Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = tritrophic interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7180 KB  
Article
Niche Differentiation and Predicted Functions of Microbiomes in a Tri-Trophic Willow–Gall (Euura viminalis)–Parasitoid Wasp System
by Yuhao Nie, Gaopeng Yu and Hongying Hu
Insects 2026, 17(1), 43; https://doi.org/10.3390/insects17010043 - 29 Dec 2025
Viewed by 351
Abstract
Chalcidoids (Hymenoptera: Chalcidoidea), the most important natural enemies of parasitoids, serve as a pivotal factor in the regulation and management of pest populations. Microbiotas mediate interactions among plants, herbivores, and natural enemies and shape host immunity, parasitoid development, and gall formation; however, the [...] Read more.
Chalcidoids (Hymenoptera: Chalcidoidea), the most important natural enemies of parasitoids, serve as a pivotal factor in the regulation and management of pest populations. Microbiotas mediate interactions among plants, herbivores, and natural enemies and shape host immunity, parasitoid development, and gall formation; however, the niche-specific diversity and functions of tritrophic parasitoid–host–gall systems remain unclear. Focusing on leaf galls induced on twisted willow (Salix matsudana f. tortuosa) by the willow-galling sawfly Euura viminalis and on two chalcidoids, Eurytoma aethiops and Aprostocetus sp., we profiled bacterial and fungal microbiomes across plant surfaces, gall lumen, host larval tissues, and parasitoids using HTAS. Fungal diversity peaked on parasitoids but was depleted in the gall lumen and host tissues; bacterial richness showed the opposite trend, peaking in the gall lumen and decreasing on parasitoids. In networks contrasted by kingdom, fungi showed positive interface-hub connectivity (Cladosporium, Alternaria), whereas bacteria showed negative hub-mediated associations (Pseudomonas, Acinetobacter), indicating habitat-specific replacements: exposed niches favored transport, two-component, secretion–motility and energy functions, whereas the gall lumen reduced transport/motility but selectively retained N/S metabolism; and in host tissues, information processing and nitrogen respiration were highlighted. These results inform microbiome-guided parasitoid biocontrol. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Figure 1

21 pages, 3240 KB  
Article
Phytochemical-Mediated Tritrophic Interactions: Effects of Pepper and Eggplant Cultivars on the Green Peach Aphid Myzus persicae (Sulzer) and Its Predators
by Zahra Golparvar, Mahdi Hassanpour, Ali Golizadeh, Gadir Nouri Ganbalani, Hooshang Rafiee Dastjerdi, Tomasz Oszako, Mojtaba Hosseini, Stanisław Łuniewski, Mikołaj Jalinik and Ali Chenari Bouket
Insects 2025, 16(10), 1050; https://doi.org/10.3390/insects16101050 - 15 Oct 2025
Viewed by 678
Abstract
The diverse phytochemical profiles of host plants can significantly influence their interactions with herbivores and natural enemies. This study investigated the ‘bottom-up’ effects of several bell pepper and eggplant cultivars on the development, reproduction, and survival of the green peach aphid, Myzus persicae [...] Read more.
The diverse phytochemical profiles of host plants can significantly influence their interactions with herbivores and natural enemies. This study investigated the ‘bottom-up’ effects of several bell pepper and eggplant cultivars on the development, reproduction, and survival of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), and its predators, Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) and Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). We analyzed the leaves of each cultivar for levels of total flavonoids, phenols, anthocyanins, and key defensive enzymes. The eggplant cultivar ‘Longo’ exhibited the highest concentration of secondary metabolites. Aphid populations reared on this cultivar’s leaves showed a slower growth rate compared to those on other cultivars. Conversely, predators fed on these aphids demonstrated higher rates of population growth and produced more offspring. Accordingly, the intrinsic rate of natural increase (r) was lower for aphids feeding on ‘Longo’, but significantly higher for both A. aphidimyza and C. carnea when fed those aphids. These results demonstrate that elevated secondary metabolites on ‘Longo’ suppress the performance of M. persicae while enhancing predator efficiency, thereby providing a phytochemical-based approach that can serve as an effective component of integrated pest management (IPM) programs. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

