Examining the Predictability of Tropical Cyclogenesis over the East Sea of Vietnam through the Ensemble-Based Data Assimilation System
Abstract
:1. Introduction
2. Experimental Settings
2.1. Model Descriptions
2.2. Domain Configuration and Datasets
2.3. TC Detection
- Identification of potential TC vortices at each time step
- Identify maxima of positive vorticity at 850–500 hPa, minima of sea-level pressure (Pmin) and minima of geopotential height at 700 hPa within sub-domains of 12 × 12 grid points. To filter out local extrema, the extremum point must be encompassed by at least 2 closed contours with an interval of 0.1 × 10−5 s−1 (vorticity); 2 hPa (Pmin) and 4 dam (700 hPa geopotential height). We do not include warm core in our TC detection as our effective criterion, because recent studies indicate that early TC formation is often associated with features like a mid-level cold core [42,43,44,45].
- Combine all marked extremum points to form a nearest point in two-dimensional space, these sets are stored and identified as potential TC centers. Vmax within a 4° radii from the corresponding Pmin center is computed.
- Assessment and selection of TC centersInstantaneous thermodynamic fields often contain noises and false alarms. Therefore, this study employs the following algorithm to determine TCs from potential cyclonic centers obtained from stage (1):
- Condition 1: Potential TC centers (Pmin) encompassing all points of maximum vorticity, and minimum 700 hPa geopotential height within 4° radii. TC centers over land and outside the VES are excluded.
- Condition 2: Selection of TC centers with Pmin < 1004 hPa.
- Condition 3: A TC center is considered a TC formation if Vmax ≥ 20 kt (TD intensity) and a TC development if Vmax exceeds 34 kt (reaching TS intensity). TC at the time of formation (Vmax ≥ 20 kt) is considered a reference TC center.
- Track matching
2.4. Verification of Probabilistic Forecast
2.4.1. Categorization of Cases
- TC formation: a forecast is considered to have correctly forecasted TC formation (FORM) when there exists at least 1 vortex center satisfying the conditions described in Section 2.3 at any time within the 120 h forecast period. Tracks of these TC centers corresponding to each individual forecast are recorded, and their potential to TS development in subsequent time steps following their formation are examined. Conversely, forecast members that do not predict the occurrence of TD are categorized as non-formation (NON-FORM).
- TC development: Within each track obtained from the ensemble analysis, if a vortex center is identified after the formation with Vmax ≥ 34 kt, then the corresponding forecast is deemed to have forecasted TC development (DEV). If the track does not meet aforementioned condition, they are classified as non-developing cases (NON-DEV).
2.4.2. Environmental Conditions of TC Genesis
3. Results
3.1. Verification of TC Genesis
3.1.1. Probabilities of Genesis
3.1.2. Predictability of TC Positions at Genesis
3.1.3. Predictability of Genesis Timing and Intensity
3.2. Composite Analyses of Environment Conditions Favoring Tropical Cyclogenesis
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hennon, C.; Papin, P.; Zarzar, C.; Michael, J.; Caudill, J.; Douglas, C.; Groetsema, W.; Lacy, J.; Maye, Z.; Reid, J.; et al. Tropical Cloud Cluster Climatology, Variability, and Genesis Productivity. J. Clim. 2013, 26, 3046–3066. [Google Scholar] [CrossRef]
