Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = tropical cyclone center positioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 11839 KiB  
Article
Developing an Objective Scheme to Construct Hurricane Bogus Vortices Based on Scatterometer Sea Surface Wind Data
by Weixin Pan, Xiaolei Zou and Yihong Duan
Remote Sens. 2025, 17(9), 1528; https://doi.org/10.3390/rs17091528 - 25 Apr 2025
Viewed by 358
Abstract
This study presents an objective scheme to construct hurricane bogus vortices based on satellite microwave scatterometer observations of sea surface wind vectors. When specifying a bogus vortex using Fujita’s formula, the required parameters include the center position and the radius of the maximum [...] Read more.
This study presents an objective scheme to construct hurricane bogus vortices based on satellite microwave scatterometer observations of sea surface wind vectors. When specifying a bogus vortex using Fujita’s formula, the required parameters include the center position and the radius of the maximum gradient of sea level pressure (R0). We first propose determining the tropical cyclone (TC) center position as the cyclonic circulation center obtained from sea surface wind observations and then establishing a regression model between R0 and the radius of 34-kt sea surface wind of scatterometer observations. The radius of 34-kt sea surface wind (R34) is commonly used as a measure of TC size. The center positions determined from HaiYang-2B/2C/2D Scatterometers, MetOp-B/C Advanced Scatterometers, and FengYun-3E Wind Radar compared favorably with the axisymmetric centers of hurricane rain/cloud bands revealed by Advanced Himawari Imager observations of brightness temperature for the western Pacific landfalling typhoons Doksuri, Khanun, and Haikui in 2023. Furthermore, regression equations between R0 and the scatterometer-determined radius of 34-kt wind are developed for tropical storms and category-1, -2, -3, and higher hurricanes over the Northwest Pacific (2022–2023). The bogus vortices thus constructed are more realistic than those built without satellite sea surface wind observations. Full article
Show Figures

Graphical abstract

23 pages, 5619 KiB  
Article
Thunderstorms with Extreme Lightning Activity in China: Climatology, Synoptic Patterns, and Convective Parameters
by Ruiyang Ma, Dong Zheng, Yijun Zhang, Wen Yao, Wenjuan Zhang and Biao Zhu
Remote Sens. 2024, 16(24), 4673; https://doi.org/10.3390/rs16244673 - 14 Dec 2024
Cited by 3 | Viewed by 1743
Abstract
Intense convection is often accompanied by high-frequency lightning and is highly prone to producing heavy rainfall, strong winds, hail, and tornadoes, frequently resulting in significant damage and loss of life. It is necessary to understand the mechanisms and meteorological conditions of intense convection. [...] Read more.
Intense convection is often accompanied by high-frequency lightning and is highly prone to producing heavy rainfall, strong winds, hail, and tornadoes, frequently resulting in significant damage and loss of life. It is necessary to understand the mechanisms and meteorological conditions of intense convection. This study utilizes the Thunderstorm Feature Dataset from 2010–2018 to analyze the characteristics of thunderstorms with extreme lightning activity (TELAs), defined as thunderstorms whose lightning frequency ranks in the top 1%. Four regions with relatively high thunderstorm activity were selected for analysis: Northeast China (NEC), North China (NC), South China (SC), and the Tibetan Plateau (TP). In NEC, TELAs primarily occur just west of upper-level westerly troughs (UWT), including cold vortices. In NC, TELAs are mainly associated with UWT and subtropical highs (STH). In SC, TELAs are related to frontal systems, easterly waves, tropical cyclones, and STH. In TP, TELAs are generated by TP vortices. Before the TELA process, vertically integrated moisture divergence (VIMD) and convective available potential energy (CAPE) show the most notable anomalies. Except for the TP, TELAs are typically located between centers of anomalies with positive and negative geopotential height (500 hPa) and near centers of anomalies with positive CAPE and negative VIMD, accompanied by notable increases in surface temperature and wind speed. These findings offer a valuable reference for the early warning and forecasting of intense convection. Full article
Show Figures

