Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (140)

Search Parameters:
Keywords = tropical grasslands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 883 KiB  
Review
Mixing Tropical Perennial Forage Grasses in Pastures—An Opportunity for Sustainable Intensification
by Alex Marciano dos Santos Silva, Emanoella Karol Saraiva Otaviano, Caio Macret Gomes, Alexandre Fameli Mammana, Larissa Fernanda Garcia Carvalho and Sila Carneiro da Silva
Grasses 2025, 4(2), 22; https://doi.org/10.3390/grasses4020022 - 26 May 2025
Viewed by 686
Abstract
Botanical richness and diversity play crucial roles in regulating ecosystem functions and contribute to the sustainable intensification of perennial grasslands. This approach can be achieved through simultaneous or partial production of grasses in the same field, leading to enhanced productivity, reduced dependence on [...] Read more.
Botanical richness and diversity play crucial roles in regulating ecosystem functions and contribute to the sustainable intensification of perennial grasslands. This approach can be achieved through simultaneous or partial production of grasses in the same field, leading to enhanced productivity, reduced dependence on inorganic fertilizers and pesticides, and mitigating effects of edaphoclimatic variations. However, the existing literature predominantly focuses on associations between forage grasses and legumes or annual species. Furthermore, the subject should be explored under tropical conditions and environments, particularly considering the associations among well-managed perennial forage grasses. The interaction among perennial tropical forage grasses presents an alternative for exploration in the tropics, given the vast diversity of species and genotypes available. This review discusses the existing literature on multispecific pastures, elucidating the potential benefits for pastoral ecosystems. The association of perennial tropical forage grasses represents an emerging research area offering strategic opportunities for the sustainable intensification of animal production systems. Mixed pastures may be an economical and ecological alternative and enhance the production and sustainability of forage systems in the tropics. However, challenges persist in selecting plant species to achieve multifunctionality and understanding the underlying mechanisms shaping botanical diversity and productive performance within an association. This review emphasizes that understanding the morphological and agronomic characteristics of species and genotypes intended for cultivation in association is key to grasping the dynamics of competition for aboveground and belowground resources and creating combinations that deliver specific ecosystem services. Full article
Show Figures

Figure 1

28 pages, 7610 KiB  
Article
Spatiotemporal Responses of Global Vegetation Growth to Terrestrial Water Storage
by Chao Wang, Aoxue Cui, Renke Ji, Shuzhe Huang, Pengfei Li, Nengcheng Chen and Zhenfeng Shao
Remote Sens. 2025, 17(10), 1701; https://doi.org/10.3390/rs17101701 - 13 May 2025
Cited by 1 | Viewed by 531
Abstract
Global vegetation growth is dynamically influenced and regulated by hydrological processes. Understanding vegetation responses to terrestrial water storage (TWS) dynamics is crucial for predicting ecosystem resilience and guiding water resource management under climate change. This study investigated global vegetation responses to a terrestrial [...] Read more.
Global vegetation growth is dynamically influenced and regulated by hydrological processes. Understanding vegetation responses to terrestrial water storage (TWS) dynamics is crucial for predicting ecosystem resilience and guiding water resource management under climate change. This study investigated global vegetation responses to a terrestrial water storage anomaly (TWSA) using NDVI and TWSA datasets from January 2004 to December 2023. We proposed a Pearson-ACF time lag analysis method that combined dynamic windowing and enhanced accuracy to capture spatial correlations and temporal lag effects in vegetation responses to TWS changes. The results showed the following: (1) Positive NDVI-TWSA correlations were prominent in low-latitude tropical regions, whereas negative responses occurred mainly north of 30°N and in South American rainforest, covering 38.96% of the global vegetated land. (2) Response patterns varied by vegetation type: shrubland, grassland, and cropland exhibited short lags (1–4 months), while tree cover, herbaceous wetland, mangroves, and moss and lichen typically presented delayed responses (8–9 months). (3) Significant bidirectional Granger causality was identified in 16.39% of vegetated regions, mainly in eastern Asia, central North America, and central South America. These findings underscored the vital role of vegetation in the global water cycle, providing support for vegetation prediction, water resource planning, and adaptive water management in water-scarce regions. Full article
Show Figures