17 pages, 1510 KB  
Article
Tritrophic Interactions Among Fruit Flies (Diptera: Tephritidae), Its Parasitoids and Cultivated and Wild Hosts in the Pampa Biome, Rio Grande do Sul, Brazil
by Emily S. Araujo, Alexandra P. Krüger, Maria V. Calvo, Marcos H. F. Telles, Alexandre M. Neumann, Iris B. Scatoni, Valmir A. Costa, Dori E. Nava, José M. Mirás-Avalos and Flávio R. M. Garcia
Agriculture 2025, 15(19), 1993; https://doi.org/10.3390/agriculture15191993 - 23 Sep 2025
Viewed by 861
Abstract
Fruit fly (Diptera: Tephritidae) species are a serious threat for fruit-growers worldwide. The parasitoids (Hymenoptera) are natural enemies of these flies. In this context, the aim of this work was to assess fruit infestation by tephritid flies, both in native and exotic fruit [...] Read more.
Fruit fly (Diptera: Tephritidae) species are a serious threat for fruit-growers worldwide. The parasitoids (Hymenoptera) are natural enemies of these flies. In this context, the aim of this work was to assess fruit infestation by tephritid flies, both in native and exotic fruit trees, in the Southern region of Rio Grande do Sul (Brazil). Moreover, the incidence of native parasitoids on fly larvae was estimated. Fruits with signals of attack by fruit flies were collected randomly both in the trees and on the ground. From 2013 to 2015, a total of 5729 fruits (194.48 kg) were collected, corresponding to 34 tree species from 16 botanical families. Fruits were taken to the laboratory, individualized, weighted and kept in vermiculite for pupae emergence. Pupae were counted and emerged adults were counted and identified. The association between fruit flies, hosts and parasitoids was determined when only a given species of tephritid emerged. Half of the sampled fruit tree species presented infestation by flies. The main species of tephritid fly was Anastrepha fraterculus. This study showed that natural parasitism rates of fruit flies were low; however, several parasitoid species from the Figitidae and Braconidae families were detected, including Aganaspis pelleranoi, Doryctobracon areolatus, Doryctobracon brasiliensis, Opius bellus, Utetes anastrephae, and Cerchysiella insularis. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

34 pages, 28285 KB  
Article
Tachinid Flies (Diptera), Caterpillar Hosts (Lepidoptera) and Their Food Plants, Reared in Área de Conservación Guanacaste (ACG), Northwestern Costa Rica: Documenting Community Structure with the Aid of DNA Barcodes
by Donald L. J. Quicke, Alan J. Fleming, D. Monty Wood, Norman E. Woodley, Ramya Manjunath, Suresh Naik, M. Alex Smith, Michael J. Sharkey, Winnie Hallwachs, Daniel H. Janzen, José Fernández-Triana, James B. Whitfield, Paul D. N. Hebert and Buntika A. Butcher
Diversity 2025, 17(9), 658; https://doi.org/10.3390/d17090658 - 20 Sep 2025
Cited by 1 | Viewed by 2208
Abstract
We describe the trophic relationships of tachinid parasitoid flies that attack exophagous, leaf-eating Lepidoptera caterpillars in Área de Conservación Guanacaste (ACG), northwestern Costa Rica over approximately forty years beginning in 1984. The dataset contains more than 34,000 individual tachinid rearings from individual wild-caught [...] Read more.
We describe the trophic relationships of tachinid parasitoid flies that attack exophagous, leaf-eating Lepidoptera caterpillars in Área de Conservación Guanacaste (ACG), northwestern Costa Rica over approximately forty years beginning in 1984. The dataset contains more than 34,000 individual tachinid rearings from individual wild-caught caterpillars. Identification of parasitoids and caterpillars up until 2004 was based entirely on morphology. From 2004 onwards most reared specimens were DNA-barcoded and some retroactive barcoding was also carried out with varying degrees of success. Generally, for older specimens, generating good quality-barcodes requires more expensive protocols. Barcoding of reared specimens led to the recognition that many morpho-species were made up of multiple species of flies but those reared from an individual caterpillar were 99.95% a single species. Consequently, estimates of diet breadth of caterpillars and tachinids changed considerably after 2003. The data analysed here were pruned to include only rearings with complete host and food plant data and excluded potentially duplicated rearings and ones whose identification could not be confidently assigned. The cleaned dataset includes 13,735 independent rearings. Chao1 estimates of numbers of tachinid, caterpillar and food plant species suggest that species sampling is 86, 70 and 91 percent complete, respectively. However, this was not the case for bi- and tritrophic interactions which increased linearly with effort. We show that while the tachinids of ACG are more host-specialised than was expected prior to the combined efforts of rearing and barcoding, they have broader host ranges and higher host Shannon diversity indices than either Braconidae or Ichneumonidae. This may be attributable to the effects of the induced host-derived sac enclosing the larvae and their posterior spiracles. Full article
(This article belongs to the Special Issue DNA Barcodes for Evolution and Biodiversity—2nd Edition)
Show Figures