Figure 1

16 pages, 9032 KiB  
Article
Assessing Vulnerability to Cyclone Hazards in the World’s Largest Mangrove Forest, The Sundarbans: A Geospatial Analysis
by Mohammed, Fahmida Sultana, Ariful Khan, Sohag Ahammed, Md. Shamim Reza Saimun, Md Saifuzzaman Bhuiyan, Sanjeev K. Srivastava, Sharif A. Mukul and Mohammed A. S. Arfin-Khan
Forests 2024, 15(10), 1722; https://doi.org/10.3390/f15101722 - 29 Sep 2024
Cited by 2 | Viewed by 2745
Abstract
The Sundarbans is the world’s largest contiguous mangrove forest with an area of about 10,000 square kilometers and shared between Bangladesh and India. This world-renowned mangrove forest, located on the lower Ganges floodplain and facing the Bay of Bengal, has long served as [...] Read more.
The Sundarbans is the world’s largest contiguous mangrove forest with an area of about 10,000 square kilometers and shared between Bangladesh and India. This world-renowned mangrove forest, located on the lower Ganges floodplain and facing the Bay of Bengal, has long served as a crucial barrier, shielding southern coastal Bangladesh from cyclone hazards. However, the Sundarbans mangrove ecosystem is now increasingly threatened by climate-induced hazards, particularly tropical cyclones originating from the Indian Ocean. To assess the cyclone vulnerability of this unique ecosystem, using geospatial techniques, we analyzed the damage caused by past cyclones and the subsequent recovery across three salinity zones, i.e., Oligohaline, Mesohaline, and Polyhaline. Our study also examined the relationship between cyclone intensity with the extent of damage and forest recovery. The findings of our study indicate that the Polyhaline zone, the largest in terms of area and with the lowest elevation, suffered the most significant damage from cyclones in the Sundarbans region, likely due to its proximity to the most cyclone paths. A correlation analysis revealed that cyclone damage positively correlated with wind speed and negatively correlated with the distance of landfall from the center of the Sundarbans. With the expectation of more extreme weather events in the near future, the Sundarbans mangrove forest faces a potentially devastating outlook unless both natural protection processes and human interventions are undertaken to safeguard this critical ecosystem. Full article
(This article belongs to the Special Issue Biodiversity, Health, and Ecosystem Services of Mangroves)
Show Figures

Figure 1

12 pages, 4351 KiB  
Communication
Automatic Estimation of Tropical Cyclone Centers from Wide-Swath Synthetic-Aperture Radar Images of Miniaturized Satellites
by Yan Wang, Haihua Fu, Lizhen Hu, Xupu Geng, Shaoping Shang, Zhigang He, Yanshuang Xie and Guomei Wei
Appl. Sci. 2024, 14(16), 7047; https://doi.org/10.3390/app14167047 - 11 Aug 2024
Cited by 1 | Viewed by 1580
Abstract
Synthetic-Aperture Radar (SAR) has emerged as an important tool for monitoring tropical cyclones (TCs) due to its high spatial resolution and cloud-penetrating capability. Recent advancements in SAR technology have led to smaller and lighter satellites, yet few studies have evaluated their effectiveness in [...] Read more.
Synthetic-Aperture Radar (SAR) has emerged as an important tool for monitoring tropical cyclones (TCs) due to its high spatial resolution and cloud-penetrating capability. Recent advancements in SAR technology have led to smaller and lighter satellites, yet few studies have evaluated their effectiveness in TC monitoring. This paper employs an algorithm for automatic TC center location, involving three stages: coarse estimation from a whole SAR image; precise estimation from a sub-SAR image; and final identification of the center using the lowest Normalized Radar Cross-Section (NRCS) value within a smaller sub-SAR image. Using three wide-swath miniaturized SAR images of TC Noru (2022), and TCs Doksuri and Koinu (2023), the algorithm’s accuracy was validated by comparing estimated TC center positions with visually located data. For TC Noru, the distances for the three stages were 21.42 km, 14.39 km, and 8.19 km; for TC Doksuri—14.36 km, 20.48 km, and 17.10 km; and for TC Koinu—47.82 km, 31.59 km, and 5.42 km. The results demonstrate the potential of miniaturized SAR in TC monitoring. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

