Phytochemical-Mediated Tritrophic Interactions: Effects of Pepper and Eggplant Cultivars on the Green Peach Aphid Myzus persicae (Sulzer) and Its Predators
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plants and Insects’ Culture
2.2. Life Table Parameters
2.3. Bell Pepper and Eggplant Metabolite Assay
2.3.1. Total Phenolic Compounds
2.3.2. Flavonoids
2.3.3. Anthocyanin
2.3.4. Polyphenol Oxidase (PPO)
2.3.5. Superoxide Dismutase (SOD)
2.3.6. Catalase (CAT)
2.4. Determination of Phenoloxidase (PO) Activity in Aphid Hemolymph
2.4.1. Hemolymph Collection
2.4.2. PO Preparation
2.4.3. Protein Content Determination
2.5. Statistical Analysis
3. Results
3.1. Development, Survival, and Fecundity of M. persicae
3.2. Development, Survival, and Fecundity of A. aphidimyza
3.3. Development, Survival, and Fecundity of C. carnea
3.4. Biochemical Compounds of Host Plants
3.5. Activities of Defensive Enzymes in Non-Infested Leaves
3.6. Effects of Different Host Plants on PO Activity of M. persicae
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Trees: An Identification and Information Guide. Orient. Insects 1994, 35, 104. [Google Scholar] [CrossRef]
- Ali, J.; Bayram, A.; Mukarram, M.; Zhou, F.; Karim, M.F.; Hafez, M.M.A.; Mahamood, M.; Yusuf, A.A.; King, P.J.H.; Adil, M.F.; et al. Peach–Potato Aphid Myzus persicae: Current Management Strategies, Challenges, and Proposed Solutions. Sustainability 2023, 15, 11150. [Google Scholar] [CrossRef]
- Ali, J.; Munawar, A.; Abbas, S.; Khan, K.A.; Ghramh, H.A.; Li, Q.; Chen, R.; Bayram, A. Host Adaptation in Model Aphid Pest Myzus persicae (Hemiptera: Aphididae): Genetic, Physiological, and Behavioral Perspectives. J. Econ. Entomol. 2025, 118, toaf116. [Google Scholar] [CrossRef]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The Evolution of Insecticide Resistance in the Peach Potato Aphid, Myzus persicae. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current Status of Pesticide Effects on Environment, Human Health and It’s Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Boulanger, F.X.; Jandricic, S.; Bolckmans, K.; Wäckers, F.L.; Pekas, A. Optimizing Aphid Biocontrol with the Predator Aphidoletes aphidimyza, Based on Biology and Ecology. Pest Manag. Sci. 2019, 75, 1479–1493. [Google Scholar] [CrossRef] [PubMed]
- van Lenteren, J.C. The State of Commercial Augmentative Biological Control: Plenty of Natural Enemies, but a Frustrating Lack of Uptake. BioControl 2012, 57, 1–20. [Google Scholar] [CrossRef]
- Dai, X.; Wang, Y.; Liu, Y.; Wang, R.; Su, L.; Yin, Z.; Zhao, S.; Chen, H.; Zheng, L.; Dong, X.; et al. Molecular Correlates of Diapause in Aphidoletes aphidimyza. Insects 2024, 15, 299. [Google Scholar] [CrossRef]
- Sarwar, M. The Propensity of Different Larval Stages of Lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) to Control Aphid Myzus persicae (Sulzer) (Homoptera: Aphididae) Evaluated on Canola Brassica napus L. Songklanakarin J. Sci. Technol. 2014, 36, 143–148. [Google Scholar]
- Shareef, M.F.; Raza, A.B.M.; Majeed, M.Z.; Ahmed, K.S.; Raza, W.; Ali, M.A. Efficiency of Chrysoperla carnea and Trichogramma chilonis against Infestation of Citrus Leaf Miner (Phyllocnistis citrella Stainton). J. Entomol. (AJE) 2016, 9, 14–19. [Google Scholar]
- Hassanpour, M.; Iranipour, S.; Nouri-Ganbalani, G.; Mohaghegh-Neishabouri, J. Biological and Life Table Parameters of the Green Lacewing, Chrysoperla carnea (Neu., Chrysopidae) in Feeding on Different Preys in Laboratory Conditions. Biol. Control Pests Plant Dis. 2014, 3, 17–30. [Google Scholar]
