A Statistical Analysis of Tropical Cyclone-Induced Low-Level Winds near Taiwan Island
Abstract
:1. Introduction
2. Methods and Data
2.1. Methods
2.2. Data
3. Results
3.1. Tropical Cyclone Activity
3.2. Wind Field around Taiwan Island under a Tropical Cyclone
3.2.1. Vertical Vorticity and Wind Speed in the Lower Layer
3.2.2. Occurrence Frequency of Severe Winds
3.3. Characteristics of TC Wind Structure
3.3.1. Maximum Winds
3.3.2. Radius of Maximum Winds
3.3.3. Radius of the Outermost Closed Isobar
3.3.4. Radius of Specific Winds and Asymmetry
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, L.A. On the low-level structure of tropical storms. J. Atmos. Sci. 1952, 9, 422–428. [Google Scholar]
- Miller, B.I. Characteristics of Hurricanes: Analyses and calculations made from measurements by aircraft result in a fairly complete description. Science 1967, 157, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Gray, W.M. The mutual variation of wind, shear, and baroclinicity in the cumulus convective atmosphere of the hurricane. Mon. Weather Rev. 1967, 95, 55–73. [Google Scholar] [CrossRef]
- DeMaria, M. The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci. 1996, 53, 2076–2088. [Google Scholar] [CrossRef]
- Rogers, R.; Uhlhorn, E. Observations of the structure and evolution of surface and fligh—Level wind asymmetries in Hurricane Rita (2005). Geophys. Res. Lett. 2008, 35, L22811. [Google Scholar] [CrossRef]
- Tang, B.; Emanuel, K. Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci. 2010, 67, 1817–1830. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Emanuel, K. Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci. 2012, 69, 2394–2413. [Google Scholar] [CrossRef]
- Song, J.; Klotzbach, P.J. Wind structure discrepancies between two best track datasets for western North Pacific tropical cyclones. Mon. Weather Rev. 2016, 144, 4533–4551. [Google Scholar] [CrossRef]
- Klotz, B.W.; Jiang, H. Examination of surface wind asymmetries in tropical cyclones. Part I: General structure and wind shear impacts. Mon. Weather Rev. 2017, 145, 3989–4009. [Google Scholar] [CrossRef]
- Tao, D.; Zhang, F. Evolution of dynamic and thermodynamic structures before and during rapid intensification of tropical cyclones: Sensitivity to vertical wind shear. Mon. Weather Rev. 2019, 147, 1171–1191. [Google Scholar] [CrossRef]
- Hill, K.A.; Lackmann, G.M. Influence of environmental humidity on tropical cyclone size. Mon. Weather Rev. 2009, 137, 3294–3315. [Google Scholar] [CrossRef]
- Fujiwara, K.; Kawamura, R.; Hirata, H.; Kawano, T.; Kato, M.; Shinoda, T. A positive feedback process between tropical cyclone intensity and the moisture conveyor belt assessed with Lagrangian diagnostics. J. Geophys. Res. Atmos. 2017, 122, 502–512, 521. [Google Scholar] [CrossRef]
- Riehl, H. A model of hurricane formation. J. Appl. Phys. 1950, 21, 917–925. [Google Scholar] [CrossRef]
- DeMaria, M.; Kaplan, J.; Baik, J.-J. Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci. 1993, 50, 1133–1147. [Google Scholar] [CrossRef]
- Molinari, J.; Skubis, S.; Vollaro, D. External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci. 1995, 52, 3593–3606. [Google Scholar] [CrossRef]
- Molinari, J.; Skubis, S.; Vollaro, D.; Alsheimer, F.; Willoughby, H.E. Potential vorticity analysis of tropical cyclone intensification. J. Atmos. Sci. 1998, 55, 2632–2644. [Google Scholar] [CrossRef]