23 pages, 27408 KiB  
Article
ECMWF Ensemble Forecasts of Six Tropical Cyclones That Formed during a Long-Lasting Rossby Wave Breaking Event in the Western North Pacific
by Russell L. Elsberry, Hsiao-Chung Tsai, Wei-Chia Chin and Timothy P. Marchok
Atmosphere 2024, 15(5), 610; https://doi.org/10.3390/atmos15050610 - 17 May 2024
Cited by 3 | Viewed by 1861
Abstract
The ECMWF‘s ensemble (ECEPS) predictions are documented for the lifecycles of six tropical cyclones (TCs) that formed during a long-lasting Rossby wave breaking event in the western North Pacific. All six TC tracks started between 20° N and 25° N, and between 136° [...] Read more.
The ECMWF‘s ensemble (ECEPS) predictions are documented for the lifecycles of six tropical cyclones (TCs) that formed during a long-lasting Rossby wave breaking event in the western North Pacific. All six TC tracks started between 20° N and 25° N, and between 136° E and 160° E. All five typhoons recurved north of 30° N, and the three typhoons that did not make landfall had long tracks to 50° N and beyond. The ECEPS weighted mean vector motion track forecasts from pre-formation onward are quite accurate, with track forecast spreads that are primarily related to initial position uncertainties. The ECEPS intensity forecasts have been validated relative to the Joint Typhoon Warning Center (JTWC) Working Best Track (WBT) intensities (when available). The key results for Tokage (11 W) were the ECEPS forecasts of the intensification to a peak intensity of 100 kt, and then a rapid decay as a cold-core cyclone. For Hinnamnor (12 W), the key result was the ECEPS intensity forecasts during the post-extratropical transition period when Hinnamnor was rapidly translating poleward through the Japan Sea. For Muifa (14 W), the key advantage of the ECEPS was that intensity guidance was provided for longer periods than the JTWC 5-day forecast. The most intriguing aspect of the ECEPS forecasts for post-Merbok (15 W) was its prediction of a transition to an intense, warm-core vortex after Merbok had moved beyond 50° N and was headed toward the Aleutian Islands. The most disappointing result was that the ECEPS over-predicted the slow intensification rate of Nanmadol (16 W) until the time-to-typhoon (T2TY), but then failed to predict the large rapid intensification (RI) following the T2TY. The tentative conclusion is that the ECEPS model‘s physics are not capable of predicting the inner-core spin-up rates when a small inner-core vortex is undergoing large RI. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

18 pages, 5821 KiB  
Article
Examining the Predictability of Tropical Cyclogenesis over the East Sea of Vietnam through the Ensemble-Based Data Assimilation System
by Dao Nguyen-Quynh Hoa, Tran-Tan Tien, Nguyen-Y Nhu and Thi Lan Dao
Atmosphere 2023, 14(11), 1671; https://doi.org/10.3390/atmos14111671 - 10 Nov 2023
Viewed by 1620
Abstract
In this study, we conducted experiments to assess the forecasting capabilities for tropical cyclone (TC) genesis over the east sea of Vietnam using the ensemble-based data assimilation system (EPS-DA) by WRF-LETKF. These experiments covered forecast lead times of up to 5 days and [...] Read more.
In this study, we conducted experiments to assess the forecasting capabilities for tropical cyclone (TC) genesis over the east sea of Vietnam using the ensemble-based data assimilation system (EPS-DA) by WRF-LETKF. These experiments covered forecast lead times of up to 5 days and spanned a period from 2012 to 2019, involving a total of 45 TC formation events. The evaluation involved forecast probability assessments and positional and timing error analysis. Results indicated that successful forecasting depends on the lead time and initial condition quality. For TC formation from an embryo vortex to tropical depression intensity, the EPS-DA system demonstrated improved accuracy as the forecast cycle approached the actual formation time. TC centers converged towards observed locations, highlighting the potential of assimilation up to 5 days before formation. We examined statistical variations in dynamic and thermodynamic variables relevant to TC processes, offering an objective system assessment. Our study emphasized that early warnings of TC development appear linked to formation-time environmental conditions, particularly strong vorticity and enhanced moisture processes. Full article
Show Figures