- Peng, X.; Wang, L.; Wu, M.; Gan, Q. A Contrast of Recent Changing Tendencies in Genesis Productivity of Tropical Cloud Clusters over the Western North Pacific in May and October. Atmosphere 2021, 12, 1177. [Google Scholar] [CrossRef]
- Riehl, H. On the formation of typhoons. J. Atmos. Sci. 1948, 5, 247–265. [Google Scholar] [CrossRef]
- Riehl, H. A Model of Hurricane Formation. J. Appl. Phys. 2004, 21, 917–925. [Google Scholar] [CrossRef]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Liang, M.; Chan, J.C.L.; Xu, J.; Yamaguchi, M. Numerical prediction of tropical cyclogenesis part I: Evaluation of model performance. Q. J. R. Meteorol. Soc. 2021, 147, 1626–1641. [Google Scholar] [CrossRef]
- Halperin, D.J.; Fuelberg, H.E.; Hart, R.E.; Cossuth, J.H.; Sura, P.; Pasch, R.J. An evaluation of tropical cyclone genesis forecasts from global numerical models. Weather Forecast. 2013, 28, 1423–1445. [Google Scholar] [CrossRef]
- Tang, B.H.; Fang, J.; Bentley, A.; Kilroy, G.; Nakano, M.; Park, M.-S.; Rajasree, V.P.M.; Wang, Z.; Wing, A.A.; Wu, L. Recent Advances in Research on Tropical Cyclogenesis. Trop. Cyclone Res. Rev. 2020, 9, 87–105. [Google Scholar] [CrossRef]
- Halperin, D.J.; Fuelberg, H.E.; Hart, R.E.; Cossuth, J.H. Verification of tropical cyclone genesis forecasts from global numerical models: Comparisons between the North Atlantic and eastern North Pacific basins. Weather Forecast. 2016, 31, 947–955. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Koide, N. Tropical Cyclone Genesis Guidance Using the Early Stage Dvorak Analysis and Global Ensembles. Weather Forecast. 2017, 32, 2133–2141. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Kwok, R.H. Tropical cyclone genesis in a global numerical weather prediction model. Mon. Weather Rev. 1999, 127, 611–624. [Google Scholar] [CrossRef]
- Wang, Z.; Dunkerton, T.J.; Montgomery, M.T. Application of the Marsupial Paradigm to Tropical Cyclone Formation from Northwestward-Propagating Disturbances. Mon. Weather Rev. 2012, 140, 66–76. [Google Scholar] [CrossRef]
- Cheung, K.K.W.; Elsberry, R.L. Tropical cyclone formations over the western North Pacific in the Navy Operational Global Atmospheric Prediction System forecasts. Weather Forecast. 2002, 17, 800–820. [Google Scholar] [CrossRef]
- Jaiswal, N.; Kishtawal, C.M.; Bhomia, S.; Pal, P.K. Multi-model ensemble-based probabilistic prediction of tropical cyclogenesis using TIGGE model forecasts. Meteorol. Atmos. Phys. 2016, 128, 601–611. [Google Scholar] [CrossRef]
- Pedlosky, J. Geophysical Fluid Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Zhang, X.; Yu, H. A probabilistic tropical cyclone track forecast scheme based on the selective consensus of ensemble prediction systems. Weather Forecast. 2017, 32, 2143–2157. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Yu, H.; Zeng, Z. Verification of ensemble track forecasts of tropical cyclones during 2014. Trop. Cyclone Res. Rev. 2015, 4, 79–87. [Google Scholar]
- Zhang, X.; Fang, J.; Yu, Z. The Forecast Skill of Tropical Cyclone Genesis in Two Global Ensembles. Weather Forecast. 2023, 38, 83–97. [Google Scholar] [CrossRef]
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Ocean. 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Hunt, B.R.; Kostelich, E.J.; Szunyogh, I. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D 2007, 230, 112–126. [Google Scholar] [CrossRef]