Figure 1

17 pages, 1569 KB  
Article
Floral Diversity Shapes Herbivore Colonization, Natural Enemy Performance, and Economic Returns in Cauliflower
by Keerthi Manikyanahalli Chandrashekara, Sachin Suresh Suroshe, Grandhi Ramamurthy Hithesh, Subhash Chander, Rakesh Kumar, Kirankumar G. Nagaraju, Srinivas Kummari, Rakshith H. Siddaswamy, Chaitanya Mallanagouda, Eere Vidya Madhuri, Jagadam Sai Rupali, Loganathan Ramakrishnan and Harishkumar H. Venkatachalapathi
Horticulturae 2025, 11(9), 1045; https://doi.org/10.3390/horticulturae11091045 - 2 Sep 2025
Viewed by 1052
Abstract
Cauliflower, a widely cultivated vegetable crop valued for its edible curds, faces a persistent threat from insect pests, which are typically managed using synthetic insecticides. This study evaluated the benefits of intercropping practices as part of an ecological pest management strategy in cauliflower [...] Read more.
Cauliflower, a widely cultivated vegetable crop valued for its edible curds, faces a persistent threat from insect pests, which are typically managed using synthetic insecticides. This study evaluated the benefits of intercropping practices as part of an ecological pest management strategy in cauliflower cultivation during the winter seasons of 2017–18 and 2021–22. Nine insect pests belonging to six families of three orders were recorded. The calendula intercropping system (IS) consistently showed the lowest infestation by Plutella xylostella and Pieris brassicae/plant. Calendula IS had attracted the highest numbers of syrphids, Cotesia glomerata, Diaeretiella rapae, Cotesia vestalis, and coccinellids such as Coccinella septempunctata and Cheilomenes sexmaculata. In candytuft IS, a strong tri-trophic interaction between the flower and D. rapae significantly reduced aphid populations, for each additional D. rapae, aphid numbers decreased by 48.53 in 2018. The marigold IS recorded the highest Shannon diversity index in 2021–22. The longest adult survival of C. septempunctata (8.67 ± 3.35 days), in the absence of aphids was recorded on candytuft flowers. The total sugars and protein in flowers positively influenced the longevity of the adult coccinellid beetles (R2-40.42 and 20.79%, respectively). Calendula intercropping yielded the highest revenue return of Indian rupee (₹) 11.33 per INR 1 invested, compared to the cauliflower monocrop (1.58). These findings demonstrate that, intercropping and habitat manipulation can enhance ecological pest control and reduce the dependence on synthetic chemicals. Full article
(This article belongs to the Special Issue Enhancing Biological Control of Insect Pests of Horticultural Crops)
Show Figures

Graphical abstract

16 pages, 1541 KB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 - 6 Aug 2025
Cited by 1 | Viewed by 979
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

