Floral Diversity Shapes Herbivore Colonization, Natural Enemy Performance, and Economic Returns in Cauliflower
Abstract
1. Introduction
- How effectively do the intercrops attract natural enemies, and how do they impact pest population dynamics?
- Can floral resources sustain natural enemies during periods of low pest density?
- What is the economic return from the selected intercrops, particularly during periods of low market value for cauliflower?
2. Materials and Methods
2.1. Study Location and Details of Intercrops
2.2. Field Observations on Insect Pests and Their Natural Enemies
Effect of Floral Diet on the Longevity of Adult Coccinellid, Coccinella septempunctata L. (Coccinellidae: Coleoptera)
2.3. Identification of Natural Enemies and Their Characterization
2.4. Data Analysis
- Y is the dependent variable.
- X1, X2, X3 are the continuous independent variables.
- Di is dummy variables for the treatments T1, T2… T7
- β1, β2, β3 are the coefficients for X1, X2, X3 respectively.
- βi+3 are the coefficients for the treatment dummy variables Di
- βi+9, βi+15, βi+21 are the coefficients for the interaction terms between X1, X2, X3 and the treatment dummy variables Di respectively.
- ϵ is the error term.
3. Results
3.1. Identification of Natural Enemies
3.2. Effect of Habitat Manipulations on the Incidence of Insect Pests
3.3. Effect of Habitat Manipulations on the Incidence of Natural Enemies
3.4. Tritrophic Interaction and Their Effect on Pest Population Dynamics
3.5. Effect of Habitat Manipulations on the Different Diversity Indices
3.6. Effect of Habitat Manipulations on the Incidence of Hyperparasitoids
3.7. Longevity of C. Septempunctata Adults on the Flowers of Intercrops and Its Relation with the Total Sugars and Total Protein
3.8. Effect of Habitat Manipulations on the Curd Weight of Cauliflower, Its Economics and Benefit Cost Ratio of Intercropping Systems
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBC | Conservation Biological Control |
DBM | Diamondback moth |
EE | Ecological Engineering |
IARI | Indian Agricultural Research Institute |
ICAR | Indian Council of Agricultural Research |
IS | Intercropping System |
NBAIR | National Bureau of Agricultural Insect Resources |
WASP | Web Agri Stat Package |
References
- Keerthi, M.C.; Suroshe, S.S. Effect of host plants on the fitness and demographic parameters of the diamondback moth, Plutella xylostella (L.) using age-stage, two-sex life tables. J. Plant Dis. Prot. 2023, 131, 143–154. [Google Scholar] [CrossRef]
- Keerthi, M.C.; Suroshe, S.S.; Singh, P.K.; Chander, S.; Vinod Kumar, P. Life table and demographic parameters of mustard aphid, Lipaphis erysimi (Kaltenbach) (Hemiptera: Aphididae) on five brassicaceous host crops. Curr. Sci. 2024, 126, 77–84. [Google Scholar]
- Krishnamoorthy, A. Biological control of diamondback moth, Plutella xylostella (L.), an Indian scenario with reference to past and future strategies. In Proceedings of the International Symposium, Montpellier, France, 21–24 October 2002; Kirk, A.A., Bordat, D., Eds.; CIRAD: Montpellier, France, 2004; pp. 204–211. [Google Scholar]
- Singh, N.; Dhiman, S. Quality and quantity loss by aphid infestation in vegetables grown under protected cultivation in Ladakh region. Def. Life Sci. J. 2018, 1, 71–74. [Google Scholar] [CrossRef]