- Li, Y.; Guo, L.-x.; Ying, Y.; Hu, S. Impacts of upper-level cold vortex on the rapid change of intensity and motion of Typhoon Meranti (2010). J. Trop. Meteor. 2012, 18, 207–219. [Google Scholar]
- Wei, N.; Li, Y.; Zhang, D.-L.; Mai, Z.; Yang, S.-Q. A statistical analysis of the relationship between upper-tropospheric cold low and tropical cyclone track and intensity change over the western North Pacific. Mon. Weather Rev. 2016, 144, 1805–1822. [Google Scholar] [CrossRef]
- Guo, Y.-P.; Tan, Z.-M. Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño. Nat. Commun. 2018, 9, 1507. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Li, Y.; Zhang, D.-L.; Xue, L.; Wei, N. A statistical analysis of tropical upper-tropospheric trough cells over the western North Pacific during 2006–2015. J. Appl. Meteorol. Climatol. 2018, 57, 2469–2483. [Google Scholar] [CrossRef]
- Powell, M.D. The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Mon. Weather Rev. 1982, 110, 1912–1932. [Google Scholar] [CrossRef]
- Korolev, V.; Petrichenko, S.; Pudov, V. Heat and moisture exchange between the ocean and atmosphere in tropical storms Tess and Skip. Sov. Meteor. Hydrol. 1990, 3, 92–94. [Google Scholar]
- Franklin, J.L.; Black, M.L.; Valde, K. GPS dropwindsonde wind profiles in hurricanes and their operational implications. Weather Forecast. 2003, 18, 32–44. [Google Scholar] [CrossRef]
- Wurman, J.; Winslow, J. Intense sub-kilometer-scale boundary layer rolls observed in Hurricane Fran. Science 1998, 280, 555–557. [Google Scholar] [CrossRef]
- Morrison, I.; Businger, S.; Marks, F.; Dodge, P.; Businger, J.A. An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci. 2005, 62, 2662–2673. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P. A multiple scale modeling system for coastal hurricane wind damage mitigation. Nat. Hazards 2008, 47, 577–591. [Google Scholar] [CrossRef]
- Zhu, P. Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Ellis, R.; Businger, S. Helical circulations in the typhoon boundary layer. J. Geophys. Res. Atmos. 2010, 115, D6. [Google Scholar] [CrossRef] [Green Version]
- Foster, R. Signature of large aspect ratio roll vortices in synthetic aperture radar images of tropical cyclones. Oceanography 2013, 26, 58–67. [Google Scholar] [CrossRef]
- Gao, K.; Ginis, I. On the equilibrium-state roll vortices and their effects in the hurricane boundary layer. J. Atmos. Sci. 2016, 73, 1205–1222. [Google Scholar] [CrossRef] [Green Version]
- Gao, K.; Ginis, I.; Doyle, J.D.; Jin, Y. Effect of boundary layer roll vortices on the development of an axisymmetric tropical cyclone. J. Atmos. Sci. 2017, 74, 2737–2759. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Zhang, J.A.; Chan, P.; Hon, K.; Lei, X.; Wang, Y. A direct aircraft observation of helical rolls in the tropical cyclone boundary layer. Sci. Rep. 2021, 11, 18771. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, H.; Black, P. Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Am. Meteorol. Soc. 1996, 77, 543–550. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Bell, M.M.; Aberson, S.D.; Black, M.L. Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Am. Meteorol. Soc. 2006, 87, 1335–1348. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, E.A.; McNoldy, B.D.; Schubert, W.H. Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Weather Rev. 2012, 140, 4066–4077. [Google Scholar] [CrossRef] [Green Version]