- Letardi, A.; Abdel-Dayem, M.S.; Al Dhafer, H.M. New Faunal Data on Lacewings (Insecta, Neuroptera) Collected from Saudi Arabia. Zookeys 2020, 2020, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Khfif, K.; Labaioui, Z.; Koledenkova, K.; Mokrini, F.; Sbaghi, M.; Zaid, A.; Brostaux, Y.; El Rhaffari, L. Population Dynamics of the Leafhopper Jacobiasca lybica (Hemiptera: Cicadellidae) within Vineyards and Citrus Orchards of Morocco. Int. J. Pest Manag. 2025, 71, 330–342. [Google Scholar] [CrossRef]
- Hassan, S.; Shad, S.A. Polygenic, Autosomal, and Stable Spirotetramat Resistance in Chrysoperla carnea Resulting in Increased Fitness. PLoS ONE 2024, 19, e0310142. [Google Scholar] [CrossRef]
- Gill, R.; Gupta, A.; Taggar, G.; Taggar, M. Review Article: Role of Oxidative Enzymes in Plant Defenses against Insect Herbivory. Acta Phytopathol. Entomol. Hung. 2010, 45, 277–290. [Google Scholar] [CrossRef]
- Heil, M.; Karban, R. Explaining Evolution of Plant Communication by Airborne Signals. Trends Ecol. Evol. 2010, 25, 137–144. [Google Scholar] [CrossRef]
- Li, R.; Yang, Y.; Lou, H.; Wang, W.; Yan, J.; Xie, D.; Shan, X. Electrical and Calcium Signaling in Plant Systemic Defense: From Local Wounds to Global Responses. New Phytol. 2025, 247, 1633–1642. [Google Scholar] [CrossRef]
- Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Plant Responses to Herbivory, Wounding, and Infection. Int. J. Mol. Sci. 2022, 23, 7031. [Google Scholar] [CrossRef] [PubMed]
- Boeckler, G.A.; Gershenzon, J.; Unsicker, S.B. Phenolic Glycosides of the Salicaceae and Their Role as Anti-Herbivore Defenses. Phytochemistry 2011, 72, 1497–1509. [Google Scholar] [CrossRef]
- Shinya, T.; Hojo, Y.; Desaki, Y.; Christeller, J.T.; Okada, K.; Shibuya, N.; Galis, I. Modulation of Plant Defense Responses to Herbivores by Simultaneous Recognition of Different Herbivore-Associated Elicitors in Rice. Sci. Rep. 2016, 6, srep32537. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Khan, M.A.; Asaf, S.; Lubna; Park, J.R.; Lee, I.J.; Kim, K.M. Flavonone 3-hydroxylase Relieves Bacterial Leaf Blight Stress in Rice via Overaccumulation of Antioxidant Flavonoids and Induction of Defense Genes and Hormones. Int. J. Mol. Sci. 2021, 22, 6152. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, M.M.H. The Potential of Secondary Metabolites in Plant Material as Deterents against Insect Pests: A Review. Afr. J. Pure Appl. Chem. 2010, 4, 243–246. [Google Scholar]
- Torres, M.A. ROS in Biotic Interactions. Physiol. Plant. 2010, 138, 414–429. [Google Scholar] [CrossRef]
- Naliwajski, M.; Skłodowska, M. The Relationship between the Antioxidant System and Proline Metabolism in the Leaves of Cucumber Plants Acclimated to Salt Stress. Cells 2021, 10, 609. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.K. Oxidative Stress in Crop Plants. In Agronomic Crops: Volume 3: Stress Responses and Tolerance; Springer: Berlin/Heidelberg, Germany, 2020; Volume 3, pp. 349–380. ISBN 9789811500251. [Google Scholar]
- Bhuyan, M.H.M.B.; Hasanuzzaman, M.; Parvin, K.; Mohsin, S.M.; Al Mahmud, J.; Nahar, K.; Fujita, M. Nitric Oxide and Hydrogen Sulfide: Two Intimate Collaborators Regulating Plant Defense against Abiotic Stress. Plant Growth Regul. 2020, 90, 409–424. [Google Scholar] [CrossRef]
- Hernández, J.A.; Ferrer, M.A.; Jiménez, A.; Barceló, A.R.; Sevilla, F. Antioxidant Systems and O2·-/H2O2 Production in the Apoplast of Pea Leaves. Its Relation with Salt-Induced Necrotic Lesions in Minor Veins. Plant Physiol. 2001, 127, 817–831. [Google Scholar] [CrossRef]