Figure 1

26 pages, 4524 KiB  
Article
Spatiotemporal Dynamics and Simulation of Landscape Ecological Risk and Ecological Zoning Under the Construction of Free Trade Pilot Zones: A Case Study of Hainan Island, China
by Yixi Ma, Mingjiang Mao, Zhuohong Xie, Shijie Mao, Yongshi Wang, Yuxin Chen, Jinming Xu, Tiedong Liu, Wenfeng Gong and Lingbing Wu
Land 2025, 14(5), 940; https://doi.org/10.3390/land14050940 - 25 Apr 2025
Viewed by 746
Abstract
Free trade zones are key regions experiencing rapid economic growth, urbanization, and a sharp increase in population density. During the development of free trade zones, these areas undergo drastic transformations in landscape types, large-scale urban construction, heightened resource consumption, and other associated challenges. [...] Read more.
Free trade zones are key regions experiencing rapid economic growth, urbanization, and a sharp increase in population density. During the development of free trade zones, these areas undergo drastic transformations in landscape types, large-scale urban construction, heightened resource consumption, and other associated challenges. These factors have led to severe landscape ecological risk (LER). Therefore, conducting comprehensive assessments and implementing effective management strategies for LER is crucial in advancing ecological civilization and ensuring high-quality development. This study takes Hainan Island (HI), China, as a case study and utilizes multi-source data to quantitatively evaluate land use and land cover change (LULCC) and the evolution of the LER in the study area from 2015 to 2023. Additionally, it examines the spatial patterns of LER under three future scenarios projected for 2033: a natural development scenario (NDS), an economic priority scenario (EPS), and an ecological conservation scenario (ECS). Adopting a spatiotemporal dynamic perspective framed by the “historical–present–future” approach, this research constructs a zoning framework for LER management to examine the temporal and spatial processes of risk evolution, its characteristics, future trends, and corresponding management strategies. The results indicate that, over an eight-year period, the area of built-up land expanded by 40.31% (504.85 km2). Specifically, between 2015 and 2018, built-up land increased by 95.85 km2, while, from 2018 to 2023, the growth was significantly larger at 409.00 km2, highlighting the widespread conversion of cropland into built-up land. From 2015 to 2023, the spatial distribution of LER in the study area exhibited a pattern of high-risk peripheries (central mountainous areas) and low-risk central regions (coastal areas). Compared to 2023, projections for 2033 under different scenarios indicate a decline in cropland (by approximately 17.8–19.45%) and grassland (by approximately 24.06–24.22%), alongside an increase in forestland (by approximately 4.5–5.35%) and built-up land (by approximately 23.5–41.35%). Under all three projected scenarios, high-risk areas expand notably, accounting for 4.52% (NDS), 3.33% (ECS), and 5.75% (EPS) of the total area. The LER maintenance area (65.25%) accounts for the largest proportion, primarily distributed in coastal economic development areas and urban–rural transition areas. In contrast, the LER mitigation area (7.57%) has the smallest proportion. Among the driving factors, the GDP (q = 0.1245) and year-end resident population (q = 0.123) were identified as the dominant factors regarding the spatial differentiation of LER. Furthermore, the interaction between economic factors and energy consumption further amplifies LER. This study proposes a policy-driven dynamic risk assessment framework, providing decision-making support and scientific guidance for LER management in tropical islands and the optimization of regional land spatial planning. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

21 pages, 7459 KiB  
Article
A Cross-Estimation Method for Spaceborne Synthetic Aperture Radar Range Antenna Pattern Using Pseudo-Invariant Natural Scenes
by Chuanzeng Xu, Jitong Duan, Yongsheng Zhou, Fei Teng, Fan Zhang and Wen Hong
Remote Sens. 2025, 17(8), 1459; https://doi.org/10.3390/rs17081459 - 19 Apr 2025
Viewed by 401
Abstract
The estimation and correction of antenna patterns are essential for ensuring the relative radiometric quality of SAR images. Traditional methods for antenna pattern estimation rely on artificial calibrators or specific stable natural scenes like the Amazon rainforest, which are limited by cost, complexity, [...] Read more.
The estimation and correction of antenna patterns are essential for ensuring the relative radiometric quality of SAR images. Traditional methods for antenna pattern estimation rely on artificial calibrators or specific stable natural scenes like the Amazon rainforest, which are limited by cost, complexity, and geographic constraints, making them unsuitable for frequent imaging demands. Meanwhile, general natural scenes are imaged frequently using SAR systems, but their true scattering characteristics are unknown, posing a challenge for direct antenna pattern estimation. Therefore, it is considered to use the calibrated SAR to obtain the scattering characteristics of these general scenarios; that is, introducing the concept of cross-calibration. Accordingly, this paper proposes a novel method for estimating the SAR range antenna pattern based on cross-calibration. The method addresses three key challenges: (1) Identifying pseudo-invariant natural scenes suitable as reference targets through spatial uniformity and temporal stability assessments using standard deviation and amplitude correlation analyses; (2) Achieving pixel-level registration of heterogeneous SAR images with an iterative method despite radiometric imbalances; (3) Extracting stable power values by segmenting images and applying differential screening to minimize outlier effects. The proposed method is validated using Gaofen-3 SAR data and shows robust performance in bare soil, grassland, and forest scenarios. Comparing the results of the proposed method with the tropical forest-based calibration method, the maximum shape deviation between the range antenna patterns of the two methods is less than 0.2 dB. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