16 pages, 1994 KB  
Article
Fall Webworm Host Plant Preferences Generate a Reduced Predation Enemy-Free Space in Its Interaction with Parasitoids
by Lina Pan, Wenfang Gao, Zhiqin Song, Xiaoyu Li, Yipeng Wei, Guangyan Qin, Yiping Hu, Zeyang Sun, Cuiqing Gao, Penghua Bai, Gengping Zhu, Wenjie Wang and Min Li
Insects 2025, 16(8), 804; https://doi.org/10.3390/insects16080804 - 4 Aug 2025
Viewed by 976
Abstract
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here [...] Read more.
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here we investigated whether the host plant preference of Hyphantria cunea correlates with the attractiveness of these plants to Chouioia cunea, a parasitoid wasp that serves as the primary natural enemy of H. cunea. We found Morus alba was the preferred host plant for female H. cunea. Although M. alba provided suboptimal nutritional value for H. cunea growth and development compared to other plants, it attracted fewer C. cunea relative to alternative host plants. Gas chromatography–mass spectrometry (GC–MS) coupled with gas chromatography–electroantennographic detection (GC-EAD) analysis identified six distinct compounds among the herbivore-induced plant volatiles (HIPVs) produced following H. cunea feeding. Notably, M. alba was the sole plant species that did not emit tridecane. These results suggest that H. cunea utilizes M. alba as a reduced predation enemy-free space, thereby minimizing parasitization by C. cunea. Our research emphasizes the importance of considering adaptive responses of herbivores within the context of multi-trophic relationships, rather than solely focusing on optimizing herbivore growth on the most nutritionally suitable plant host. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Graphical abstract

10 pages, 2474 KB  
Article
A New Species of Enicospilus Stephens, 1835 (Ichneumonidae, Ophioninae), from Southern Mexico, Parasitic on Zanola verago Cramer, 1777 (Lepidoptera, Apatelodidae), Feeding on Piper neesianum C. DC. (Piperaceae)
by Diego Fernando Campos-Moreno, Edgard Palacio, Luis Alberto Lara-Pérez, James B. Whitfield, Carmen Pozo and Lee A. Dyer
Diversity 2025, 17(7), 466; https://doi.org/10.3390/d17070466 - 3 Jul 2025
Viewed by 1888
Abstract
Plant–herbivore–parasitoid systems are poorly studied in the tropics. Enicospilus carmenae Campos and Palacio sp. nov. are described, originating from southern Mexico in the Yucatan Peninsula and establishing a new tri-trophic interaction. This species is a koinobiont larval endoparasitoid of the American silkworm moth [...] Read more.
Plant–herbivore–parasitoid systems are poorly studied in the tropics. Enicospilus carmenae Campos and Palacio sp. nov. are described, originating from southern Mexico in the Yucatan Peninsula and establishing a new tri-trophic interaction. This species is a koinobiont larval endoparasitoid of the American silkworm moth caterpillar Zanola verago (Cramer) (Lepidoptera: Apatelodidae) feeding on the shrub Piper neesianum C.DC. (Piperaceae) in a semi-evergreen forest. The host plant P. neesianum had no herbivore records to date, and a single collection event yielded the rearing of a new species of Enicospilus (Ichneumonidae, Ophioninae). Morphological, molecular (COI), biological, ecological, and geographical data are integrated to delineate the new species. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