- Janku, M.; Luhová, L.; Petrivalský, M. On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants 2019, 8, 105. [Google Scholar] [CrossRef]
- Boeckx, T.; Winters, A.; Webb, K.J.; Kingston-Smith, A.H. Detection of Potential Chloroplastic Substrates for Polyphenol Oxidase Suggests a Role in Undamaged Leaves. Front. Plant Sci. 2017, 8, 237. [Google Scholar] [CrossRef]
- Esmaeili, N.; Ebrahimzadeh, H.; Abdi, K. Correlation between Polyphenol Oxidase (PPO) Activity and Total Phenolic Contents in Crocus Sativus L. Corms during Dormancy and Sprouting Stages. Pharmacogn. Mag. 2017, 13, S519–S524. [Google Scholar] [CrossRef]
- Barbehenn, R.; Dukatz, C.; Holt, C.; Reese, A.; Martiskainen, O.; Salminen, J.P.; Yip, L.; Tran, L.; Constabel, C.P. Feeding on Poplar Leaves by Caterpillars potentiates Foliar Peroxidase Action in Their Guts and Increases Plant Resistance. Oecologia 2010, 164, 993–1004. [Google Scholar] [CrossRef]
- Li, L.; Steffens, J.C. Overexpression of Polyphenol Oxidase in Transgenic Tomato Plants Results in Enhanced Bacterial Disease Resistance. Planta 2002, 215, 239–247. [Google Scholar] [CrossRef]
- Holley, A.K.; Dhar, S.K.; St. Clair, D.K. Manganese Superoxide Dismutase vs. P53: Regulation of Mitochondrial ROS. Mitochondrion 2010, 10, 649–661. [Google Scholar] [CrossRef]
- Batinic-Haberle, I.; Tovmasyan, A.; Spasojevic, I. An Educational Overview of the Chemistry, Biochemistry and Therapeutic Aspects of Mn Porphyrins—From Superoxide Dismutation to H2O2-Driven Pathways. Redox Biol. 2015, 5C, 43–65, Erratum in Redox Biol. 2015, 6, 656. [Google Scholar] [CrossRef]
- Naranjo, S.E.; Ellsworth, P.C.; Frisvold, G.B. Economic Value of Biological Control in Integrated Pest Management of Managed Plant Systems. Annu. Rev. Entomol. 2015, 60, 621–645. [Google Scholar]
- Rani, P.U.; Jyothsna, Y. Biochemical and Enzymatic Changes in Rice Plants as a Mechanism of Defense. Acta Physiol. Plant. 2010, 32, 695–701. [Google Scholar] [CrossRef]
- Rashid War, A.; Kumar Taggar, G.; Hussain, B.; Sachdeva Taggar, M.; Nair, R.M.; Sharma, H.C. Plant Defense Against Herbivory and Insect Adaptations. AoB Plants 2018, 10, ply037. [Google Scholar] [CrossRef]
- Appu, M.; Ramalingam, P.; Sathiyanarayanan, A.; Huang, J. An Overview of Plant Defense-Related Enzymes Responses to Biotic Stresses. Plant Gene 2021, 27, 100302. [Google Scholar] [CrossRef]
- Giles, K.L.; Berberet, R.C.; Zarrabi, A.A.; Dillwith, J.W. Influence of Alfalfa Cultivar on Suitability of Acyrthosiphon kondoi (Homoptera: Aphididae) for Survival and Development of Hippodamia convergens and Coccinella septempunctata (Coleoptera: Coccinellidae). J. Econ. Entomol. 2002, 95, 552–557. [Google Scholar] [CrossRef]
- Lundgren, J.G.; Gassmann, A.J.; Bernal, J.; Duan, J.J.; Ruberson, J. Ecological Compatibility of GM Crops and Biological Control. Crop Prot. 2009, 28, 1017–1030. [Google Scholar] [CrossRef]
- Hilker, M.; Meiners, T. Plants and Insect Eggs: How Do They Affect Each Other? Phytochemistry 2011, 72, 1612–1623. [Google Scholar] [CrossRef]
- Sarfraz, M.; Dosdall, L.M.; Keddie, B.A. Diamondback Moth-Host Plant Interactions: Implications for Pest Management. Crop Prot. 2006, 25, 625–639. [Google Scholar] [CrossRef]
- Shikano, I.; Ericsson, J.D.; Cory, J.S.; Myers, J.H. Indirect Plant-Mediated Effects on Insect Immunity and Disease Resistance in a Tritrophic System. Basic Appl. Ecol. 2010, 11, 15–22. [Google Scholar] [CrossRef]