- Wingo, S.M.; Knupp, K.R. Kinematic structure of mesovortices in the eyewall of Hurricane Ike (2008) derived from ground-based dual-Doppler analysis. Mon. Weather Rev. 2016, 144, 4245–4263. [Google Scholar] [CrossRef]
- Wurman, J.; Kosiba, K. The role of small-scale vortices in enhancing surface winds and damage in Hurricane Harvey (2017). Mon. Weather Rev. 2018, 146, 713–722. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Q.; Li, Y. Prevalence of tornado-scale vortices in the tropical cyclone eyewall. Proc. Natl. Acad. Sci. USA 2018, 115, 8307–8310. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wu, L.; Qin, N.; Li, Y. Storm-Scale and Fine-Scale Boundary Layer Structures of Tropical Cyclones Simulated with the WRF-LES Framework. J. Geophys. Res. Atmos. 2021, 126, e2021JD035511. [Google Scholar] [CrossRef]
- Chen, L.; Luo, Z.; Li, Y. Research advances on tropical cyclone landfall process. Acta Meteorol. Sin. 2004, 5, 541–549. (In Chinese) [Google Scholar]
- Yang, M.J.; Zhang, D.L.; Tang, X.D.; Zhang, Y. A modeling study of Typhoon Nari (2001) at landfall: 2. Structural changes and terrain-induced asymmetries. J. Geophys. Res. Atmos. 2011, 116, D9. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.C.; Chen, Y.H.; Kuo, H.C.; Huang, S.Y. Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). J. Geophys. Res. Atmos. 2013, 118, 3292–3308. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, Y. On the squall lines preceding landfalling tropical cyclones in China. Mon. Weather Rev. 2012, 140, 445–470. [Google Scholar] [CrossRef]
- Meng, Z.; Masashi, N.; Chen, L. A numerical study on the formation and development of island-induced cyclone and its impact on typhoon structure change and motion. Acta Meteorol. Sin. 1996, 10, 430–443. [Google Scholar]
- Wu, C.-C. Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Weather Rev. 2001, 129, 1533–1549. [Google Scholar] [CrossRef]
- Hsu, L.-H.; Kuo, H.-C.; Fovell, R.G. On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci. 2013, 70, 1006–1022. [Google Scholar] [CrossRef]
- Tang, C.K.; Chan, J.C. Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Q. J. R. Meteorol. Soc. 2014, 140, 1578–1589. [Google Scholar] [CrossRef]
- Xue, L.; Li, Y.; Xu, Y.L. Effect of Taiwan topography on the rapid intensification of typhoon Meranti (1010) passing by the Taiwan Strait. Chin. J. Atmos. Sci. 2015, 39, 789–801. (In Chinese) [Google Scholar]
- Wu, C.-C.; Li, T.-H.; Huang, Y.-H. Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci. 2015, 72, 3032–3050. [Google Scholar] [CrossRef]
- Xue, L.; Li, Y. The effect of mesoscale systems induced by the topography of Taiwan on the rapid intensification of typhoon Meranti (1010). Chin. J. Atmos. Sci. 2016, 40, 1107–1116. (In Chinese) [Google Scholar]
- Jian, G.-J.; Wu, C.-C. A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Weather Rev. 2008, 136, 598–615. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Wu, C.-C.; Wang, Y. The influence of island topography on typhoon track deflection. Mon. Weather Rev. 2011, 139, 1708–1727. [Google Scholar] [CrossRef]
- Yeh, T.-C.; Hsiao, L.-F.; Chen, D.-S.; Huang, K.-N. A study on terrain-induced tropical cyclone looping in East Taiwan: Case study of Typhoon Haitang in 2005. Nat. Hazards 2012, 63, 1497–1514. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Li, Y.; Wei, N. Diagnostic analysis on Nari (0116) structure and intensity changes during its landfall process on Taiwan Island. Chin. J. Atmos. Sci. 2013, 70, 1006–1022. (In Chinese) [Google Scholar]