- Sayyed, A.H.; Saeed, S.; Noor-Ul-Ane, M.; Crickmore, N. Genetic, biochemical, and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 2008, 101, 1658–1666. [Google Scholar] [CrossRef]
- Kumari, B.; Madan, V.K.; Singh, J.; Singh, S.; Kathpal, T.S. Monitoring of pesticidal contamination of farmgate vegetables from Hisar. Environ. Monit. Assess. 2004, 90, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Amarasekare, K.G.; Shearer, P.W.; Mills, N.J. Testing the selectivity of pesticide effects on natural enemies in laboratory bioassays. Biol. Control 2016, 102, 7–16. [Google Scholar] [CrossRef]
- Regan, K.; Ordosch, D.; Glover, K.D.; Tilmon, K.J.; Szczepaniec, A. Effects of a pyrethroid and two neonicotinoid insecticides on population dynamics of key pests of soybean and abundance of their natural enemies. Crop Prot. 2017, 98, 24–32. [Google Scholar] [CrossRef]
- Shad, S.A.; Sayyed, A.H.; Fazal, S.; Saleem, M.A.; Zaka, S.M.; Ali, M. Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura Fab. (Lepidoptera: Noctuidae). J. Pest Sci. 2012, 85, 153–162. [Google Scholar] [CrossRef]
- Sanborn, M.; Kerr, K.J.; Sanin, L.H.; Cole, D.C.; Bassil, K.L.; Vakil, C. Non-cancer health effects of pesticides: Systematic review and implications for family doctors. Can. Fam. Physician 2007, 53, 1712–1720. [Google Scholar]
- Gunnell, D.; Eddleston, M.; Phillips, M.R.; Konradsen, F. The global distribution of fatal pesticide self-poisoning: Systematic review. BMC Public Health 2007, 7, 357. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef] [PubMed]
- Risch, S.J. Intercropping as cultural pest control: Prospects and limitations. Environ. Manag. 2005, 7, 9–14. [Google Scholar] [CrossRef]
- Cai, H.J.; You, M.S.; Lin, C. Effects of intercropping systems on community composition and diversity of predatory arthropods in vegetable fields. Acta Ecol. Sin. 2010, 30, 190–195. [Google Scholar] [CrossRef]
- Mitsch, W. Ecological engineering a cooperative role with the planetary life-support system. Environ. Sci. Technol. 1993, 27, 438–445. [Google Scholar] [CrossRef]
- Rusch, A.; Valantin-Morison, M.; Sarthou, J.P.; Roger-Estrade, J. Biological control of insect pests in agroecosystems: Effects of crop management, farming systems, and seminatural habitats at the landscape scale: A review. Adv. Agron. 2010, 109, 219–259. [Google Scholar]
- Gurr, G.M.; Scarratt, S.L.; Wratten, S.D.; Berndt, L.; Irvin, N. Ecological engineering, habitat manipulation and pest management. In Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods; Cambridge University Press: Cambridge, UK, 2004; pp. 1–12. [Google Scholar]
- Mailafiya, D.M.; Degri, M.M. Stem borer’s species composition, abundance and infestation on maize and millet in Maiduguri, Nigeria. Arch. Phytopathol. Plant Prot. 2012, 45, 1286–1291. [Google Scholar] [CrossRef]
- Keerthi, M.C.; Sharma, R.K.; Suroshe, S.S.; Sinha, S.R. Ecological engineering in cauliflower for aphid management. Indian J. Agric. Sci. 2020, 90, 1356–1358. [Google Scholar] [CrossRef]
- Hertzog, L.R.; Ebeling, A.; Weisser, W.W.; Meyer, S.T. Plant diversity increases predation by ground-dwelling invertebrate predators. Ecosphere 2017, 8, e01990. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; Dewaard, J.R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Jangam, A.K.; Thali, P. WASP—Web Agri Stat Package; ICAR Research Complex for Goa: Old Goa, India, 2002. [Google Scholar]