- Wilson, J.K.; Ruiz, L.; Davidowitz, G. Dietary Protein and Carbohydrates Affect Immune Function and Performance in a Specialist Herbivore Insect (Manduca sexta). Physiol. Biochem. Zool. 2019, 92, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Chamani, M.; Dadpour, M.R.; Dehghanian, Z.; Panahirad, S.; Chenari Bouket, A.; Oszako, T.; Kumar, S. From Digestion to Detoxification: Exploring Plant Metabolite Impacts on Insect Enzyme Systems for Enhanced Pest Control. Insects 2025, 16, 392. [Google Scholar] [CrossRef]
- Dicke, M. Behavioural and Community Ecology of Plants That Cry for Help. Plant Cell Environ. 2009, 32, 654–665. [Google Scholar] [CrossRef]
- Chamani, M.; Naseri, B.; Rafiee-Dastjerdi, H.; Emaratpardaz, J.; Ebadollahi, A.; Palla, F. Some Physiological Effects of Nanofertilizers on Wheat-Aphid Interactions. Plants 2023, 12, 2602. [Google Scholar] [CrossRef]
- Zanganeh, L.; Hassanpour, M.; Madadi, H.; Razmjou, J.; Behnamian, M. Nanofertilizers and Plant Metabolites: Investigating Their Influence on Trophic Interactions in the Cucumber-Melon Aphid-Green Lacewing. Plant Stress 2024, 12, 100436. [Google Scholar] [CrossRef]
- Zahedi, A.; Razmjou, J.; Rafiee-Dastjerdi, H.; Leppla, N.C.; Golizadeh, A.; Hassanpour, M.; Ebadollahi, A. Tritrophic Interactions of Cucumber Cultivar, Aphis gossypii (Hemiptera: Aphididae), and Its Predator Hippodamia variegata (Coleoptera: Coccinellidae). J. Econ. Entomol. 2019, 112, 1774–1779. [Google Scholar] [CrossRef]
- Razmjou, J.; Moharramipour, S.; Fathipour, Y.; Mirhoseini, S.Z. Demographic Parameters of Cotton Aphid, Aphis gossypii Glover (Homoptera: Aphididae) on Five Cotton Cultivars. Insect Sci. 2006, 13, 205–210. [Google Scholar] [CrossRef]
- Huang, Y.B.; Chi, H. Age-Stage, Two-Sex Life Tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a Discussion on the Problem of Applying Female Age-Specific Life Tables to Insect Populations. Insect Sci. 2012, 19, 263–273. [Google Scholar] [CrossRef]
- Cortés, E. Perspectives on the Intrinsic Rate of Population Growth. Methods Ecol. Evol. 2016, 7, 1136–1145. [Google Scholar] [CrossRef]
- Ren, X.; Li, X.; Huang, J.; Zhang, Z.; Hafeez, M.; Zhang, J.; Chen, L.; Zhou, S.; Zhang, L.; Lu, Y. Linking Life Table and Predation Rate for Evaluating Temperature Effects on Orius strigicollis for the Biological Control of Frankliniella Occidentalis. Front. Sustain. Food Syst. 2022, 6, 1026115. [Google Scholar] [CrossRef]
- Golizadeh, A.; Jafari-Behi, V. Biological Traits and Life Table Parameters of Variegated Lady Beetle, Hippodamia variegata (Coleoptera: Coccinellidae) on Three Aphid Species. Appl. Entomol. Zool. 2012, 47, 199–205. [Google Scholar] [CrossRef]
- Roy, M.; Brodeur, J.; Cloutier, C. Effect of Temperature on Intrinsic Rates of Natural Increase (Rm) of a Coccinellid and Its Spider Mite Prey. BioControl 2003, 48, 57–72. [Google Scholar] [CrossRef]
- Maleknia, B.; Fathipour, Y.; Soufbaf, M. How Greenhouse Cucumber Cultivars Affect Population Growth and Two-Sex Life Table Parameters of Tetranychus urticae (Acari: Tetranychidae). Int. J. Acarol. 2016, 42, 70–78. [Google Scholar] [CrossRef]
- Vogt, H.; Bigler, F.; Brown, K.; Candolfi, M.P.; Kemmeter, F.; Ch, K.; Moll, M.; Travis, A.; Ufer, A.; Viinuela, E.; et al. Laboratory Method to Test Effects of Plant Protection Products on Larvae of Chrysoperla carnea (Neuroptera: Chrysopidae). In Guidelines to Evaluate Side-Effects of Plant Protection Products to Non-Target Arthropods; IOBC/WPRS: Gent, Belgium, 2000; pp. 27–44. [Google Scholar]
