao Kawahara, Kei Goto, Shota Nukaga, Ryoichi Nishida, Chie Nakashima, Takamitsu Sasaki, Yoshihiro Miyagawa, Ruiko Ogata, Kiyomu Fujii, Hitoshi Ohmori and Hiroki Kuniyasu
Int. J. Mol. Sci. 2024, 25(13), 7060; https://doi.org/10.3390/ijms25137060 - 27 Jun 2024
Cited by 1 | Viewed by 1840
Abstract
Skeletal muscle aging and sarcopenia result in similar changes in the levels of aging markers. However, few studies have examined cancer sarcopenia from the perspective of aging. Therefore, this study investigated aging in cancer sarcopenia and explored its causes in vitro and in [...] Read more.
Skeletal muscle aging and sarcopenia result in similar changes in the levels of aging markers. However, few studies have examined cancer sarcopenia from the perspective of aging. Therefore, this study investigated aging in cancer sarcopenia and explored its causes in vitro and in vivo. In mouse aging, in vitro cachexia, and mouse cachexia models, skeletal muscles showed similar changes in aging markers including oxidative stress, fibrosis, reduced muscle differentiation potential, and telomere shortening. Furthermore, examination of mitochondrial DNA from skeletal muscle revealed a 5 kb deletion in the major arc; truncation of complexes I, IV, and V in the electron transport chain; and reduced oxidative phosphorylation (OXPHOS). The mouse cachexia model demonstrated high levels of high-mobility group box-1 (HMGB1) and tumor necrosis factor-α (TNFα) in cancer ascites. Continuous administration of neutralizing antibodies against HMGB1 and TNFα in this model reduced oxidative stress and abrogated mitochondrial DNA deletion. These results suggest that in cancer sarcopenia, mitochondrial oxidative stress caused by inflammatory cytokines leads to mitochondrial DNA damage, which in turn leads to decreased OXPHOS and the promotion of aging. Full article
Show Figures

Figure 1

16 pages, 8402 KiB  
Article
Does Salmonella diarizonae 58:r:z53 Isolated from a Mallard Duck Pose a Threat to Human Health?
by Karolina Wódz, Lidia Piechowicz, Ewa Tokarska-Pietrzak, Jan Gawor, Robert Gromadka, Zbigniew Bełkot, Zuzanna Strzałkowska, Jan Wiśniewski, Tomasz Nowak, Janusz Bogdan, Krzysztof Anusz and Joanna Pławińska-Czarnak
Int. J. Mol. Sci. 2024, 25(11), 5664; https://doi.org/10.3390/ijms25115664 - 23 May 2024
Viewed by 1612
Abstract
Salmonella diarizonae (IIIb) is frequently isolated from reptiles and less frequently from birds and mammals. However, its isolation from invasive human infections has not been widely reported. Migratory mallard ducks are excellent bioindicators of pathogen presence and pathogen antibiotic resistance (AMR). We present [...] Read more.
Salmonella diarizonae (IIIb) is frequently isolated from reptiles and less frequently from birds and mammals. However, its isolation from invasive human infections has not been widely reported. Migratory mallard ducks are excellent bioindicators of pathogen presence and pathogen antibiotic resistance (AMR). We present the first isolation from a mallard duck in central Europe of the antibiotic-resistant Salmonella enterica subsp. diarizonae with the unique antigenic pattern 58:r:z53 and report its whole-genome sequencing, serosequencing, and genotyping, which enabled the prediction of its pathogenicity and comparison with phenotypic AMR. The isolated strain was highly similar to S. diarizonae isolated from humans and food. Twenty-four AMR genes were detected, including those encoding aminoglycoside, fluoroquinolone, macrolide, carbapenem, tetracycline, cephalosporin, nitroimidazole, peptide antibiotic, and disinfecting agent/antiseptic resistance. Six Salmonella pathogenicity islands were found (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, and SPI-13). An iron transport system was detected in SPI-1 centisome C63PI. Plasmid profile analyses showed three to be present. Sequence mutations in the invA and invF genes were noted, which truncated and elongated the proteins, respectively. The strain also harbored genes encoding type-III secretion-system effector proteins and many virulence factors found in S. diarizonae associated with human infections. This study aims to elucidate the AMR and virulence genes in S. enterica subsp. diarizonae that may most seriously threaten human health. Full article
(This article belongs to the Special Issue Salmonella Pathophysiology and Host-Bacteria Relationship)
Show Figures