- Hammer, Ø.; Harper, D.A. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- Hardy, M.A. Regression with Dummy Variables; Sage: Thousand Oaks, CA, USA, 1993; No. 93. [Google Scholar]
- Risch, S.J.; Andow, D.; Altieri, M.A. Agroecosystem diversity and pest control: Data, tentative conclusions, and new research directions. Environ. Entomol. 1983, 12, 625–629. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Landis, D.A.; You, M. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Entomol. 2017, 62, 91–109. [Google Scholar] [CrossRef]
- Rowen, E.; Tooker, J.F.; Blubaugh, C.K. Managing fertility with animal waste to promote arthropod pest suppression. Biol. Control 2019, 134, 130–140. [Google Scholar] [CrossRef]
- Smith, H.A.; McSorley, R. Intercropping and pest management: A review of major concepts. Am. Entomol. 2000, 46, 154–161. [Google Scholar] [CrossRef]
- Ma, X.M.; Liu, X.X.; Zhang, Q.W.; Zhao, J.Z.; Cai, Q.N.; Ma, Y.A.; Chen, D.M. Assessment of cotton aphids, Aphis gossypii, and their natural enemies on aphid-resistant and aphid-susceptible wheat varieties in a wheat–cotton relay intercropping system. Entomol. Exp. Appl. 2006, 121, 235–241. [Google Scholar] [CrossRef]
- Hooks, C.R.; Johnson, M.W. Impact of agricultural diversification on the insect community of cruciferous crops. Crop Prot. 2003, 22, 223–238. [Google Scholar] [CrossRef]
- Andow, D.A. Vegetational diversity arthropod population response. Annu. Rev. Entomol. 1991, 36, 561–566. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, X.; Tan, X.; Desneux, N.; Zappala, L.; Zhang, F.; Wang, S. Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Manag. Sci. 2017, 73, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Papiorek, S.; Junker, R.R.; Alves-dos-Santos, I.; Melo, G.A.; Amaral-Neto, L.P.; Sazima, M.; Wolowski, M.; Freitas, L.; Lunau, K. Bees, birds and yellow flowers: Pollinator-dependent convergent evolution of UV patterns. Plant Biol. 2016, 18, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Laxman, G. Investigations on IPM Interventions for the Management of Major Insect Pests of Cabbage (Brassica oleraceae var. capitata). Ph.D. Thesis, Indian Agricultural Research Institute, New Delhi, India, 2018. [Google Scholar]
- Mahendran, B. Investigations on IPM Interventions for the Management of Major Insect Pests of Cabbage (Brassica oleraceae var. botrytis). Ph.D. Thesis, Indian Agricultural Research Institute, New Delhi, India, 2015. [Google Scholar]
- Sulvai, F.; Chauque, B.J.M.; Macuvele, D.L.P. Intercropping of lettuce and onion controls caterpillar thread, Agrotis ipsilon, major insect pest of lettuce. Chem. Biol. Technol. Agric. 2016, 3, 28. [Google Scholar] [CrossRef]
- Pfiffner, L.; Luka, H.; Schlatter, C.; Juen, A.; Traugott, M. Impact of wildflower strips on biological control of cabbage lepidopterans. Agric. Ecosyst. Environ. 2009, 129, 310–314. [Google Scholar] [CrossRef]
- Nelson, E.H.; Matthews, C.E.; Rosenheim, J.A. Predators reduce prey population growth by inducing changes in prey behavior. Ecology 2004, 85, 1853–1858. [Google Scholar] [CrossRef]