- Havelka, J.; Zemek, R. Intraspecific Variability of Aphidophagous Gall Midge Aphidoletes aphidimyza (Rondani) (Dipt., Cecidomyiidae) and Its Importance for Biological Control of Aphids: 1. Ecological and Morphological Characteristics of Populations. J. Appl. Entomol. 1988, 105, 280–288. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the Total Phenolic, Flavonoid and Proline Contents in Burkina Fasan Honey, as Well as Their Radical Scavenging Activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Mashabela, M.N.; Selahle, K.M.; Soundy, P.; Crosby, K.M.; Sivakumar, D. Bioactive Compounds and Fruit Quality of Green Sweet Pepper Grown under Different Colored Shade Netting during Postharvest Storage. J. Food Sci. 2015, 80, H2612–H2618. [Google Scholar] [CrossRef]
- Wang, S.Y.; Bowman, L.; Ding, M. Methyl Jasmonate Enhances Antioxidant Activity and Flavonoid Content in Blackberries (Rubus Sp.) and Promotes Antiproliferation of Human Cancer Cells. Food Chem. 2008, 107, 1261–1269. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G.; et al. Antioxidant Capacity as Influenced by Total Phenolic and Anthocyanin Content, Maturity, and Variety of Vaccinium Species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Zhang, S.-Z.; Zhang, F.; Hua, B.-Z. Enhancement of Phenylalanine Ammonia Lyase, Polyphenoloxidase, and Peroxidase in Cucumber Seedlings by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Infestation. Agric. Sci. China 2008, 7, 82–87. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, G.; Li, J.; Qian, Q.; Yu, J. Silicon Alleviates Salt Stress and Increases Antioxidant Enzymes Activity in Leaves of Salt-Stressed Cucumber (Cucumis sativus L.). Plant Sci. 2004, 167, 527–533. [Google Scholar] [CrossRef]
- Taheri, A.; Behnamian, M.; Dezhsetan, S.; Karimirad, R. Shelf Life Extension of Bell Pepper by Application of Chitosan Nanoparticles Containing Heracleum Persicum Fruit Essential Oil. Postharvest Biol. Technol. 2020, 170, 111313. [Google Scholar] [CrossRef]
- de Azambuja, P.; Garcia, E.S.; Ratcliffe, N.A. Aspects of Classification of Hemiptera Hemocytes from Six Triatomine Species. Mem. Inst. Oswaldo Cruz 1991, 86, 1–10. [Google Scholar] [CrossRef]
- Leonard, C.; Söderhäll, K.; Ratcliffe, N.A. Studies on Prophenoloxidase and Protease Activity of Blaberus craniifer Haemocytes. Insect Biochem. 1985, 15, 803–810. [Google Scholar] [CrossRef]
- Zibaee, A.; Bandani, A.R.; Malagoli, D. Purification and Characterization of Phenoloxidase from the Hemocytes of Eurygaster integriceps (Hemiptera: Scutelleridae). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 158, 117–123. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Chi, H.; Liu, H. Two New Methods for the Study of Insect Population Ecology. Bull. Inst. Zool. Acad. Sin. 1985, 24, 225–240. [Google Scholar]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis; National Chung Hsing University: Taichung, Taiwan, 2018; Volume 197, p. 197. [Google Scholar]
- Johnson, R.W. An Introduction to the Bootstrap; Chapman and Hall/CRC: Boca Raton, FL, USA, 2001; Volume 23, ISBN 0429246595. [Google Scholar]
- Chi, H.; Yang, T.C. Two-Sex Life Table and Predation Rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) Fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environ. Entomol. 2003, 32, 327–333. [Google Scholar] [CrossRef]