- Miyoshi, T.; Kunii, M. Using AIRS retrievals in the WRF-LETKF system to improve regional numerical weather prediction. Tellus A 2012, 64, 18408. [Google Scholar] [CrossRef]
- Kieu, C.Q.; Truong, N.M.; Mai, H.T.; Ngo-Duc, T. Sensitivity of the Track and Intensity Forecasts of Typhoon Megi (2010) to Satellite-Derived Atmospheric Motion Vectors with the Ensemble Kalman Filter. J. Atmos. Ocean. Technol. 2012, 29, 1794–1810. [Google Scholar] [CrossRef]
- Szunyogh, I.; Kostelich, E.J.; Gyarmati, G.; Kalnay, E.; Hunt, B.R.; Ott, E.; Satterfield, E.; Yorke, J.A. A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus A 2008, 60, 113–130. [Google Scholar] [CrossRef]
- Yang, S.-C.; Corazza, M.; Carrassi, A.; Kalnay, E.; Miyoshi, T. Comparison of Local Ensemble Transform Kalman Filter, 3DVAR, and 4DVAR in a Quasigeostrophic Model. Mon. Weather Rev. 2009, 137, 693–709. [Google Scholar] [CrossRef]
- Liu, J.; Fertig, E.; Li, H.; Kalnay, E.; Hunt, B.; Kostelich, E.; Szunyogh, I.; Todling, R. Comparison between Local Ensemble Transform Kalman Filter and PSAS in the NASA finite volume GCM—Perfect model experiments. Nonlinear Process. Geophys. 2007, 15, 645–659. [Google Scholar] [CrossRef]
- Tien, T.T.; Hoa, D.N.-Q.; Thanh, C.; Kieu, C. Assessing the Impacts of Augmented Observations on the Forecast of Typhoon Wutip (2013)’s Formation using the Ensemble Kalman Filter. Weather Forecast. 2020, 35, 1483–1503. [Google Scholar] [CrossRef]
- Park, M.-S.; Kim, H.-S.; Ho, C.-H.; Elsberry, R.L.; Lee, M.-I. Tropical Cyclone Mekkhala’s (2008) Formation over the South China Sea: Mesoscale, Synoptic-Scale, and Large-Scale Contributions. Mon. Weather Rev. 2015, 143, 88–110. [Google Scholar] [CrossRef]
- Park, M.-S.; Lee, M.; Kim, D.; Bell, M.; Cha, D.; Elsberry, R. Land-Based Convection Effects on Formation of Tropical Cyclone Mekkhala (2008). Mon. Weather Rev. 2017, 145, 1315–1337. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.; Dudhia, J.; Gill, D.O.; Barker, D.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Tech. Note 2008, 27, 3–27. [Google Scholar]
- Chan, J.C.L.; Xu, M. Inter-annual and inter-decadal variations of landfalling tropical cyclones in East Asia. Part I: Time series analysis. Int. J. Climatol. 2009, 29, 1285–1293. [Google Scholar] [CrossRef]
- Strachan, J.; Vidale, P.L.; Hodges, K.; Roberts, M.; Demory, M.-E. Investigating Global Tropical Cyclone Activity with a Hierarchy of AGCMs: The Role of Model Resolution. J. Clim. 2013, 26, 133–152. [Google Scholar] [CrossRef]
- Chen, J.; Lin, S.; Zhou, L.; Chen, X.; Rees, S.; Bender, M.; Morin, M. Evaluation of tropical cyclone forecasts in the next generation global prediction system. Mon. Weather Rev. 2019, 147, 3409–3428. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, S.-J.; Chen, J.-H.; Harris, L.M.; Chen, X.; Rees, S. Toward convective-scale prediction within the Next Generation Global Prediction System. Bull. Am. Meteorol. Soc. 2019, 100, 1225–1243. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Velden, C.S.; Hayden, C.; Nieman, S.; Menzel, W.; Wanzong, S.; Goerss, J. Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Am. Meteorol. Soc. 1997, 78, 173–195. [Google Scholar] [CrossRef]
- Le Marshall, J.; Rea, A.; Leslie, L.; Seecamp, R.; Dunn, M. Error characterisation of atmospheric motion vectors. Aust. Meteorol. Mag. 2004, 53, 123–131. [Google Scholar]
- Holmlund, K.; Velden, C.; Rohn, M. Enhanced automated quality control applied to high-density satellite-derived winds. Mon. Weather Rev. 2001, 129, 517–529. [Google Scholar] [CrossRef]