- Denno, R.F.; Finke, D.L.; Langelotto, G.A. Direct and indirect effects of vegetation structure and habitat complexity on predator-prey and predator-predator interactions. In Ecology of Predator–Prey Interactions; Barbosa, P., Castellanos, I., Eds.; Oxford University Press: New York, NY, USA, 2005; pp. 211–239. [Google Scholar]
- Elliott, N.C.; Kieckhefer, R.W.; Michels, G.J.; Giles, K.L. Predator abundance in alfalfa fields in relation to aphids, within-field vegetation, and landscape matrix. Environ. Entomol. 2002, 31, 253–260. [Google Scholar] [CrossRef]
- Jankowska, B.; Wilk, A. Effect of pot marigold (Calendula officinalis L.) and cypress spurge (Euphorbia cyparissias L.) plant water extracts on the occurrence of pest insects on white cabbage. Folia Hortic. 2011, 23, 21–28. [Google Scholar] [CrossRef]
- Haddad, N.M.; Tilman, D.; Haarstad, J.; Ritchie, M.; Knops, J.M. Contrasting effects of plant richness and composition on insect communities: A field experiment. Am. Nat. 2001, 158, 17–35. [Google Scholar] [CrossRef]
- Lavandero, B.; Wratten, S.; Shishehbor, P.; Worner, S. Enhancing the effectiveness of the parasitoid, Diadegma semiclausum (Helen): Movement after use of nectar in the field. Biol. Control 2005, 34, 152–158. [Google Scholar] [CrossRef]
- Tougeron, K.; Tena, A. Hyperparasitoids as new targets in biological control in a global change context. Biol. Control 2019, 130, 164–171. [Google Scholar] [CrossRef]
- Kemp, E.A.; Cottrell, T.E. Effect of lures and colors on capture of lady beetles (Coleoptera: Coccinellidae) in Tedders pyramidal traps. Environ. Entomol. 2015, 44, 1395–1406. [Google Scholar] [CrossRef] [PubMed]
- Turlings, T.C.; Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 2018, 63, 433–452. [Google Scholar] [CrossRef] [PubMed]
- Suroshe, S.S.; Keerthi, M.C.; Hithesh, G.R.; Yogesh, Y.; Rakesh Kumar, S. Chander. Ecological Engineering for Insect Pest Management. In Innovative Biotic Stress Management Strategies in Crops, 1st ed.; Singh, D., Pervez, R., Kumar, A., Eds.; CRC Press: Boca Raton, FL, USA, 2025; pp. 1–13. [Google Scholar] [CrossRef]
Intercropping System | Aphid Population * | P. xylostella * | P. brassicae * | T. ni * | ||||
---|---|---|---|---|---|---|---|---|
2017–18 | 2021–22 | 2017–18 | 2021–22 | 2017–18 | 2021–22 | 2017–18 | 2021–22 | |
Candytuft | 122.87 ± 15.75 b | 99.28 ± 14.88 c | 3.89 ± 0.77 b | 11.83 ± 2.75 b | 15.50 ± 0.87 bc | 14.00 ± 0.33 cd | 0.83 ± 0.29 e | 1.00 ± 0.00 c |
Calendula | 106.05 ± 10.00 c | 150.81 ± 16.32 b | 2.56 ± 0.38 b | 6.58 ± 1.84 c | 11.25 ± 0.25 d | 10.89 ± 0.69 e | 1.17 ± 0.29 de | 1.17 ± 0.29 c |
Marigold | 112.40 ± 6.08 bc | 148.10 ± 15.54 b | 3.78 ± 0.69 b | 9.50 ± 1.00 bc | 11.42 ± 0.76 d | 12.22 ± 1.68 de | 1.33 ± 0.29 cd | 1.50 ± 0.50 bc |
Daisy | 145.27 ± 21.48 a | 246.16 ± 32.45 a | 3.78 ± 0.69 b | 9.58 ± 1.04 bc | 17.17 ± 1.38 b | 18.11 ± 1.84 b | 2.00 ± 0.00 b | 1.50 ± 0.00 bc |
Cineraria | 103.27 ± 20.91 c | 162.53 ± 50.29 b | 3.56 ± 1.17 b | 11.67 ± 5.93 b | 14.58 ± 1.28 c | 14.78 ± 2.34 bcd | 1.83 ± 0.58 bc | 1.17 ± 0.29 c |
Flower mix | 103.68 ± 10.39 c | 171.53 ± 25.72 b | 3.11 ± 0.19 b | 14.67 ± 2.47 b | 15.50 ± 1.89 bc | 16.11 ± 3.15 bc | 1.00 ± 0.00 de | 2.00 ± 0.50 b |
Cauliflower | 136.91 ± 26.48 a | 270.58 ± 41.35 a | 6.22 ± 0.96 a | 22.42 ± 0.58 a | 23.58 ± 1.18 a | 26.67 ± 1.45 a | 2.83 ± 0.29 a | 3.00 ± 0.50 a |