- Team, R.C. A Language and Environment for Statistical Computing. R Found. Stat. Comput. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- La Rossa, F.R.; Vasicek, A.; López, M.C. Effects of Pepper (Capsicum annuum) Cultivars on the Biology and Life Table Parameters of Myzus persicae (Sulz.) (Hemiptera: Aphididae). Neotrop. Entomol. 2013, 42, 634–641. [Google Scholar] [CrossRef]
- Žnidarčič, D.; Valič, N.; Trdan, S. Epicuticular Wax Content in the Leaves of Cabbage (Brassica oleracea L. Var. Capitata) as a Mechanical Barrier against Three Insect Pests. Acta Agric. Slov. 2008, 91, 361–370. [Google Scholar] [CrossRef]
- Pappas, M.L.; Broekgaarden, C.; Broufas, G.D.; Kant, M.R.; Messelink, G.J.; Steppuhn, A.; Wäckers, F.; van Dam, N.M. Induced Plant Defences in Biological Control of Arthropod Pests: A Double-Edged Sword. Pest Manag. Sci. 2017, 73, 1780–1788. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.A.; Ode, P.J.; Oliveira-Hofman, C.; Harwood, J.D. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities. Front. Plant Sci. 2016, 7, 1794. [Google Scholar] [CrossRef]
- Ghorbanian, M.; Fathipour, Y.; Talebi, A.A.; Reddy, G.V.P. Different Pepper Cultivars Affect Performance of Second (Myzus persicae) and Third (Diaeretiella rapae) Trophic Levels. J. Asia. Pac. Entomol. 2019, 22, 194–202. [Google Scholar] [CrossRef]
- Liu, Z.; Li, D.; Gong, P.; Wu, K. Life Table Studies of the Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on Different Host Plants. Environ. Entomol. 2004, 33, 1570–1576. [Google Scholar] [CrossRef]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of Plant Secondary Metabolites: A Historical Perspective. Plant Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Abedi, Z.; Golizadeh, A.; Soufbaf, M.; Hassanpour, M.; Jafari-Nodoushan, A.; Akhavan, H.R. Relationship Between Performance of Carob Moth, Ectomyelois Ceratoniae zeller (Lepidoptera: Pyralidae) and Phytochemical Metabolites in Various Pomegranate Cultivars. Front. Physiol. 2019, 10, 1425. [Google Scholar] [CrossRef]
- Mardani-Talaee, M.; Nouri-Ganblani, G.; Razmjou, J.; Hassanpour, M.; Naseri, B.; Asgharzadeh, A. Effects of Chemical, Organic and Bio-Fertilizers on Some Secondary Metabolites in the Leaves of Bell Pepper (Capsicum annuum) and Their Impact on Life Table Parameters of Myzus persicae (Hemiptera: Aphididae). J. Econ. Entomol. 2016, 109, 1231–1240. [Google Scholar] [CrossRef]
- Bhonwong, A.; Stout, M.J.; Attajarusit, J.; Tantasawat, P. Defensive Role of Tomato Polyphenol Oxidases against Cotton Bollworm Helicoverpa armigera and Beet Armyworm Spodoptera exigua. J. Chem. Ecol. 2009, 35, 28–38. [Google Scholar] [CrossRef]
- Riddick, E.W.; Wu, Z.; Eller, F.J.; Berhow, M.A. Utilization of Quercetin as an Oviposition Stimulant by Lab-Cultured Coleomegilla maculata in the Presence of Conspecifics and a Tissue Substrate. Insects 2018, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.P.; Simpson, S.J.; Wilson, K. Dietary Protein-Quality Influences Melanization and Immune Function in an Insect. Funct. Ecol. 2008, 22, 1052–1061. [Google Scholar] [CrossRef]
Nymph Developmental Time (day) | |||||||
---|---|---|---|---|---|---|---|
Cultivar | 1st Instar | 2nd Instar | 3rd Instar | 4th Instar | Total Preadult | Adult Longevity (day) | Fecundity (Nymph/Female) |
SM (Bell Pepper) | 2.10 ± 0.0 a | 1.82 ± 0.0 b | 1.80 ± 0.0 b | 1.91 ± 0.1 a | 7.63 ± 0.1 b | 22.20 ± 0.9 a | 49.37 ± 3.8 a |
California Wonder (Bell Pepper) | 2.02 ± 0.1 ab | 2.06 ± 0.1 b | 2.13 ± 0.1 a | 1.46 ± 0.0 b | 7.67 ± 0.1 b | 18.80 ± 0.8 b | 36.09 ± 2.4 b |