23 pages, 6728 KB  
Article
Identification and Expression Analysis of G-Protein-Coupled Receptors Provide Insights into Functional and Mechanistic Responses to Herbivore-Induced Plant Volatiles of Paracarophenax alternatus
by Ruiheng Lin, Xu Chu, Yangming Zhang, Sikai Ke, Yunfeng Zheng, Wei Yu, Feiping Zhang and Songqing Wu
Int. J. Mol. Sci. 2025, 26(12), 5890; https://doi.org/10.3390/ijms26125890 - 19 Jun 2025
Viewed by 887
Abstract
Herbivore-induced plant volatiles (HIPVs) play a pivotal role in mediating tritrophic interactions between plants, herbivores, and their natural enemies. Paracarophenax alternatus, a parasitic mite targeting the egg stage of Monochamus alternatus, has emerged as a promising biocontrol agent. However, its ability [...] Read more.
Herbivore-induced plant volatiles (HIPVs) play a pivotal role in mediating tritrophic interactions between plants, herbivores, and their natural enemies. Paracarophenax alternatus, a parasitic mite targeting the egg stage of Monochamus alternatus, has emerged as a promising biocontrol agent. However, its ability to detect Pinus massoniana-derived HIPVs for host insect localization remains unclear. G-protein-coupled receptors (GPCRs) may play a role in mediating the perception of HIPVs and associated chemosensory signaling pathways in mites. In this study, a total of 85 GPCRs were identified from P. alternatus. All GPCRs exhibited conserved transmembrane domains and stage-specific expression patterns, with 21 receptors significantly upregulated in viviparous mites. Combined with two previously identified odorant receptors (ORs), six candidate chemosensory receptors were selected for molecular dynamics simulations to validate their binding stability with key volatile compounds. The results demonstrate that specific GPCRs likely facilitate HIPV detection in mites, enabling precise host localization within dynamic ecological niches. Our findings provide critical insights into the molecular basis of mite–host interactions and establish a framework for optimizing P. alternatus-based biocontrol strategies against pine wilt disease vectors. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 2841 KB  
Article
An Optimized Bioassay System for the Striped Flea Beetle, Phyllotreta striolata
by Liyan Yao, Xinhua Pu, Yuanlin Wu, Ke Zhang, Alexander Berestetskiy, Qiongbo Hu and Qunfang Weng
Insects 2025, 16(5), 510; https://doi.org/10.3390/insects16050510 - 10 May 2025
Cited by 1 | Viewed by 1279
Abstract
The striped flea beetle (SFB), Phyllotreta striolata, is a major pest of Brassicaceae crops, causing substantial yield losses worldwide. Effective biocontrol strategies, particularly the development of mycoinsecticides, require the identification of virulent entomopathogenic fungi (EPF) and the establishment of reliable bioassay systems. [...] Read more.
The striped flea beetle (SFB), Phyllotreta striolata, is a major pest of Brassicaceae crops, causing substantial yield losses worldwide. Effective biocontrol strategies, particularly the development of mycoinsecticides, require the identification of virulent entomopathogenic fungi (EPF) and the establishment of reliable bioassay systems. However, establishing reliable bioassay systems for SFB has been particularly challenging, especially for larval stages due to their recalcitrant rearing requirements. This study aimed to establish a standardized bioassay protocol to evaluate EPF efficacy against SFB. A specialized larval collection apparatus was developed, and the virulence of three EPF strains (Beauveria bassiana BbPs01, Metarhizium robertii MrCb01, and Cordyceps javanica IjH6102) was assessed against both adult and larval stages using a radish slice-based rearing system. Intriguingly, BbPs01 and MrCb01 exhibited significantly higher LT50 values in larvae than in adults, contrary to the typical pattern of greater larval susceptibility observed in most insect systems. We hypothesized that isothiocyanate—specifically sulforaphane, a compound abundant in radish tissues—exerts fungistatic effects that impair fungal growth and virulence. Follow-up experiments confirmed that radish-derived sulforaphane inhibited fungal activity. Through alternative host plant screening, Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis) was identified as an optimal larval diet that minimally interferes with EPF bioactivity, enabling reliable virulence assessments. This study presents critical methodological advancements for SFB biocontrol research, providing a robust framework for standardized larval bioassay and novel insights into plant secondary metabolite interactions with entomopathogens. The optimized system supports the development of targeted mycoinsecticides and contributes to a deeper understanding of tri-trophic interactions in crucifer pest management. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