Figure 1

14 pages, 4120 KiB  
Article
Study of the Sea Temperature Backgrounds to Tropical Cyclones Affecting Hainan Province in the Dry Season
by Jingjing Zhu, Xiaoping Zhao, Hui Wu, Shengan Wu, Deqiang Hu and Caiying Xing
Atmosphere 2023, 14(11), 1663; https://doi.org/10.3390/atmos14111663 - 9 Nov 2023
Cited by 1 | Viewed by 1646
Abstract
Using the best path data set of tropical cyclones from the China Meteorological Administration, NCEP/NCAR (National Centers for Environmental Prediction–National Center for Atmospheric Research) reanalysis data, JMA (Japan Meteorological Agency) SST (surface sea temperature) data and NCEP subsurface sea temperature data, the sea [...] Read more.
Using the best path data set of tropical cyclones from the China Meteorological Administration, NCEP/NCAR (National Centers for Environmental Prediction–National Center for Atmospheric Research) reanalysis data, JMA (Japan Meteorological Agency) SST (surface sea temperature) data and NCEP subsurface sea temperature data, the sea temperature background of tropical cyclones affecting Hainan Province in the dry season was analyzed using typical cases from November to December. The results show that there was a significant positive correlation between the number of tropical cyclones affecting Hainan Province and the sea surface temperature in the South China Sea and the Western Pacific. The high SST in the South China Sea and Northwest Pacific were favorable for the occurrence and development of tropical cyclones. The circulation situation also had a significant impact on tropical cyclones during the concurrent period. The wind field convergence was conducive to the occurrence and development of tropical cyclones. The high subsurface sea temperature in the Western Pacific at the depth of 5–50 m was conducive to the strengthening of convection in the Pacific warm pool and the occurrence of the tropical cyclones. The typical cases of 1993 and 2017 have effectively verified the impact of the sea surface temperature background and circulation situation on tropical cyclones affecting the Hainan Province from November to December. Full article
(This article belongs to the Special Issue Data Assimilation for Predicting Hurricane, Typhoon and Storm)
Show Figures

Figure 1

7 pages, 739 KiB  
Proceeding Paper
Variability of the North Atlantic Subtropical High in the Year’s Wet Season and Its Relationship with the Tropical Cyclonic Activity
by Yandy Rodríguez Rodríguez, Nathalí Valderá Figueredo and Leticia Peña Peña
Environ. Sci. Proc. 2023, 27(1), 27; https://doi.org/10.3390/ecas2023-15482 - 30 Oct 2023
Viewed by 721
Abstract
The variability of the North Atlantic Subtropical High and its influence on the behavior of tropical cyclogenesis are characterized and analyzed. The database of the Center for Environmental Prediction and the Center for Atmospheric Research was consulted for the months of May to [...] Read more.
The variability of the North Atlantic Subtropical High and its influence on the behavior of tropical cyclogenesis are characterized and analyzed. The database of the Center for Environmental Prediction and the Center for Atmospheric Research was consulted for the months of May to October between 1950 and 2019. The variables used were the central pressure to determine the position of the North Atlantic Subtropical High on the surface and the geopotential to obtain the position of the anticyclonic center at 850 hPa, as well as the geopotential at 500 and 200 hPa over the region of the anticyclone on the surface. This system weakens at the surface level and intensifies at other tropospheric levels. The relationship with tropical cyclone activity in the Atlantic basin was assured and updated. Low levels play an important role in tropical cyclogenesis; the position and extension of the anticyclonic ridge at this level are the parameters with the highest coincidence, and in the present century, the anticyclone parameters in the months of June and July have increased their significance. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