Longo (Eggplant) | 2.18 ± 0.1 a | 2.52 ± 0.1 a | 2.06 ± 0.1 ab | 2.02 ± 0.1 a | 8.78 ± 0.3 a | 16.70 ± 1.0 b | 29.13 ± 2.8 b |
Kemer (Eggplant) | 1.75 ± 0.0 b | 1.87 ± 0.1 b | 1.85 ± 0.1 ab | 1.38 ± 0.0 b | 6.85 ± 0.2 c | 20.76 ± 1.0 a | 47.52 ± 3.6 a |
Parameter (Mean ± SE) | ||||
---|---|---|---|---|
Cultivar | R0 (Offspring) | r (day −1) | λ (day −1) | T (day) |
SM (Bell Pepper) | 44.43 ± 4.03 a | 0.249 ± 0.008 b | 1.282 ± 0.001 b | 15.23 ± 0.3 a |
California Wonder | 32.48 ± 2.66 b | 0.248 ± 0.008 b | 1.281 ± 0.001 b | 14.02 ± 0.3 b |
(Bell Pepper) | ||||
Longo (Eggplant) | 25.64 ± 2.81 b | 0.216 ± 0.009 c | 1.241 ± 0.001 c | 14.95 ± 0.3 ab |
Kemer (Eggplant) | 44.67 ± 3.75 a | 0.290 ± 0.009 a | 1.337 ± 0.001 a | 13.07 ± 0.2 c |
Immature Developmental Time (day) | Adult Longevity (day) | |||||
---|---|---|---|---|---|---|
Cultivar | Egg | Larva | Pupa | Preadult | Female | Male |
SM (Bell Pepper) | 2.19 ± 0.0 a | 3.78 ± 0.1 ab | 7.53 ± 0.0 ab | 13.5 ± 0.1 b | 6.31 ± 0.2 a | 4.27 ± 0.3 a |
California Wonder (Bell Pepper) | 2.16 ± 0.0 a | 3.69 ± 0.1 ab | 7.49 ± 0.0 ab | 13.34 ± 0.2 b | 6.45 ± 0.3 a | 4.66 ± 0.3 a |
Longo (Eggplant) | 2.07 ± 0.0 b | 3.60 ± 0.1 b | 7.16 ± 0.0 b | 12.83 ± 0.3 b | 6.81 ± 0.2 a | 4.78 ± 0.2 a |
Kemer (Eggplant) | 2.24 ± 0.0 a | 4.02 ± 0.0 a | 7.85 ± 0.0 a | 14.11 ± 0.1 a | 6.16 ± 0.2 b | 4.09 ± 0.2 b |
Reproduction | ||||
---|---|---|---|---|
Cultivar | TPOP(day) | APOP (day) | Oviposition Period (day) | Fecundity (Egg/Female) |
SM (Bell Pepper) | 14.68 ± 0.2 ab | 1.36 ± 0.1 ab | 4.63 ± 0.2 ab | 21.05 ± 2.0 b |
California Wonder (Bell Pepper) | 14.26 ± 0.2 b | 1.36 ± 0.1 ab | 5.15 ± 0. 2 a | 24.30 ± 2.2 ab |
Longo (Eggplant) | 13.59 ± 0.1 c | 1.18 ± 0.1 b | 5.31 ± 0.2 a | 27.24 ± 2.a |
Kemer (Eggplant) | 15.22 ± 0.2 a | 1.55 ± 0.1 a | 4.21 ± 0.2 b | 19.55 ± 1.9 b |
Parameter (Mean ± SE) | ||||
---|---|---|---|---|
Cultivar | R0 (Offspring) | r (day −1) | λ (day −1) | T (day) |
SM (Bell Pepper) | 8.00 ± 1.6 a | 0.120 ± 0.001 ab | 1.127 ± 0.001 ab | 17.13 ± 0.2 a |
California Wonder | 9.73 ± 1.8 a | 0.134 ± 0.001 ab | 1.144 ± 0.001 ab | 16.72 ± 0.2 ab |
(Bell Pepper) | ||||
Longo (Eggplant) | 11.98 ± 2.1 a | 0.150 ± 0.001 a | 1.162 ± 0.001 a | 16.34 ± 0.1 b |
Kemer (Eggplant) | 7.03 ± 1.5 a | 0.110 ± 0.001 b | 1.117 ± 0.001 b | 17.37 ± 0.2 a |
Immature Developmental Time (day) | Adult Longevity (day) | |||||
---|---|---|---|---|---|---|
Cultivar | Egg | Larva | Pupa | Preadult | Female | Male |
SM (Bell Pepper) | 3.42 ± 0.1 ab | 11.27 ± 0.2 a | 8.57 ± 0.0 ab | 23.27 ± 0.2 a | 59.42 ± 2.3 b | 52.53 ± 2.7 b |
California Wonder (Bell Pepper) | 3.23 ±0.1 bc | 8.83 ± 0.1 c | 7.99 ± 0.0 c | 20.05 ± 0.2 c | 59.65 ± 3.6 ab | 59.77 ± 3.4 a |
Longo (Eggplant) | 3.05 ± 0.1 c | 10.64 ± 0.2 a | 8.27 ± 0.1 bc | 21.96 ± 0.3 b | 65.99 ± 1.6 a | 59.71 ± 1.9 a |
Kemer (Eggplant) | 3.61 ±0.1 a | 9.77 ± 0.2 b | 8.84 ± 0.1 a | 22.22 ± 0.2 b | 53.99 ± 2.6 b | 56.21 ± 1.8 ab |
Reproduction | ||||
---|---|---|---|---|
Cultivar | TPOP (day) | APOP (day) | Oviposition Period (day) | Fecundity (Egg/Female) |
SM (Bell Pepper) | 26.54 ± 0.2 a | 3.55 ± 0.1 b | 30.65 ± 1.5 b | 577.70 ± 51.5 b |
California Wonder (Bell Pepper) | 23.35 ± 0.2 c | 3.64 ± 0.2 ab | 33.59 ± 3. 7 b | 843.69 ± 59.6 a |
Longo (Eggplant) | 24.66 ± 0.3 b | 3.56 ± 0.1 b | 38.10 ± 1.6 a | 958.12 ± 58.8 a |
Kemer (Eggplant) | 26.54 ± 0.2 a | 3.55 ± 0.1 b | 30.65 ± 1.5 b | 577.70 ± 51.5 b |
Parameter (Mean ± SE) | ||||
---|---|---|---|---|
Cultivar | R0 (Offspring) | r (day −1) | λ (day −1) | T (day) |