11 pages, 1847 KB  
Article
Infection, Choice Behavior, and Cross-Infectivity of the Sculpted Damsel Bug, Nabis roseipennis, Offered the Tarnished Plant Bug, Lygus lineolaris, Infected with Entomopathogenic Nematodes
by James P. Glover, Nathan Spaulding, Marissa I. Nufer, Justin George, Maribel Portilla and Gadi V. P. Reddy
Insects 2025, 16(5), 475; https://doi.org/10.3390/insects16050475 - 30 Apr 2025
Cited by 1 | Viewed by 886
Abstract
The tarnished plant bug, Lygus lineolaris Palisot de Beauvois (Hemiptera: Miridae), is an economically important pest of row crops worldwide. Ten isolates of entomopathogenic nematodes (EPNs) (Rhabditida: Steinernematidae and Heterorhabditidae) were evaluated against the third instar nymphal stage of the tarnished plant bug [...] Read more.
The tarnished plant bug, Lygus lineolaris Palisot de Beauvois (Hemiptera: Miridae), is an economically important pest of row crops worldwide. Ten isolates of entomopathogenic nematodes (EPNs) (Rhabditida: Steinernematidae and Heterorhabditidae) were evaluated against the third instar nymphal stage of the tarnished plant bug and its generalist predator, the sculpted damsel bug, Nabis roseipennis Reuter (Hemiptera: Nabidae), one of the most abundant and commonly encountered damsel bugs in cotton and soybean agroecoscapes across the Southeastern United States. The objectives of these experiments were to assess the infectivity of entomopathogenic nematodes (EPN) by direct topical exposure against the sculpted damsel bug and tarnished plant bug, whether the predator prey choice is affected by EPN infection, and if feeding on EPN-infected tarnished plant bug (TPB) prey items could result in cross-infection of the predator. Mortality rates at a concentration of 200 infective juveniles (IJs)/mL significantly differed among isolates and insect species, ranging from 30% to 93% for tarnished plant bugs and from 6% to 38% for sculpted damsels, respectively. The third instars of L. lineolaris were more susceptible to the ten nematode isolates than N. roseipennis. Higher pathogenicity on the tarnished plant bug and a low mortality potential make strains HbHP88, HbVS, Sc17c+e, and SfSN the most promising candidates for the biological control of L. lineolaris under lab and greenhouse conditions while preserving beneficial predators of the Southeastern United States. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

25 pages, 2988 KB  
Article
White Oaks Genetic and Chemical Diversity Affect the Community Structure of Canopy Insects Belonging to Two Trophic Levels
by Elgar Castillo-Mendoza, Leticia Valencia-Cuevas, Patricia Mussali-Galante, Fernando Ramos-Quintana, Alejandro Zamilpa, Miriam Serrano-Muñoz, Juli Pujade-Villar and Efraín Tovar-Sánchez
Diversity 2025, 17(1), 62; https://doi.org/10.3390/d17010062 - 17 Jan 2025
Cited by 1 | Viewed by 1678
Abstract
The hybridization phenomenon increases genetic diversity and modifies recombinant individuals’ secondary metabolite (SMs) content, affecting the canopy-dependent community. Hybridization events occur when Quercus rugosa and Q. glabrescens oaks converge in sympatry. Here, we analyzed the effect of the genetic diversity (He) [...] Read more.
The hybridization phenomenon increases genetic diversity and modifies recombinant individuals’ secondary metabolite (SMs) content, affecting the canopy-dependent community. Hybridization events occur when Quercus rugosa and Q. glabrescens oaks converge in sympatry. Here, we analyzed the effect of the genetic diversity (He) and SMs of Q. rugosa, Q. glabrescens and hybrids on the community of gall-inducing wasps (Cynipidae) and their parasitoids on 100 oak canopy trees in two allopatric and two hybrid zones. Eighteen gall wasp species belonging to six genera and six parasitoid genera contained in four families were identified. The most representative parasitoid genera belonged to the Chalcidoidea family. Abundance, infestation levels and richness of gall wasps and their parasitoids registered the next pattern: Q. rugosa higher than the hybrids, and the hybrids equal to Q. glabrescens. Oak host genetic diversity was the variable with the highest influence on the quantitative SMs expression, richness and abundance of gall wasps and their parasitoids. The influence of SMs on gall wasps and their parasitoids showed the next pattern: scopoletin > quercitrin > rutin = caffeic acid = quercetin glucoside. Our findings indicate that genetic diversity may be a key factor influencing the dynamics of tri-trophic interactions that involve oaks. Full article
Show Figures