- Velden, C.S.; Hayden, C.M.; Menzel, W.P.; Franklin, J.L.; Lynch, J.S. The impact of satellite-derived winds on numerical hurricane track forecasting. Weather Forecast. 1992, 7, 107–118. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Velden, C.; Wang, P.; Schmit, T.J.; Sippel, J. Impact of rapid-scan-based dynamical information from GOES-16 on HWRF hurricane forecasts. J. Geophys. Res. Atmos. 2020, 125, e2019JD031647. [Google Scholar] [CrossRef]
- Wu, T.; Liu, H.; Majumdar, S.J.; Velden, C.S.; Anderson, J.L. Influence of assimilating satellite-derived atmospheric motion vector observations on numerical analyses and forecasts of tropical cyclone track and intensity. Mon. Weather Rev. 2014, 142, 49–71. [Google Scholar] [CrossRef]
- Wu, T.; Velden, C.S.; Majumdar, S.J.; Liu, H.; Anderson, J.L. Understanding the influence of assimilating subsets of enhanced atmospheric motion vectors on numerical analyses and forecasts of tropical cyclone track and intensity with an ensemble Kalman filter. Mon. Weather Rev. 2015, 143, 2506–2531. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, D. Potential vorticity diagnosis of tropical cyclone Usagi (2001) genesis induced by a mid-level vortex over the South China Sea. Meteorol. Atmos. Phys. 2014, 125, 75–87. [Google Scholar] [CrossRef]
- Ge, X.; Li, T.; Peng, M. Tropical cyclone genesis efficiency: Mid-level versus bottom vortex. J. Trop. Meteorol. 2013, 19, 197–213. [Google Scholar]
- Bister, M.; Emanuel, K.A. The Genesis of Hurricane Guillermo: TEXMEX Analyses and a Modeling Study. Mon. Weather Rev. 1997, 125, 2662–2682. [Google Scholar] [CrossRef]
- Wen, D.; Li, Y.; Zhang, D.-L.; Xue, L.; Wei, N. A Statistical Analysis of Tropical Upper-Tropospheric Trough Cells over the Western North Pacific during 2006–15. J. Appl. Meteorol. Climatol. 2018, 57, 2469–2483. [Google Scholar] [CrossRef]
- BRIER, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Swets, J.A. The Relative Operating Characteristic in Psychology. Science 1973, 182, 1000–1990. [Google Scholar] [CrossRef] [PubMed]
- Buizza, R.; Miller, M.; Palmer, T.N. Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Q. J. R. Meteorol. Soc. 1999, 125, 2887–2908. [Google Scholar] [CrossRef]
- Chen, J.M.; Tan, P.H.; Wu, L.; Liu, J.-S.; Chen, H.-S. Climatological analysis of passage-type tropical cyclones from the Western North Pacific into the South China Sea. Terr. Atmos. Ocean. Sci. 2017, 28, 327–343. [Google Scholar] [CrossRef]
- Chen, J.M.; Wu, C.-H.; Gao, J.; Chung, P.-H.; Sui, C.-H. Migratory Tropical Cyclones in the South China Sea Modulated by Intraseasonal Oscillations and Climatological Circulations. J. Clim. 2019, 32, 6445–6466. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, G.; Wang, C. Out-of-phase relationship between tropical cyclones generated locally in the South China Sea and non-locally from the Northwest Pacific Ocean. Clim. Dyn. 2014, 45, 1129–1136. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, Y.; Wang, G. Impact of Intraseasonal Oscillations on the Activity of Tropical Cyclones in Summer over the South China Sea. Part I: Local Tropical Cyclones. J. Clim. 2016, 29, 855–868. [Google Scholar] [CrossRef]
- Tu, J.-Y.; Chen, J.-M.; Tan, P.-H.; Lai, T.-L. Seasonal contrasts between tropical cyclone genesis in the South China Sea and westernmost North Pacific. Int. J. Climatol. 2022, 42, 3743–3756. [Google Scholar] [CrossRef]