SM (Bell Pepper) | 242.62 ± 45.53 ab | 0.144 ± 0.005 ab | 1.155 ± 0.006 ab | 37.84 ± 0.5 a |
California Wonder | 286.89 ± 68.29 ab | 0.159 ± 0.007 a | 1.173 ± 0.008 a | 35.21 ± 0.7 b |
(Bell Pepper) | ||||
Longo (Eggplant) | 344.49 ± 68.12 a | 0.157 ± 0.006 a | 1.170 ± 0.007 a | 36.93 ± 0.5 ab |
Kemer (Eggplant) | 175.12 ± 37.74 b | 0.139 ± 0.006 b | 1.149 ± 0.007 b | 36.86 ± 0.5 ab |
Phenol (mgGAE/gfw) | Flavonoid (mgQE/gfw) | Anthocyanin (mgCE/gDP) | ||||
---|---|---|---|---|---|---|
Cultivar | Non-Infested | Infested | Non-Infested | Infested | Non-Infested | Infested |
SM (Bell Pepper) | 68.8 ± 2.4 B,b | 104.2 ± 6.8 AB,a ** | 92.2 ± 5.4 B,a | 118.8 ± 11.7 C,a | 0.6 ± 0.0 B,b | 1.1 ± 0.0 A,a ** |
California Wonder (Bell Pepper) | 95.3 ±6.8 A,a | 136.0 ± 18.5 A,a | 148.7 ± 5.7 A,b | 225.3 ± 19.6 A,a ** | 0.5 ± 0.0 B,b | 1.0 ± 0.0 A,a ** |
Longo (Eggplant) | 109.3 ± 2.1 A,b | 125.4 ± 1.1 AB,a ** | 170.4 ± 9.3 A,b | 201.9 ± 2.6 AB,a * | 0.9 ± 0.0 A,b | 1.2 ± 0.0 A,a ** |
Kemer (Eggplant) | 55.2 ± 4.0 B,b | 86.2 ± 3.0 B,a ** | 68.9 ± 1.6 B,b | 118.4 ± 3.0 C,a ** | 0.4 ± 0.0 B,b | 0.7 ± 0.0 B,a * |
PPO (µmol/mg protein/min) | SOD (µmol/mg protein/min) | CAT (µmol/g fw/min) | ||||
---|---|---|---|---|---|---|
Cultivar | Non-Infested | Infested | Non-Infested | Infested | Non-Infested | Infested |
SM (Bell Pepper) | 0.003 ± 0.0 AB,b | 0.006 ± 0.0 C,a * | 2501 ± 92.1 BC,b | 3615 ± 22.7 C,a ** | 0.071 ± 0.0 AB,b | 0.125 ± 0.0 B,a * |
California Wonder (Bell Pepper) | 0.002 ± 0.0 B,b | 0.007 ± 0.0 BC,a ** | 2587 ± 84.0 B,b | 4056 ± 27.5 B,a ** | 0.091 ± 0.00 AB,b | 0.149 ± 0.0 B,a ** |
Longo (Eggplant) | 0.006 ± 0.0 A,b | 0.015 ± 0.0 A,a * | 3552 ± 86.7 A,b | 5003 ± 62.1 A,a ** | 0.125 ± 0.00 A,b | 0.198 ± 0.0 A,a ** |
Kemer (Eggplant) | 0.005 ± 0.0 ABb | 0.013 ± 0.0 AB,a * | 2210 ± 62.1 C,b | 3337 ± 32.7 D,a ** | 0.057 ± 0.00 B,b | 0.086 ±0.0 C,a * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golparvar, Z.; Hassanpour, M.; Golizadeh, A.; Ganbalani, G.N.; Dastjerdi, H.R.; Oszako, T.; Hosseini, M.; Łuniewski, S.; Jalinik, M.; Bouket, A.C. Phytochemical-Mediated Tritrophic Interactions: Effects of Pepper and Eggplant Cultivars on the Green Peach Aphid Myzus persicae (Sulzer) and Its Predators. Insects 2025, 16, 1050. https://doi.org/10.3390/insects16101050
Golparvar Z, Hassanpour M, Golizadeh A, Ganbalani GN, Dastjerdi HR, Oszako T, Hosseini M, Łuniewski S, Jalinik M, Bouket AC. Phytochemical-Mediated Tritrophic Interactions: Effects of Pepper and Eggplant Cultivars on the Green Peach Aphid Myzus persicae (Sulzer) and Its Predators. Insects. 2025; 16(10):1050. https://doi.org/10.3390/insects16101050
Chicago/Turabian StyleGolparvar, Zahra, Mahdi Hassanpour, Ali Golizadeh, Gadir Nouri Ganbalani, Hooshang Rafiee Dastjerdi, Tomasz Oszako, Mojtaba Hosseini, Stanisław Łuniewski, Mikołaj Jalinik, and Ali Chenari Bouket. 2025. "Phytochemical-Mediated Tritrophic Interactions: Effects of Pepper and Eggplant Cultivars on the Green Peach Aphid Myzus persicae (Sulzer) and Its Predators" Insects 16, no. 10: 1050. https://doi.org/10.3390/insects16101050
APA StyleGolparvar, Z., Hassanpour, M., Golizadeh, A., Ganbalani, G. N., Dastjerdi, H. R., Oszako, T., Hosseini, M., Łuniewski, S., Jalinik, M., & Bouket, A. C. (2025). Phytochemical-Mediated Tritrophic Interactions: Effects of Pepper and Eggplant Cultivars on the Green Peach Aphid Myzus persicae (Sulzer) and Its Predators. Insects, 16(10), 1050. https://doi.org/10.3390/insects16101050