12 pages, 7782 KiB  
Technical Note
Observed Surface Wind Field Structure of Severe Tropical Cyclones and Associated Precipitation
by Rong Du, Guosheng Zhang and Bin Huang
Remote Sens. 2023, 15(11), 2808; https://doi.org/10.3390/rs15112808 - 29 May 2023
Cited by 5 | Viewed by 3022
Abstract
Using the International Best Track Archive for Climate Stewardship (IBTrACS) dataset, this study assessed the surface wind fields from high spatial resolution Synthetic Aperture Radar (SAR) observations, the fifth generation ECMWF reanalysis for the global climate and weather (ERA5) data and the Tropical [...] Read more.
Using the International Best Track Archive for Climate Stewardship (IBTrACS) dataset, this study assessed the surface wind fields from high spatial resolution Synthetic Aperture Radar (SAR) observations, the fifth generation ECMWF reanalysis for the global climate and weather (ERA5) data and the Tropical Cyclone Winds and Inflow Angle Asymmetry (TCIAA) wind model. The results showed that SAR data are sufficient to reveal the surface wind field near a TC center and can accurately describe TC intensity and size under severe TC conditions. Then, a new, improved statistical wind structure model was set up using ERA5 data alone based on the assessment. In addition, the warm sea surface (SST > 26.5 °C) produced stronger TC wind fields and heavier precipitation. When the SST was higher (lower), the heavy rainfall was located on the left (right) side of the TC track and the strong positive correlation between wind speed and precipitation increased as the SST decreased. Full article
(This article belongs to the Special Issue Remote Sensing and Parameterization of Air-Sea Interaction)
Show Figures

Graphical abstract

31 pages, 18155 KiB  
Article
“Cold-Dry” and “Cold-Wet” Events in the Late Holocene, Southern Russian Far East
by Nadezhda Razjigaeva, Larisa Ganzey, Tatiana Grebennikova and Vladimir Ponomarev
Climate 2023, 11(4), 91; https://doi.org/10.3390/cli11040091 - 20 Apr 2023
Cited by 5 | Viewed by 2953
Abstract
Two late Holocene cold events were described for the Southern Russian Far East: 2800–2600 year BP and the Little Ice Age (LIA) (~1300–1850 CE). The synthesis is based on multi-proxy records on profile “the mainland (Primorye)-islands (Sakhalin-Kurils)”. Main archives are sediments of small [...] Read more.
Two late Holocene cold events were described for the Southern Russian Far East: 2800–2600 year BP and the Little Ice Age (LIA) (~1300–1850 CE). The synthesis is based on multi-proxy records on profile “the mainland (Primorye)-islands (Sakhalin-Kurils)”. Main archives are sediments of small lakes and peat bogs that recorded the high-resolution environmental changes. The temporal resolution of reconstructions here is up to 26–40 years. During the cold event of 2800–2600 year BP, the humidity decreased sharply, there were long-term dry seasons without strong floods, and buried soil formed on floodplains. The LIA was wet in the mainland and the Kurils, with frequent strong floods, but was drier in Sakhalin. The cooling was characterized by sharp temperature fluctuations where high moisture conditions alternated with short-term drier periods. The shift in geographical position and intensity of the main centers of atmospheric action caused a paleoclimatic interpretation of these events (Aleutian Low, Siberian and North Pacific Highs, the summer Okhotsk anticyclone and the Far East depression). Changes in the North Pacific oscillations played an important role in the alternation of cold-dry and cold-wet periods. Anomalies in the intensity of El Niño and the monsoon system led to changes in tropical and extratropical cyclone trajectories and cyclogenesis in general. Full article
Show Figures