26 pages, 7376 KiB  
Review
Memory-Based Navigation in Elephants: Implications for Survival Strategies and Conservation
by Margot Morel, Robert Guldemond, Melissa A. de la Garza and Jaco Bakker
Vet. Sci. 2025, 12(4), 312; https://doi.org/10.3390/vetsci12040312 - 30 Mar 2025
Viewed by 1754
Abstract
Elephants exhibit remarkable cognitive and social abilities, which are integral to their navigation, resource acquisition, and responses to environmental challenges such as climate change and human–wildlife conflict. Their capacity to acquire, recall, and utilise spatial information enables them to traverse large, fragmented landscapes, [...] Read more.
Elephants exhibit remarkable cognitive and social abilities, which are integral to their navigation, resource acquisition, and responses to environmental challenges such as climate change and human–wildlife conflict. Their capacity to acquire, recall, and utilise spatial information enables them to traverse large, fragmented landscapes, locate essential resources, and mitigate risks. While older elephants, particularly matriarchs, are often regarded as repositories of ecological knowledge, the mechanisms by which younger individuals acquire this information remain uncertain. Existing research suggests that elephants follow established movement patterns, yet direct evidence of intergenerational knowledge transfer is limited. This review synthesises current literature on elephant navigation and decision-making, exploring how their behavioural strategies contribute to resilience amid increasing anthropogenic pressures. Empirical studies indicate that elephants integrate environmental and social cues when selecting routes, accessing water, and avoiding human-dominated areas. However, the extent to which these behaviours arise from individual memory, social learning, or passive exposure to experienced individuals requires further investigation. Additionally, elephants function as ecosystem engineers, shaping landscapes, maintaining biodiversity, and contributing to climate resilience. Recent research highlights that elephants’ ecological functions can indeed contribute to climate resilience, though the mechanisms are complex and context-dependent. In tropical forests, forest elephants (Loxodonta cyclotis) disproportionately disperse large-seeded, high-carbon-density tree species, which contribute significantly to above-ground carbon storage. Forest elephants can improve tropical forest carbon storage by 7%, as these elephants enhance the relative abundance of slow-growing, high-biomass trees through selective browsing and seed dispersal. In savannah ecosystems, elephants facilitate the turnover of woody vegetation and maintain grassland structure, which can increase albedo and promote carbon sequestration in soil through enhanced grass productivity and fire dynamics. However, the ecological benefits of such behaviours depend on population density and landscape context. While bulldozing vegetation may appear destructive, these behaviours often mimic natural disturbance regimes, promoting biodiversity and landscape heterogeneity, key components of climate-resilient ecosystems. Unlike anthropogenic clearing, elephant-led habitat modification is part of a long-evolved ecological process that supports nutrient cycling and seedling recruitment. Therefore, promoting connectivity through wildlife corridors supports not only elephant movement but also ecosystem functions that enhance resilience to climate variability. Future research should prioritise quantifying the net carbon impact of elephant movement and browsing in different biomes to further clarify their role in mitigating climate change. Conservation strategies informed by their movement patterns, such as wildlife corridors, conflict-reducing infrastructure, and habitat restoration, may enhance human–elephant coexistence while preserving their ecological roles. Protecting older individuals, who may retain critical environmental knowledge, is essential for sustaining elephant populations and the ecosystems they influence. Advancing research on elephant navigation and decision-making can provide valuable insights for biodiversity conservation and conflict mitigation efforts. Full article
Show Figures