Figure 1

23 pages, 2992 KiB  
Article
Uncontrollable Factors Analysis on Sustainable Highway Routine Maintenance Management: A Case Study of Shaanxi Province in China
by Xiaoli Shi, Xiaotian Gong, Yuhuan Li and Xuelian Wu
Sustainability 2024, 16(11), 4355; https://doi.org/10.3390/su16114355 - 22 May 2024
Viewed by 1552
Abstract
To figure out the primary factors that significantly impact the sustainability of highway routine maintenance management (HRMM), this paper examined 23 highway operating subsidiaries (evaluated decision-making units, DMUs) affiliated with Shaanxi Transportation Holding Group (STHG) in Shaanxi Province as an example. First, data [...] Read more.
To figure out the primary factors that significantly impact the sustainability of highway routine maintenance management (HRMM), this paper examined 23 highway operating subsidiaries (evaluated decision-making units, DMUs) affiliated with Shaanxi Transportation Holding Group (STHG) in Shaanxi Province as an example. First, data envelopment analysis (DEA) was used to evaluate the performance of HRMM for each DMU. Subsequently, a truncated regression model was utilized to analyze the primary factors that impact the outcomes of HRMM. The conclusions indicated that except for the widely recognized input and output factors, there exist some uncontrollable factors that can affect HRMM efficiency, including the amount of natural dustfall, urbanization rate, tunnel length, and bridge length. These findings offer suggestions for STHG focusing on DMUs facing challenges with high dustfall and urbanization rate and long bridges and tunnels when allocating maintenance resources to improve HRMM efficiency and achieve sustainable highway maintenance management. Moreover, the methodology for analyzing uncontrollable factors can also serve as a valuable reference for other maintenance types or fields, contributing to the broader goal of promoting sustainability in transportation infrastructure development. Full article
Show Figures

Figure 1

21 pages, 5453 KiB  
Article
Fully Coupled Whole-Annulus Investigation of Combustor–Turbine Interaction with Reacting Flow
by Heyu Wang and Kai Hong Luo
Energies 2024, 17(4), 873; https://doi.org/10.3390/en17040873 - 13 Feb 2024
Cited by 5 | Viewed by 1375
Abstract
Micro-gas turbines are used for power generation and propulsion in unmanned aerial vehicles. Technological advancements to enhance their efficiency and fuel adaptability are continuously sought out. As part of a comprehensive study focused on understanding the fundamental performance and emission characteristics of a [...] Read more.
Micro-gas turbines are used for power generation and propulsion in unmanned aerial vehicles. Technological advancements to enhance their efficiency and fuel adaptability are continuously sought out. As part of a comprehensive study focused on understanding the fundamental performance and emission characteristics of a micro gas turbine model, with the aim of finding ways to enhance the operation of micro gas turbines, the current study uses a fully coupled whole-annulus simulation approach to systematically explore the combustor–turbine interaction without compromising the accuracy due to domain truncation. The numerical model is highly complex, spanning aerothermodynamics, fuel vaporization, combustion, and multi-species flow transport. Coupled with the realistic geometries of a representative micro-gas turbine, the proposed numerical model is highly accurate with the capability to capture the complex interaction between the flowfield and the aerothermodynamics and emission performances. The results show that unburnt gaseous Jet-A fuel is carried into the turbine domain through vortical flow structures originating from the combustion chamber. Notably, combustion processes persist within the turbine, leading to rapid Jet-A fuel concentration decay and linearly increasing soot concentration across the turbine domain. The relative circumferential positioning of the combustion chamber and turbine vane (i.e., clocking effects) profoundly influences micro-gas turbine aerothermodynamics and pollutant emissions. Leading-edge impingement hot-streak configurations enhance aerodynamic efficiency, while mid-passage hot-streak configurations mitigate aerothermal heat load and soot emissions. Clocking effects impact all parameters, indicating a complex interplay between the flowfield, aerothermal performance, and pollutant emissions. However, turbine vane heat load exhibits the most significant variations. Full article
(This article belongs to the Special Issue Clean Combustion and Heat Transfer of Gas Turbine)
Show Figures

Figure 1

Back to TopTop