- Gong, Y.; Li, Y.; Zhang, D.-L. A statistical study of unusual tracks of tropical cyclones near Taiwan Island. J. Appl. Meteorol. Climatol. 2018, 57, 193–206. [Google Scholar] [CrossRef]
- Tan, C.; Fang, W. Mapping the wind hazard of global tropical cyclones with parametric wind field models by considering the effects of local factors. Int. J. Disaster Risk Sci. 2018, 9, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Chen, L.; Xu, X. The numerical simulation on the impact of topography on the structure change and motion of tropical storm Fitow (0114). Acta Meteorol. Sin. 2006, 64, 591–605. (In Chinese) [Google Scholar]
- Ji, C.; Xue, G.; Zhao, F.; Yu, Z.; Zhang, H. The numerical simulation of orographic effect on the rain and structure of typhoon Rananim during landfall. Chin. J. Atmos. Sci. 2007, 31, 12. (In Chinese) [Google Scholar]
- Ni, X.; Zhang, Q.; Ma, D.; Wu, L.; Ren, F. Climatology and trends of tropical cyclone high wind in mainland China: 1959–2011. J. Geophys. Res. Atmos. 2015, 120, 12378–12393. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhu, W.; Ren, F.; Fumin, R.; Xin, W. Changes of tropical cyclone high winds and extreme winds during 1980—2014 over China. Clim. Change Res. 2016, 12, 413–421. (In Chinese) [Google Scholar]
- Huang, W.; Dong, S. Long-term and inter-annual variations of tropical cyclones affecting Taiwan region. Reg. Stud. Mar. Sci. 2019, 30, 100721. [Google Scholar] [CrossRef]
- Liu, D.; Pan, N.; Huang, C.; Zheng, J.; He, C. Cluster analysis of tropical cyclones affecting the Taiwan Strait. Int. J. Climatol. 2019, 39, 3915–3931. [Google Scholar] [CrossRef]
- Wu, Y.-S.; Teng, H.-F.; Chan, J.C.; Lee, C.-S. Long-term features of tropical cyclones affecting Taiwan. Terr. Atmos. Ocean. Sci. 2019, 30, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Dullaart, J.C.; Muis, S.; Bloemendaal, N.; Aerts, J.C. Advancing global storm surge modelling using the new ERA5 climate reanalysis. Clim. Dyn. 2020, 54, 1007–1021. [Google Scholar] [CrossRef] [Green Version]
- Bian, G.-F.; Nie, G.-Z.; Qiu, X. How well is outer tropical cyclone size represented in the ERA5 reanalysis dataset? Atmos. Res. 2021, 249, 105339. [Google Scholar] [CrossRef]
- Zarzycki, C.M.; Ullrich, P.A.; Reed, K.A. Metrics for evaluating tropical cyclones in climate data. J. Appl. Meteorol. Climatol. 2021, 60, 643–660. [Google Scholar] [CrossRef]
- Zhang, K.; Chan, K.T. An ERA5 global climatology of tropical cyclone size asymmetry. Int. J. Climatol. 2023, 43, 950–963. [Google Scholar] [CrossRef]
- Slocum, C.J.; Razin, M.N.; Knaff, J.A.; Stow, J.P. Does ERA5 mark a new era for resolving the tropical cyclone environment? J. Clim. 2022, 35, 3547–3564. [Google Scholar] [CrossRef]
- Han, Z.; Yue, C.; Liu, C.; Gu, W.; Tang, Y.; Li, Y. Evaluation on the applicability of ERA5 reanalysis dataset to tropical cyclones affecting Shanghai. Front. Earth Sci. 2022, 16, 1025–1039. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Sampson, C.R.; Fukada, E.M.; Knaff, J.A.; Strahl, B.R.; Brennan, M.J.; Marchok, T. Tropical cyclone gale wind radii estimates for the western North Pacific. Weather Forecast. 2017, 32, 1029–1040. [Google Scholar] [CrossRef]