Figure 1

15 pages, 1514 KiB  
Article
Influence of Land-Use Type on Black Soil Features in Indonesia Based on Soil Survey Data
by Yiyi Sulaeman, Eni Maftuáh, Sukarman Sukarman, Risma Neswati, Nurdin Nurdin, Tony Basuki, Ahmad Suriadi and Ivan Vasenev
Land 2025, 14(3), 599; https://doi.org/10.3390/land14030599 - 12 Mar 2025
Cited by 1 | Viewed by 2005
Abstract
Black soils refer to soils with black, thick upper layers containing 0.6% or more soil organic carbon in the tropical region. This high organic carbon content makes these soils essential for climate change control and food production. In Indonesia, black soils are found [...] Read more.
Black soils refer to soils with black, thick upper layers containing 0.6% or more soil organic carbon in the tropical region. This high organic carbon content makes these soils essential for climate change control and food production. In Indonesia, black soils are found under forests, shrublands, and grasslands in tropical monsoon and savannah climates. Land clearing for agricultural uses will change black soil properties; however, knowledge of change (level, direction, and sensitivity) is limited. Meanwhile, soil surveying records land-use types and collects soil samples, resulting in voluminous legacy soil data. This study aimed to compare the mean difference in soil properties between two land-cover/use types. We used 142 black soil datasets containing legacy data on particle size distribution (sand, silt, clay), pH, soil organic carbon (SOC), total nitrogen (TN), available P2O5 (AP), and exchangeable cations (Ca, Mg, K, Na). We calculated the Hedges’s g-index for effect size assessment and performed a Welch’s t-test for significant differences. The results show that, compared to the forest, the agricultural dryland and monoculture home gardens have a large effect size and trigger changes in many soil properties. In contrast, mixed home gardens and paddy fields have a small effect size. In decreasing order, the black soil properties sensitive to change are TN > SOC = exchangeable K > exchangeable Mg = available phosphorus = pH = exchangeable Na > sand = silt = clay > exchangeable Ca. The results suggest that a combination of home gardens and paddy fields better supports food security and mitigates climate change in black soils. In addition, the legacy soil data can be used to monitor soil property changes. Full article
Show Figures

Figure 1

13 pages, 633 KiB  
Article
Carbon Footprint Comparison of Rapeseed and Palm Oil: Impact of Land Use and Fertilizers
by Suria Tarigan, Iput Pradiko, Nuzul H. Darlan and Yudha Kristanto
Sustainability 2025, 17(4), 1521; https://doi.org/10.3390/su17041521 - 12 Feb 2025
Cited by 2 | Viewed by 1591
Abstract
Palm oil is being criticized as an unsustainable product by the EU due to its association with deforestation and high carbon emissions. However, the producers in Indonesia do not acknowledge the criticisms. Therefore, this study aimed to compare the carbon footprint of a [...] Read more.
Palm oil is being criticized as an unsustainable product by the EU due to its association with deforestation and high carbon emissions. However, the producers in Indonesia do not acknowledge the criticisms. Therefore, this study aimed to compare the carbon footprint of a representative EU-produced vegetable oil, rapeseed oil, with Indonesian palm oil. The analysis is divided into two stages, namely (a) land use conversion (LUC) as well as (b) plantation and oil processing. LUC entailed the conversion of native vegetation, such as forest areas and grassland, to vegetable oil crops. The carbon opportunity cost was used to account for the LUC contribution to the carbon footprint. For plantation and oil processing stages, the LCA SIMAPRO was adopted. The results showed that when vegetable oil replaced high-carbon-storage vegetation such as forests, the LUC carbon footprint of rapeseed oil and palm oil production were 2.09 and 1.49 t CO2eq t−1 oil, respectively. Replacing low-carbon-storage vegetation, namely shrub/grassland, led to 0.05 and −0.43 t CO2eq t−1 of repressed and palm oils, respectively. Based on the LCA SIMAPRO, the carbon footprints of plantation and oil processing stages were 1.05 and 0.88 t CO2eq t−1 oil for rapeseed and palm oils, respectively. The cultivation of oil palm in peatland generated a higher total carbon footprint (i.e., combined LUC and plantation and oil processing stages) than rapeseed oil (13.8 to 3.14 t CO2eq t−1 oil). However, in non-peatland areas, the total carbon footprint of palm oil was lower than rapeseed oil (2.37 to 3.14 t CO2eq t−1 oil) when replacing tropical forest and temperate forest vegetation, respectively. The total footprint was 1.2 to 0.45 t CO2eq t−1 oil when both replaced shrub/grassland. The higher productivity of oil palm and lower fertilizer requirement contributed primarily to the lower carbon footprint in non-peatland areas. Full article
(This article belongs to the Special Issue Resource Price Fluctuations and Sustainable Growth)
Show Figures