Figure 1

17 pages, 15655 KiB  
Article
A Statistical Analysis of Tropical Cyclone-Induced Low-Level Winds near Taiwan Island
by Lin Xue, Ying Li and Sen Yao
Atmosphere 2023, 14(4), 715; https://doi.org/10.3390/atmos14040715 - 14 Apr 2023
Cited by 2 | Viewed by 2468
Abstract
Using ERA5 reanalysis data and the tropical cyclone (TC) best track datasets from the China Meteorological Administration and Joint Typhoon Warning Center (from 1979 to 2021), TC-induced low-level winds near Taiwan Island are statistically analyzed. This study mainly concerns TC activity, low-level wind [...] Read more.
Using ERA5 reanalysis data and the tropical cyclone (TC) best track datasets from the China Meteorological Administration and Joint Typhoon Warning Center (from 1979 to 2021), TC-induced low-level winds near Taiwan Island are statistically analyzed. This study mainly concerns TC activity, low-level wind fields around Taiwan Island under TCs, and the detailed characteristics of TC wind structure. Results show that on average, 8.3 TCs enter the study region near Taiwan Island every year mainly from May to November, with more frequent and stronger TCs on the eastern and southern sides of Taiwan Island. For TC centers located at different positions around Taiwan Island, positive and negative vertical vorticity belts alternate between Taiwan Island and the TC center. Moreover, stronger and more frequent TC-induced winds mainly occur on the eastern side of Taiwan Island and the north of Taiwan Strait. TCs to the east of Taiwan Island have stronger maximum sustained wind than those on the western side of the island. Radii of the maximum wind (RMW) for TCs around Taiwan Island range from 5 to 90 nautical mile (nm, 9.3 to 116.7 km) with a mean value of 24.7 nm (44.4 km). Moreover, the RMWs of TCs are the largest (smallest) when the TC centers are located to the southwest (east) of the island. In addition, the outer sizes of TC winds vary from 52 to 360 nm (17.2 to 666.7 km) in the study region, with 187.4 nm (347.1 km) on average, and smaller values for TCs on the western side of the island. The average radii of severe winds, including R34, R50, and R64, are largest in the northeast quadrant and smallest in the southwest quadrant of the TC. The higher the specific wind speed is, the smaller the TC radius and the more symmetric its wind circle. These statistical results may provide references for TC gale forecasting and wind-resistant design for offshore engineering to mitigate TC-induced wind hazards. Full article
(This article belongs to the Special Issue Feature Papers in Meteorological Science)
Show Figures