- Sampson, C.R.; Goerss, J.S.; Knaff, J.A.; Strahl, B.R.; Fukada, E.M.; Serra, E.A. Tropical cyclone gale wind radii estimates, forecasts, and error forecasts for the western North Pacific. Weather Forecast. 2018, 33, 1081–1092. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson, C.R.; Musgrave, K.D. Statistical tropical cyclone wind radii prediction using climatology and persistence: Updates for the western North Pacific. Weather Forecast. 2018, 33, 1093–1098. [Google Scholar] [CrossRef]
- Sampson, C.R.; Knaff, J.A. A consensus forecast for tropical cyclone gale wind radii. Weather Forecast. 2015, 30, 1397–1403. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson, C.R.; Kucas, M.E.; Slocum, C.J.; Brennan, M.J.; Meissner, T.; Ricciardulli, L.; Mouche, A.; Reul, N.; Morris, M. Estimating tropical cyclone surface winds: Current status, emerging technologies, historical evolution, and a look to the future. Trop. Cyclone Res. Rev. 2021, 10, 125–150. [Google Scholar] [CrossRef]
- Pun, I.F.; Knaff, J.A.; Sampson, C.R. Uncertainty of tropical cyclone wind radii on sea surface temperature cooling. J. Geophys. Res. Atmos. 2021, 126, e2021JD034857. [Google Scholar] [CrossRef]
- Chen, J.-M.; Lu, F.-C.; Kuo, S.-L.; SHIH, C.-F. Summer climate variability in Taiwan and associated large-scale processes. J. Meteorol. Soc. Jpn. Ser. II 2005, 83, 499–516. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-M.; Li, T.; Shih, C.-F. Tropical cyclone–and monsoon-induced rainfall variability in Taiwan. J. Clim. 2010, 23, 4107–4120. [Google Scholar] [CrossRef]
- Wu, C.-C.; Kuo, Y.-H. Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Am. Meteorol. Soc. 1999, 80, 67–80. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Brand, S. Very large and very small typhoons of the western North Pacific Ocean. J. Meteorol. Soc. Jpn. Ser. II 1972, 50, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Merrill, R.T. A Comparison of Large and Small Tropical Cyclones. Mon. Weather Rev. 1984, 112, 1408–1418. [Google Scholar] [CrossRef]
- Xue, L.; Li, Y.; Wang, B.L.; Zhou, R.W. Characteristics of Tropical Cyclone-Induced Low-Level Wind Fields over Hainan. Clim. Environ. Res. 2018, 23, 299–310. (In Chinese) [Google Scholar]
- Knaff, J.A.; Longmore, S.P.; Molenar, D.A. An objective satellite-based tropical cyclone size climatology. J. Clim. 2014, 27, 455–476. [Google Scholar] [CrossRef]
- Chan, K.T.; Chan, J.C. Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Q. J. R. Meteorol. Soc. 2014, 140, 2235–2248. [Google Scholar] [CrossRef]
- Tao, D.; Bell, M.; Rotunno, R.; Van Leeuwen, P.J. Why do the maximum intensities in modeled tropical cyclones vary under the same environmental conditions? Geophys. Res. Lett. 2020, 47, e2019GL085980. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4. J. Atmos. Sci. 2008, 65, 1505–1527. [Google Scholar] [CrossRef]
- Maclay, K.S.; DeMaria, M.; Haar, T.H.V. Tropical cyclone inner-core kinetic energy evolution. Mon. Weather Rev. 2008, 136, 4882–4898. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci. 2009, 66, 1250–1273. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y. Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci. 2010, 67, 1831–1852. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Toumi, R. Impact of dry midlevel air on the tropical cyclone outer circulation. J. Atmos. Sci. 2019, 76, 1809–1826. [Google Scholar] [CrossRef]
- Martinez, J.; Nam, C.C.; Bell, M.M. On the contributions of incipient vortex circulation and environmental moisture to tropical cyclone expansion. J. Geophys. Res. Atmos. 2020, 125, e2020JD033324. [Google Scholar] [CrossRef]