Figure 1

17 pages, 3145 KiB  
Article
Evolution and Attribution Analysis of Habitat Quality in China’s First Batch of National Parks
by Pengyue Dai, Yanfang Wang, Jinhong Ye, Jing Chen, Runze Li and Xiping Cheng
Land 2025, 14(1), 33; https://doi.org/10.3390/land14010033 - 27 Dec 2024
Viewed by 788
Abstract
In October 2021, China established its first group of national parks, representing a milestone in enhancing the country’s nature reserve system and aligning with global trends in ecological conservation. This study aims to assess habitat quality changes and identify the driving factors in [...] Read more.
In October 2021, China established its first group of national parks, representing a milestone in enhancing the country’s nature reserve system and aligning with global trends in ecological conservation. This study aims to assess habitat quality changes and identify the driving factors in five national parks using multi-temporal land use data from 2000 to 2020. By integrating the land use transfer matrix with the InVEST model, we quantified habitat quality changes, while the geographical detector method was employed to analyze the key natural and socioeconomic drivers. Results showed that grassland and cultivated land were predominantly converted into forestland, leading to improvements in habitat quality in some parks. Specifically, Wuyishan National Park exhibited the highest and most stable habitat quality index, while Three-River-Source National Park experienced significant improvement (+34.10%). However, the Giant Panda, Northeast China Tiger and Leopard, and Hainan Tropical Rainforest National Parks experienced habitat degradation, with decreases of 15.15%, 14.50%, and 13.90%, respectively. Key drivers, such as NDVI, temperature, precipitation, elevation, and population density, were found to significantly influence habitat quality across the parks. This study highlights the ecological benefits of forestland restoration and the risks posed by the conversion of forest to cultivated or construction land, providing valuable insights for optimizing conservation strategies in China’s national parks. Full article
(This article belongs to the Special Issue Spatial-Temporal Evolution Analysis of Land Use)
Show Figures

Figure 1

16 pages, 3229 KiB  
Article
Analysis of CH4 and N2O Fluxes in the Dry Season: Influence of Soils and Vegetation Types in the Pantanal
by Gabriela Cugler, Viviane Figueiredo, Vincent Gauci, Tainá Stauffer, Roberta Bittencourt Peixoto, Sunitha Rao Pangala and Alex Enrich-Prast
Forests 2024, 15(12), 2224; https://doi.org/10.3390/f15122224 - 17 Dec 2024
Viewed by 926
Abstract
This study examines CH4 and N2O fluxes during the dry season in two distinct areas of the Pantanal: Barranco Alto Farm (BAF), dominated by grasslands, and Passo da Lontra (PL), a forested region. As climate change increases the occurrence of [...] Read more.
This study examines CH4 and N2O fluxes during the dry season in two distinct areas of the Pantanal: Barranco Alto Farm (BAF), dominated by grasslands, and Passo da Lontra (PL), a forested region. As climate change increases the occurrence of droughts, understanding greenhouse gas (GHG) fluxes in tropical wetlands during dry periods is crucial. Using static chambers, CH4 and N2O emissions were measured from soils and tree stems in both regions, with additional measurements from grass in BAF. Contrary to expectations, PL—characterized by clayey soils—had sandy mud samples that retained less water, promoting oxic conditions and methane uptake, making it a CH4 sink. Meanwhile, BAF’s sandy, well-drained soils exhibited minimal CH4 fluxes, with negligible methane uptake or emissions. N2O fluxes were generally higher in BAF, particularly from tree stems, indicating significant interactions between soil type, moisture, and vegetation. These findings highlight the pivotal roles of soil texture and aeration in GHG emissions, suggesting that well-drained, sandy soils in tropical wetlands may not always enhance methane oxidation. This underscores the importance of continuous GHG monitoring in the Pantanal to refine climate change mitigation strategies. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

13 pages, 1443 KiB  
Article
Sowing Rates and Methods Affect Yield and Forage Quality of American Jointvetch in the Southwestern Area of Japan
by Manabu Tobisa and Yutaka Nakano
Agronomy 2024, 14(12), 2963; https://doi.org/10.3390/agronomy14122963 - 12 Dec 2024
Viewed by 912
Abstract
This research aimed to assess how different sowing methods and seeding rates influenced the growth, yield characteristics, and forage nutritional value for establishing American jointvetch, a tropical forage legume known for its high productivity and quality, in grasslands in southwestern Japan. The experimental [...] Read more.
This research aimed to assess how different sowing methods and seeding rates influenced the growth, yield characteristics, and forage nutritional value for establishing American jointvetch, a tropical forage legume known for its high productivity and quality, in grasslands in southwestern Japan. The experimental treatments involved two sowing methods, row sowing (RS) and broadcast sowing (BS), and combinations of four different seeding rates (SR, 5, 10, 20, or 30 kg ha−1). The sowing methods affected dry matter yield (DMY): BS resulted in higher DMY (11.3 vs. 8.7 t DM ha−1) and leaf area index (LAI, 7.2 vs. 5.3) than RS, respectively. However, in vitro dry matter digestibility (IVDMD) and crude protein (CP) concentrations were not influenced by the sowing methods. The SR affected LAI, particularly RS, and LAI increased with increasing SR. Contrary to expectations, SR did not affect DMY, IVDMD, CP, digestible DMY, or CP yield. The findings of this investigation indicate that broadcast sowing is the superior method for planting, and even when using a reduced seeding rate of 5 kg ha−1 of seed-in-pod, there was no significant impact on the yield or forage quality of American jointvetch under the conditions examined in this study. This information will contribute to the proper management of its cultivation to ensure higher productivity for use as livestock fodder. Full article
(This article belongs to the Special Issue Managing the Yield and Nutritive Value of Forage and Biomass Crops)
Show Figures