Figure 1

18 pages, 8326 KiB  
Article
Assessment of Tropical Cyclone Rainfall from GSMaP and GPM Products and Their Application to Analog Forecasting in the Philippines
by Gerry Bagtasa
Atmosphere 2022, 13(9), 1398; https://doi.org/10.3390/atmos13091398 - 30 Aug 2022
Cited by 13 | Viewed by 3090
Abstract
Tropical cyclone (TC) rainfall is both a resource and a hazard in the Philippines. Observation of its spatiotemporal distribution is necessary for water and disaster mitigation management. This study evaluated the performance of two high-resolution satellite precipitation datasets—the GSMaP and GPM-IMERG—in estimating accumulated [...] Read more.
Tropical cyclone (TC) rainfall is both a resource and a hazard in the Philippines. Observation of its spatiotemporal distribution is necessary for water and disaster mitigation management. This study evaluated the performance of two high-resolution satellite precipitation datasets—the GSMaP and GPM-IMERG—in estimating accumulated TC rainfall in the Philippines from 2000 to 2021. TC rain is defined as rainfall within 5° of a TC center. Several estimation algorithms were included in the assessment. The uncalibrated near-real-time GSMaP_NRT and early version GPM_ER, the reanalysis GSMaP_RNL, and the gauge-calibrated GSMaP_G and GPM_G. The assessment shows the worst scores for the uncalibrated GSMaP_NRT and GSMaP_RNL, followed by GPM_ER with station correlation coefficient (CC) values of 0.63, 0.67, and 0.73, respectively, compared to GSMaP_G CC of 0.79 and GPM_G CC of 0.77. GSMaP_G and GPM_G also gave the least bias and error, with a consistently high (>0.6) probability of detection (POD) and Pierce skill score (PSS) up to rainfall of 300 mm. In addition to the evaluation, the GSMaP_G and GPM_G were used in the analog forecasting of TC rain. Analog forecasting is based on the principle that past weather conditions can occur again. In TC rain analog forecasting, past TCs with similar intensities and tracks are assumed to bring similar rainfall amounts and distribution as a current TC. Composite mean TC rainfall from historical satellite precipitation estimations was produced to create TC rain forecasts. Results show the analog TC rain forecasts generally captured the spatial distribution of TC rain and performed better than the uncalibrated GSMaP_NRT, with a mean station correlation of 0.62–0.67, POD greater than 0.7, and positive PSS indicating good skills. However, forecasts have a false alarm ratio greater than 0.8 for 150 mm rain and have difficulty producing extreme rainfall (>250 mm). Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 26095 KiB  
Article
Climatology of Different Classifications of Tropical Cyclones Landfalling in Guangdong Province of China during 1951–2020
by Shuqin Zhang, Yanzhu Zheng, Chunlei Liu, Zhefan Huang, Hanwei Weng, Jianjun Xu and Shifei Tu
Atmosphere 2022, 13(8), 1306; https://doi.org/10.3390/atmos13081306 - 17 Aug 2022
Cited by 4 | Viewed by 2399
Abstract
The climatology of different classifications (based on the intensity at the landfall time) of tropical cyclones (TCs) making landfall in Guangdong Province of China during 1951–2020 (70 years) is investigated using the best track data from the China Meteorological Administration and ERA5 reanalysis [...] Read more.
The climatology of different classifications (based on the intensity at the landfall time) of tropical cyclones (TCs) making landfall in Guangdong Province of China during 1951–2020 (70 years) is investigated using the best track data from the China Meteorological Administration and ERA5 reanalysis data. There were 234 TCs making landfall in Guangdong Province, with more severe tropical storms (STSs, 30.8%) and typhoons (TYs, 27.3%), and less tropical depressions (TDs, 19.7%) and tropical storms (TSs, 22.2%) during the past 70 years. The frequency of the landfall TCs had a significant interannual oscillation of 2–5 years. Landfall TCs generated over the western North Pacific (WNP) were usually more and stronger than those generated over the South China Sea (SCS). The TCs generated over the WNP had longer lifetime duration and shorter on-land duration than those generated over the SCS. TCs making landfall in western Guangdong were the most, followed by central Guangdong and eastern Guangdong. The composite analysis using TC-relative coordinates indicated that the precipitation of different classifications of TCs making landfall in Guangdong Province was asymmetric, which was stronger in the south of the TC center. The position of the maximum precipitation showed a cyclonic rotation around the TC center with increasing TC intensity. Generally, the vertical velocity, moisture flux, warm core, and vertical wind shear enhanced with the increasing landfall TC intensity. The vertical velocity and moisture flux of different classifications of TCs also showed an asymmetric structure related to the distribution of TC precipitation. TSs, STSs, and TYs had a double warm-core configuration. The precipitation of the TDs and TSs usually occurred over the down-shear of average vertical wind shear, those of the STSs and TYs over the left-of-shear. Full article
(This article belongs to the Special Issue Advances in Tropical Cyclone Climate Research)
Show Figures