Figure 1

41 pages, 10663 KB  
Article
Forty-Five Years of Caterpillar Rearing in Area de Conservación Guanacaste (ACG) Northwestern Costa Rica: DNA Barcodes, BINs, and a First Description of Plant–Caterpillar–Ichneumonoid Interactions Detected
by Donald L. J. Quicke, Daniel H. Janzen, Winnie Hallwachs, Mike J. Sharkey, Paul D. N. Hebert and Buntika A. Butcher
Diversity 2024, 16(11), 683; https://doi.org/10.3390/d16110683 - 7 Nov 2024
Cited by 5 | Viewed by 4633
Abstract
Foliage-feeding wild caterpillars have been collected and reared year-round by 1–30 rural resident parataxonomists in the Area de Conservación Guanacaste (ACG) in northwestern Costa Rica since 1978. The aim of the work was to describe the diversity and interactions of Lepidoptera and their [...] Read more.
Foliage-feeding wild caterpillars have been collected and reared year-round by 1–30 rural resident parataxonomists in the Area de Conservación Guanacaste (ACG) in northwestern Costa Rica since 1978. The aim of the work was to describe the diversity and interactions of Lepidoptera and their associations with larval food plants and parasitoids in a diverse tropical community. A total of 457,816 caterpillars developed into a moth or butterfly, and these were identified to the family and species/morphospecies, with 151,316 having been successfully barcoded and assigned a Barcode Index Number (BIN) and/or “scientific name”. The host food plant was usually identified to the species or morphospecies. In addition to adult moths and butterflies, rearings also yielded many hundreds of species of parasitic wasps and tachinid flies, many of which were also DNA-barcoded and assigned a name and/or BIN. Increasingly over recent years, these have been identified or described by expert taxonomists. Here, we provide a summary of the number of species of ichneumonoid (Ichneumonidae and Braconidae) parasitoids of the caterpillars, their hosts, the host food plants involved, the bi- and tritrophic interactions, and their relationships to the caterpillar sampling effort. The dataset includes 16,133 and 9453 independent rearings of Braconidae and Ichneumonidae, respectively, collectively representing 31 subfamilies, all with parasitoid barcodes and host and host food plant species-level identifications. Host caterpillars collectively represented 2456 species, which, in turn, were collectively eating 1352 species of food plants. Species accumulation curves over time for parasitoids, hosts, and plants show various asymptotic trends. However, no asymptotic trends were detected for numbers of unique parasitoid–host and host–plant bitrophic interactions, nor for tritrophic interactions, after 1983, because climate change then began to conspicuously reduce caterpillar densities. Parasitoid host ranges, the proportions of specialists at the host species and host genus levels, host family utilisation, and host guild sizes show some differences among taxa and are discussed in turn. Ichneumonidae are shown to preferentially parasitise caterpillars of larger-bodied hosts compared to Braconidae. Several of the host plant species from which caterpillars were collected have been introduced from outside of the Americas and their utilisation by endemic parasitoids is described. The obligately hyperparasitoid ichneumonid subfamily Mesochorinae is dealt with separately and its strong association with microgastrine braconid primary parasitoids is illustrated. We discuss the implications for studies of tropical insect community food web ecology and make suggestions for future work. The aim was to make available the data from this remarkable study and to provide an overview of what we think are some of the more interesting relationships that emerge—other scientists/readers are expected to have different questions that they will go on to explore the data to answer. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