Figure 1

18 pages, 25764 KiB  
Article
Evaluating Landsat- and Sentinel-2-Derived Burn Indices to Map Burn Scars in Chyulu Hills, Kenya
by Mary C. Henry and John K. Maingi
Fire 2024, 7(12), 472; https://doi.org/10.3390/fire7120472 - 11 Dec 2024
Cited by 4 | Viewed by 1581
Abstract
Chyulu Hills, Kenya, serves as one of the region’s water towers by supplying groundwater to surrounding streams and springs in southern Kenya. In a semiarid region, this water is crucial to the survival of local people, farms, and wildlife. The Chyulu Hills is [...] Read more.
Chyulu Hills, Kenya, serves as one of the region’s water towers by supplying groundwater to surrounding streams and springs in southern Kenya. In a semiarid region, this water is crucial to the survival of local people, farms, and wildlife. The Chyulu Hills is also very prone to fires, and large areas of the range burn each year during the dry season. Currently, there are no detailed fire records or burn scar maps to track the burn history. Mapping burn scars using remote sensing is a cost-effective approach to monitor fire activity over time. However, it is not clear whether spectral burn indices developed elsewhere can be directly applied here when Chyulu Hills contains mostly grassland and bushland vegetation. Additionally, burn scars are usually no longer detectable after an intervening rainy season. In this study, we calculated the Differenced Normalized Burn Ratio (dNBR) and two versions of the Relative Differenced Normalized Burn Ratio (RdNBR) using Landsat Operational Land Imager (OLI) and Sentinel-2 MultiSpectral Instrument (MSI) data to determine which index, threshold values, instrument, and Sentinel near-infrared (NIR) band work best to map burn scars in Chyulu Hills, Kenya. The results indicate that the Relative Differenced Normalized Burn Ratio from Landsat OLI had the highest accuracy for mapping burn scars while also minimizing false positives (commission error). While mapping burn scars, it became clear that adjusting the threshold value for an index resulted in tradeoffs between false positives and false negatives. While none were perfect, this is an important consideration going forward. Given the length of the Landsat archive, there is potential to expand this work to additional years. Full article
(This article belongs to the Special Issue Fire in Savanna Landscapes, Volume II)
Show Figures

Figure 1

17 pages, 10332 KiB  
Article
Mapping the Normalized Difference Vegetation Index for the Contiguous U.S. Since 1850 Using 391 Tree-Ring Plots
by Hang Li, Ichchha Thapa, Shuang Xu and Peisi Yang
Remote Sens. 2024, 16(21), 3973; https://doi.org/10.3390/rs16213973 - 25 Oct 2024
Cited by 1 | Viewed by 2017
Abstract
The forests and grasslands in the U.S. are vulnerable to global warming and extreme weather events. Current satellites do not provide historical vegetation density images over the long term (more than 50 years), which has restricted the documentation of key ecological processes and [...] Read more.
The forests and grasslands in the U.S. are vulnerable to global warming and extreme weather events. Current satellites do not provide historical vegetation density images over the long term (more than 50 years), which has restricted the documentation of key ecological processes and their resultant responses over decades due to the absence of large-scale and long-term monitoring studies. We performed point-by-point regression and collected data from 391 tree-ring plots to reconstruct the annual normalized difference vegetation index (NDVI) time-series maps for the contiguous U.S. from 1850 to 2010. Among three machine learning approaches for regressions—Support Vector Machine (SVM), General Regression Neural Network (GRNN), and Random Forest (RF)—we chose GRNN regression to simulate the annual NDVI with lowest Root Mean Square Error (RMSE) and highest adjusted R2. From the Little Ice Age to the present, the NDVI increased by 6.73% across the contiguous U.S., except during some extreme events such as the Dust Bowl drought, during which the averaged NDVI decreased, particularly in New Mexico. The NDVI trend was positive in the Northern Forest, Tropical Humid Forest, Northern West Forest Mountains, Marin West Coast Forests, and Mediterranean California, while other ecoregions showed a negative trend. At the state level, Washington and Louisiana had significantly positive correlations with temperature (p < 0.05). Washington had a significantly negative correlation with precipitation (p < 0.05), whereas Oklahoma had a significantly positive correlation (p < 0.05) with precipitation. This study provides insights into the spatial distribution of paleo-vegetation and its climate drivers. This study is the first to attempt a national-scale reconstruction of the NDVI over such a long period (151 years) using tree rings and machine learning. Full article
Show Figures