- Ditchek, S.D.; Molinari, J.; Corbosiero, K.L.; Fovell, R.G. An objective climatology of tropical cyclone diurnal pulses in the Atlantic basin. Mon. Weather Rev. 2019, 147, 591–605. [Google Scholar] [CrossRef] [Green Version]
- Rappin, E.D.; Nolan, D.S. The effect of vertical shear orientation on tropical cyclogenesis. Q. J. R. Meteorol. Soc. 2012, 138, 1035–1054. [Google Scholar] [CrossRef]
- Zhou, Y.; Matyas, C.; Li, H.; Tang, J. Conditions associated with rain field size for tropical cyclones landfalling over the Eastern United States. Atmos. Res. 2018, 214, 375–385. [Google Scholar] [CrossRef]
- Chen, B.-F.; Davis, C.A.; Kuo, Y.-H. Effects of low-level flow orientation and vertical shear on the structure and intensity of tropical cyclones. Mon. Weather Rev. 2018, 146, 2447–2467. [Google Scholar] [CrossRef]
- Chen, B.-F.; Davis, C.A.; Kuo, Y.-H. Examination of the combined effect of deep-layer vertical shear direction and lower-tropospheric mean flow on tropical cyclone intensity and size based on the ERA5 reanalysis. Mon. Weather Rev. 2021, 149, 4057–4076. [Google Scholar]
- Finocchio, P.M.; Rios-Berrios, R. The intensity-and size-dependent response of tropical cyclones to increasing vertical wind shear. J. Atmos. Sci. 2021, 78, 3673–3690. [Google Scholar] [CrossRef]
- Wang, S.; Toumi, R. Recent tropical cyclone changes inferred from ocean surface temperature cold wakes. Sci. Rep. 2021, 11, 22269. [Google Scholar] [CrossRef]
- Bruneau, N.; Wang, S.; Toumi, R. Long memory impact of ocean mesoscale temperature anomalies on tropical cyclone size. Geophys. Res. Lett. 2020, 47, e2019GL086165. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Li, Y.; Chan, J.C.; Cheung, K.K.; Ye, L.; Wu, Y. Vertical variation of tropical cyclone size in the western North Pacific. Int. J. Climatol. 2022, 42, 4424–4444. [Google Scholar] [CrossRef]
- Chen, J.; Chavas, D.R. The transient responses of an axisymmetric tropical cyclone to instantaneous surface roughening and drying. J. Atmos. Sci. 2020, 77, 2807–2834. [Google Scholar] [CrossRef]
- Chen, J.; Chavas, D.R. Can existing theory predict the response of tropical cyclone intensity to idealized landfall? J. Atmos. Sci. 2021, 78, 3281–3296. [Google Scholar] [CrossRef]
- Hlywiak, J.; Nolan, D.S. The response of the near-surface tropical cyclone wind field to inland surface roughness length and soil moisture content during and after landfall. J. Atmos. Sci. 2021, 78, 983–1000. [Google Scholar] [CrossRef]
- Hlywiak, J.; Nolan, D.S. The evolution of asymmetries in the tropical cyclone boundary layer wind field during landfall. Mon. Weather Rev. 2022, 150, 529–549. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, L.; Li, Y.; Yao, S. A Statistical Analysis of Tropical Cyclone-Induced Low-Level Winds near Taiwan Island. Atmosphere 2023, 14, 715. https://doi.org/10.3390/atmos14040715
Xue L, Li Y, Yao S. A Statistical Analysis of Tropical Cyclone-Induced Low-Level Winds near Taiwan Island. Atmosphere. 2023; 14(4):715. https://doi.org/10.3390/atmos14040715
Chicago/Turabian StyleXue, Lin, Ying Li, and Sen Yao. 2023. "A Statistical Analysis of Tropical Cyclone-Induced Low-Level Winds near Taiwan Island" Atmosphere 14, no. 4: 715. https://doi.org/10.3390/atmos14040715
APA StyleXue, L., Li, Y., & Yao, S. (2023). A Statistical Analysis of Tropical Cyclone-Induced Low-Level Winds near Taiwan Island. Atmosphere, 14(4), 715. https://doi.org/10.3390/atmos14040715