- Hsieh, Y.-H.; Lee, C.-S.; Sui, C.-H. A Study on the Influences of Low-Frequency Vorticity on Tropical Cyclone Formation in the Western North Pacific. Mon. Weather Rev. 2017, 145, 4151–4169. [Google Scholar] [CrossRef]
- Fitzpatrick, P.J. Understanding and forecasting tropical cyclone intensity change with the Typhoon Intensity Prediction Scheme (TIPS). Weather Forecast. 1997, 12, 826–846. [Google Scholar] [CrossRef]
- Camargo, S.J.; Wing, A.A. Tropical cyclones in climate models. WIREs Clim. Change 2016, 7, 211–237. [Google Scholar] [CrossRef]
- Carstens, J.; Wing, A. Simulating Dropsondes to Assess Moist Static Energy Variability in Tropical Cyclones. Geophys. Res. Lett. 2022, 49, e2022GL099101. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.A.; Marks, F.D. A Thermodynamic Pathway Leading to Rapid Intensification of Tropical Cyclones in Shear. Geophys. Res. Lett. 2019, 46, 9241–9251. [Google Scholar] [CrossRef]
- Persing, J.; Montgomery, M.; McWilliams, J.; Smith, R. Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys. Discuss. 2013, 13, 13323–13438. [Google Scholar] [CrossRef]
- Hendricks, E.A.; Montgomery, M.T.; Davis, C.A. The Role of “Vortical” Hot Towers in the Formation of Tropical Cyclone Diana (1984). J. Atmos. Sci. 2004, 61, 1209–1232. [Google Scholar] [CrossRef]
- Montgomery, M.; Nicholls, M.; Cram, T.; Saunders, A.B. A Vortical Hot Tower Route to Tropical Cyclogenesis. J. Atmos. Sci. 2006, 63, 355–386. [Google Scholar] [CrossRef]
Categorization | Variable | Descriptions |
---|---|---|
Dynamic | Pmin | Minimum sea-level pressure |
ζlow | Average low-level vertical vorticity | |
ωmid | Average vertical velocity in 700–500 hPa | |
Vsh | Vertical shear between 200 and 850 hPa | |
Thermodynamic | MSE | Column-integrated moist static energy normalized by Cp |
SLHF | Surface latent heat flux | |
HMClow | Low-level horizontal moisture convergence |
−120 h | −108 h | −96 h | −84 h | −72 h | −60 h | −48 h | −36 h | −24 h | −12 h | 0 h | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Brier Score (formation) | 0.028 | 0.047 | 0.037 | 0.090 | 0.038 | 0.062 | 0.039 | 0.039 | 0.033 | 0.016 | 0.011 | |
Brier Score (development) | 0.294 | 0.283 | 0.268 | 0.212 | 0.246 | 0.269 | 0.228 | 0.187 | 0.235 | 0.179 | 0.166 | |
AUC ROC (development) | 0.471 | 0.510 | 0.667 | 0.767 | 0.558 | 0.580 | 0.741 | 0.779 | 0.608 | 0.673 | 0.750 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoa, D.N.-Q.; Tien, T.-T.; Nhu, N.-Y.; Dao, T.L. Examining the Predictability of Tropical Cyclogenesis over the East Sea of Vietnam through the Ensemble-Based Data Assimilation System. Atmosphere 2023, 14, 1671. https://doi.org/10.3390/atmos14111671
Hoa DN-Q, Tien T-T, Nhu N-Y, Dao TL. Examining the Predictability of Tropical Cyclogenesis over the East Sea of Vietnam through the Ensemble-Based Data Assimilation System. Atmosphere. 2023; 14(11):1671. https://doi.org/10.3390/atmos14111671
Chicago/Turabian StyleHoa, Dao Nguyen-Quynh, Tran-Tan Tien, Nguyen-Y Nhu, and Thi Lan Dao. 2023. "Examining the Predictability of Tropical Cyclogenesis over the East Sea of Vietnam through the Ensemble-Based Data Assimilation System" Atmosphere 14, no. 11: 1671. https://doi.org/10.3390/atmos14111671
APA StyleHoa, D. N. -Q., Tien, T. -T., Nhu, N. -Y., & Dao, T. L. (2023). Examining the Predictability of Tropical Cyclogenesis over the East Sea of Vietnam through the Ensemble-Based Data Assimilation System. Atmosphere, 14(11), 1671. https://doi.org/10.3390/atmos14111671