10 pages, 739 KB  
Article
Maize Inbred Leaf and Stalk Tissue Resistance to the Pathogen Fusarium graminearum Can Influence Control Efficacy of Beauveria bassiana towards European Corn Borers and Fall Armyworms
by Patrick F. Dowd and Eric T. Johnson
Int. J. Plant Biol. 2024, 15(3), 673-682; https://doi.org/10.3390/ijpb15030049 - 19 Jul 2024
Cited by 1 | Viewed by 1443
Abstract
Plant resistance mechanisms to pathogens can lead to a lowered efficacy of insect microbial biocontrol agents, but the influence of plant variety has been little-studied. Leaves and stalks from twelve maize (Zea mays L.) inbreds with different plant pathogen resistance were evaluated [...] Read more.
Plant resistance mechanisms to pathogens can lead to a lowered efficacy of insect microbial biocontrol agents, but the influence of plant variety has been little-studied. Leaves and stalks from twelve maize (Zea mays L.) inbreds with different plant pathogen resistance were evaluated for their influence on the efficacy of Beauveria bassiana (Bals.-Criv.) Vuill. against European corn borers (Ostrinia nubilalis (Hübner)). For leaf assays with first instar caterpillars, mortality on day 2 ranged from an inbred-dependent high of 76.1% to a low of 10.0% for European corn borers in leaf assays. For stalk assays with third instar caterpillars, mortality on day 4 ranged from an inbred dependent high of 83.0% and 75.0% to a low of 0.0% and 8.3% for fall armyworms and European corn borers, respectively. Lesion size ratings due to Fusarium graminearum (Schwabe) applied to tissues were often significantly correlated with the mortality levels of B. bassiana-treated caterpillars that fed on leaves and stalks. This study suggests that the influence of plant varieties on the efficacy of insect microbial pathogens can vary depending on the insect species involved and the plant tissue, and this is worth considering when new plant varieties and biocontrol strains are being developed whenever practical. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

11 pages, 1721 KB  
Article
An Earthworm Peptide Alters Soil Nematode, Microbial, and Nutrient Dynamics: A Novel Mechanism of Soil Food Web Feedbacks
by Fei Yu, Yaocheng Qi, Yifeng Yan, Hao Xia, Qing Dong, Chaoqiang Jiang, Chaolong Zu and Jia Shen
Agronomy 2024, 14(3), 435; https://doi.org/10.3390/agronomy14030435 - 23 Feb 2024
Cited by 2 | Viewed by 2560
Abstract
Earthworms are soil macrofauna that control soil ecosystems by strongly influencing soil nematodes, microorganisms, and nutrient cycling, as well as soil environmental factors. We have discovered an earthworm cyclic peptide that disrupts nematode DNA, affecting its lifespan, reproduction, and feeding preferences. To investigate [...] Read more.
Earthworms are soil macrofauna that control soil ecosystems by strongly influencing soil nematodes, microorganisms, and nutrient cycling, as well as soil environmental factors. We have discovered an earthworm cyclic peptide that disrupts nematode DNA, affecting its lifespan, reproduction, and feeding preferences. To investigate the effects of this peptide on soil, it was added to soil, and changes in soil nematode, bacterial and fungal communities, soil nutrient contents, and basal respiration were measured on days 5 and 21. The results showed that the peptide reduced soil basal respiration on day 5 and soil NO3-N on day 21, decreased soil fungivores nematodes on day 5 and soil nematode abundance on day 21, and increased soil fungal community richness and diversity. It also altered the soil bacterial community structure between day 5 and the soil fungal community structure on days 5 and 21. The peptide regulates the soil environment by influencing the structure of soil bacterial and fungal communities through the soil nematode community, as demonstrated by partial least squares path modelling (PLS-PM) analyses. Earthworm cyclic peptides mediates tri-trophic interactions between earthworms, nematodes, microbes, and environmental factors, providing new insights into soil biota interactions and feedback in dynamic soil food webs. Full article
Show Figures

Figure 1

Back to TopTop