Figure 1

24 pages, 11181 KiB  
Article
Determining Tropical Cyclone Center and Rainband Size in Geostationary Satellite Imagery
by Yanyang Hu and Xiaolei Zou
Remote Sens. 2022, 14(14), 3499; https://doi.org/10.3390/rs14143499 - 21 Jul 2022
Cited by 12 | Viewed by 2775
Abstract
Brightness temperature (TB) observations at an infrared channel (10.3 μm) of the Advanced Baseline Imager (ABI) on board the U. S. 16th Geostationary Operational Environmental Satellite (GOES-16) are used for determining tropical cyclone (TC) center positions and rainband sizes. Firstly, an [...] Read more.
Brightness temperature (TB) observations at an infrared channel (10.3 μm) of the Advanced Baseline Imager (ABI) on board the U. S. 16th Geostationary Operational Environmental Satellite (GOES-16) are used for determining tropical cyclone (TC) center positions and rainband sizes. Firstly, an azimuthal spectral analysis method is employed to obtain an azimuthally symmetric center of a TC. Then, inner and outer rainbands radii, denoted as RIR and ROR, respectively, are estimated based on radial gradients of TB observations at different azimuthal angles. The radius RIR describes the size of the TC inner-core region, and the radius ROR reflects the maximum radial extent of TC rainbands. Compared with the best track centers, the root mean square differences of ABI-determined centers for tropical storms and hurricanes, which totals 108 samples, are 45.35 and 29.06 km, respectively. The larger the average wavenumber-0 amplitude, the smaller the difference between the ABI-determined center and the best track center. The TB-determined RIR is close but not identical to the radius of the outermost closed isobar and usually coincides with the radius where the strongest wavenumber 1 asymmetry is located. The annulus defined by the two circles with radii of ROR and RIR is the asymmetric area of rainbands described by azimuthal wavenumbers 1–3. In general, amplitudes of wavenumber 0 component centered on the ABI-determined center are greater than or equal to those from the best track. For a case of a 60 km distance between the ABI-determined and the best track TC center, the innermost azimuthal waves of wavenumbers 1–3 are nicely distributed along or within the radial distance RIR that is determined based on the ABI-determined TC center. If RIR is determined based on the best track, the azimuthal waves of wavenumbers 1–3 are found at several radial distances that are smaller than RIR. The TC center positions, and rainband size radii are important for many applications, including specification of a bogus vortex for hurricane initialization and verification of propagation mechanism of vortex Rossby waves. Full article
Show Figures

Figure 1

8 pages, 1510 KiB  
Proceeding Paper
Ensemble Prediction of Tropical Cyclone Tracks from NTHF, SisPI and SPNOA Systems
by Lisandra Fundora-Jiménez and Maibys Sierra-Lorenzo
Environ. Sci. Proc. 2022, 19(1), 5; https://doi.org/10.3390/ecas2022-12835 - 20 Jul 2022
Viewed by 1200
Abstract
Tropical cyclones are extreme hydrometeorological events whose impact can cause human, material and economic losses. The inaccuracies in the forecast of the trajectory of these phenomena often lead to inefficient decisions, such as unnecessary evacuation. This study proposes a combination of three forecasting [...] Read more.
Tropical cyclones are extreme hydrometeorological events whose impact can cause human, material and economic losses. The inaccuracies in the forecast of the trajectory of these phenomena often lead to inefficient decisions, such as unnecessary evacuation. This study proposes a combination of three forecasting tools NTHF, SisPI and SPNOA in the generation of ensemble prediction systems, with the aim of improving the tracking forecasts of tropical cyclones. Three variants were used for the construction of time-lagged ensembles, and for their evaluation the best track and historical errors (2016–2020) of the National Hurricane Center (NHC) were used. The ensembles led to an improvement in tropical cyclone track forecasts. Position errors vary from case to case, but ensembles generally tend to be more accurate than independent forecasts. Compared to the historical errors of the NHC, the results obtained are promising because they are superior in some cases. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

Back to TopTop