Figure 1

20 pages, 1265 KiB  
Article
Co-Inoculation of Phosphate-Solubilizing Bacteria and Rhizobia Increases Phosphorus Availability and Promotes the Development of Forage Legumes
by Winston Franz Ríos-Ruiz, Rony Castro-Tuanama, Renzo Alfredo Valdez-Nuñez, Lenin Torres-Bernal, Henry Giovani Jave-Concepción, Aurora Consuelo Daza-Pérez, Marvin Barrera-Lozano and Fernando Archentti-Reátegui
Agronomy 2024, 14(11), 2493; https://doi.org/10.3390/agronomy14112493 - 24 Oct 2024
Cited by 4 | Viewed by 2066
Abstract
Tropical grassland soils, especially those with alkaline properties, often exhibit limited phosphorus availability due to its precipitation in insoluble forms. Phosphate-solubilizing bacteria (PSB) and rhizobia have demonstrated their potential to enhance the availability of this nutrient and promote the growth of forage legumes. [...] Read more.
Tropical grassland soils, especially those with alkaline properties, often exhibit limited phosphorus availability due to its precipitation in insoluble forms. Phosphate-solubilizing bacteria (PSB) and rhizobia have demonstrated their potential to enhance the availability of this nutrient and promote the growth of forage legumes. This study, conducted under controlled conditions in a mesh house, evaluated the effect of co-inoculation with PSB, including Micrococcus sp. Sfcm-14-01, Agrobacterium sp. Sfl-043-09, and Enterobacter sp. Sfcm-014-02 and Sfcm-054-06, along with rhizobia (Ensifer terangae R1-012-02 and Bradyrhizobium glycinis Rcm-025-01), under different levels of phosphorus fertilization on the legumes Leucaena leucocephala and Centrosema macrocarpum. The results indicate significant increases in various growth parameters, such as chlorophyll levels (SPAD), biomass (dry weight of roots and aerial parts) (mg), the foliar phosphorus concentration (ppm), and the concentration of available phosphorus in the soil, particularly under low-phosphorus fertilization conditions. The highest level of available phosphorus in the soil was achieved with 75% of the recommended fertilization dose, resulting in concentrations of 13.73 ppm for L. leucocephala and 7.69 ppm for C. macrocarpum, representing increases in phosphorus availability of 170.81% and 240.27%, respectively, compared with no fertilization or inoculation. These findings suggest that the co-inoculation of PSB and native rhizobia is a promising strategy to enhance the biomass productivity and mineral content of forage in tropical grazing systems, especially under phosphorus-limited conditions. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 18013 KiB  
Article
Value Assessment and Prediction of Regulating Ecosystem Services in Hainan Tropical Rainforest National Park, China
by Leshan Du, Haiyan Liu, Haiou Liu, Wenhui Liu, Zhanjun Quan and Ying Zhang
Sustainability 2024, 16(21), 9170; https://doi.org/10.3390/su16219170 - 22 Oct 2024
Cited by 4 | Viewed by 1597
Abstract
Ecosystem services serve as a bridge between the ecological environment and human society. The quantitative analysis and forecasting of ecosystem services can provide references for regional eco-environmental assessments and land-use planning for the future. In this study, taking Hainan Tropical Rainforest National Park [...] Read more.
Ecosystem services serve as a bridge between the ecological environment and human society. The quantitative analysis and forecasting of ecosystem services can provide references for regional eco-environmental assessments and land-use planning for the future. In this study, taking Hainan Tropical Rainforest National Park (HTRNP) as an example, the value of regulating ecosystem services (RESs) in 2020 was assessed via ArcGIS 10.1 and the InVEST 3.5 model, and the per-unit value of RESs was calculated for different LULC types. In addition, in accordance with the Overall Planning for HTRNP and the objective of optimizing RESs, the value of RESs in short-term (to 2030) and long-term (to 2050) scenarios was forecast via a linear programming model. The results are as follows: (1) The RES value of HTRNP in 2020 was CNY 2090.67 × 108, with climate regulation accounting for the largest proportion; the spatial distribution of RESs in the eastern and central areas was higher than that in the western area, but different indicators of RESs differed in their spatial patterns in varied geographic units. (2) The natural forest ecosystem in HTRNP accounts for 76.94% of the total area but 84.82% of the total value of RESs. The per-unit value is ranked from highest to lowest as follows: montane rainforests > wetlands > lowland rainforests > lowland secondary rainforests > tropical coniferous forests > deciduous monsoon rainforests > tropical cloud forests > shrub forests > timber forests > economic forests > rubber forests > grasslands > farmlands > settlements. (3) In the short-term scenario, the value of RESs is CNY 2216.64 × 108, an increase of CNY 118.97 × 108 compared to 2020, with an increase rate of 5.67%. In the long-term scenario, the value of RESs is CNY 2472.48 × 108, an increase of CNY 374.81 × 108 compared to 2020, with an increase rate of 17.87%. The results reveal the significance of ecosystem services in the national park and can inform more targeted and scientifically sound decision-making in the future. Full article
Show Figures

Figure 1

25 pages, 10665 KiB  
Article
Detecting Drought-Related Temporal Effects on Global Net Primary Productivity
by Min Luo, Fanhao Meng, Chula Sa, Yuhai Bao, Tie Liu and Philippe De Maeyer
Remote Sens. 2024, 16(20), 3787; https://doi.org/10.3390/rs16203787 - 11 Oct 2024
Cited by 3 | Viewed by 1349
Abstract
Drought has extensive, far-reaching, and long-lasting asymmetric effects on vegetation growth worldwide in the context of global warming. However, to date, few scholars have attempted the systematic quantification of the temporal effects of drought on global vegetation across various vegetation types and diverse [...] Read more.
Drought has extensive, far-reaching, and long-lasting asymmetric effects on vegetation growth worldwide in the context of global warming. However, to date, few scholars have attempted the systematic quantification of the temporal effects of drought on global vegetation across various vegetation types and diverse climate zones. Addressing this gap, we quantitatively investigated the effects of drought on global vegetation growth under various scenarios, considering lagged and cumulative effects as well as combined effects in the 1982–2018 period. Our investigation was based on long-term net primary productivity (NPP) and two multiple-timescale drought indices: the standardised precipitation index (SPI) and the standardised precipitation and evapotranspiration index (SPEI). Our main findings were the following: (1) SPI and SPEI exhibited lagged effects on 52.08% and 37.05% of global vegetation, leading to average time lags of 2.48 months and 1.76 months, respectively. The cumulative effects of SPI and SPEI were observed in 80.01% and 72.16% of global vegetated areas, respectively, being associated with relatively longer cumulative timescales of 5.60 months and 5.16 months, respectively. (2) Compared to the scenario excluding temporal effects, there were increases in the explanatory powers of SPI and SPEI for variations in vegetation NPP based on the lagged, cumulative, and combined effects of drought: SPI increased by 0.82%, 6.65%, and 6.92%, respectively, whereas SPEI increased by 0.67%, 5.73%, and 6.07%, respectively. The cumulative effects of drought on global vegetation NPP were stronger than the lagged effects in approximately two-thirds (64.95% and 63.52% for SPI and SPEI, respectively) of global vegetated areas. (3) The effects of drought on vegetation NPP varied according to climate zones and vegetation types. Interestingly, vegetation in arid zones was the most sensitive and resilient to drought, as indicated by its rapid response to drought and the longest cumulative timescales. The vegetation NPP in tropical and temperate zones exhibited a relatively stronger response to drought than that in cold and polar zones. The strongest correlation of vegetation NPP with drought occurred in shrubland areas, followed by grassland, cropland, forest, and tundra areas. Moreover, for each vegetation type, the correlations between vegetation NPP and drought differed significantly among most climate zones. (4) The vegetation NPP in warming-induced drought regions displayed a higher correlation to drought than that in non-warming-induced drought regions, with shorter lagged and longer cumulative timescales. Our findings highlight the heterogeneity of the lagged, cumulative, and combined effects of drought across various climate zones and vegetation types; this could enhance our understanding of the coupling relationship between drought and global vegetation. Full article
Show Figures

Figure 1

Back to TopTop