F Cal | 3.07 | 4.78 | 5.305 | 7.722 | 44.341 | 19.887 | 15.804 | 11.312 |
p value | 0.001 | 0.001 | 0.007 | 0.001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Intercropping Plants | Syrphids | Coccinellids | C. vestalis | C. glomerata | D. rapae Mummies | |||||
---|---|---|---|---|---|---|---|---|---|---|
2017–18 | 2021–22 | 2017–18 | 2021–22 | 2017–18 | 2021–22 | 2017–18 | 2021–22 | 2017–18 | 2021–22 | |
Candytuft | 2.27 ± 0.31 c | 3.58 ± 0.52 b | 2.93 ± 0.83 a | 9.25 ± 1.73 a | 0.33 ± 0.29 | 2.11 ± 0.38 b | 3.00 ± 0.67 bc | 0.50 ± 0.50 | 48.67 ± 8.27 b | 38.89 ± 3.02 b |
Calendula | 2.13 ± 0.12 c | 5.75 ± 0.50 a | 2.67 ± 0.81 ab | 7.67 ± 3.33 ab | 1.17 ± 0.58 | 4.56 ± 0.19 a | 5.89 ± 1.07 a | 1.33 ± 0.29 | 74.17 ± 9.83 a | 60.33 ± 19.55 a |
Marigold | 2.27 ± 0.70 c | 2.08 ± 0.14 c | 2.80 ± 0.69 a | 7.00 ± 0.50 abc | 0.50 ± 0.00 | 1.33 ± 0.67 bc | 3.56 ± 0.84 b | 0.67 ± 0.58 | 67.83 ± 12.49 a | 40.56 ± 4.35 b |
Daisy | 2.67 ± 0.58 bc | 1.33 ± 0.38 d | 1.67 ± 0.31 bc | 5.42 ± 1.46 bc | 0.33 ± 0.29 | 1.56 ± 0.51 bc | 2.44 ± 0.84 bc | 0.17 ± 0.29 | 21.00 ± 6.93 c | 21.78 ± 4.99 c |
Cineraria | 4.00 ± 1.11 a | 1.58 ± 0.29 cd | 3.20 ± 0.53 a | 5.75 ± 0.75 bc | 0.50 ± 0.00 | 1.56 ± 0.51 bc | 2.67 ± 0.88 bc | 1.00 ± 0.00 | 24.75 ± 2.38 c | 45.67 ± 19.6 ab |
Flower mix | 3.6 ± 1.22 ab | 2.08 ± 0.63 c | 2.33 ± 0.46 ab | 9.58 ± 2.25 a | 0.67 ± 0.29 | 1.67 ± 0.00 bc | 3.33 ± 1.15 bc | 0.33 ± 0.29 | 43.08 ± 2.45 b | 24.89 ± 1.90 c |
Cauliflower | 1.13 ± 0.23 d | 1.17 ± 0.29 d | 1.20 ± 0.53 c | 4.25 ± 0.50 c | 0.50 ± 0.50 | 1.22 ± 0.38 c | 2.22 ± 0.69 c | 0.33 ± 0.29 | 18.33 ± 4.31 c | 12.22 ± 1.95 d |
F Cal | 8.129 | 33.141 | 4.393 | 3.773 | NS | 10.901 | 8.280 | NS | 32.466 | 14.450 |
p value | 0.0001 | 0.0001 | 0.014 | 0.024 | 0.0001 | 0.001 | 0.0001 | 0.0001 |
Aphids | 2018–19 | 2021–22 | ||||
---|---|---|---|---|---|---|
Coef. | Std. Err. | p > t | Coef. | Std. Err. | p > t | |
DT1 | −33.46727 | 129.4225 | 0.797 | 56.08531 | 88.59637 | 0.529 |
DT2 | −12.95666 | 134.3675 | 0.923 | 86.24999 | 93.02889 | 0.358 |
DT3 | −40.83909 | 135.1407 | 0.763 | 182.1232 | 97.54896 | 0.067 |
DT4 | −181.0126 | 155.349 | 0.247 | 58.49177 | 111.6881 | 0.602 |
DT5 | −162.0811 | 137.4655 | 0.242 | 85.99393 | 103.5569 | 0.41 |
DT6 | −163.16 | 139.2047 | 0.245 | 244.0831 | 146.625 | 0.101 |
SYRP | 131.5188 | 130.8746 | 0.318 | −23.43245 | 64.74073 | 0.719 |
BEET | −117.0033 | 90.30795 | 0.199 | 18.77129 | 29.80937 | 0.531 |
DRAP | 90.43084 | 13.58458 | 0.000 | 4.209961 | 3.446933 | 0.227 |
T1SYRP | −369.5688 | 185.4065 | 0.050 | 20.19276 | 67.10611 | 0.765 |
T2SYRP | −43.19033 | 172.9275 | 0.803 | 37.70211 | 65.14951 | 0.565 |
T3SYRP | −18.77985 | 172.5418 | 0.914 | 0 | (omitted) | |
T4SYRP | 226.57 | 142.0564 | 0.115 | 32.75255 | 93.50754 | 0.727 |
T5SYRP | −6.875709 | 137.517 | 0.960 | 36.26821 | 96.94593 | 0.71 |
T6SYRP | −143.2579 | 161.7948 | 0.379 | 35.5793 | 167.169 | 0.832 |
T1BEET | 146.0799 | 116.6282 | 0.214 | −14.71241 | 30.92989 | 0.636 |
T2BEET | 174.7981 | 106.6624 | 0.105 | −23.69947 | 31.36263 | 0.453 |
T3BEET | 39.7679 | 147.2719 | 0.788 | −14.95358 | 34.59914 | 0.667 |
T4BEET | 112.6066 | 125.7164 | 0.373 | −16.89822 | 33.26201 | 0.613 |
T5BEET | 237.0032 | 100.8853 | 0.021 | −23.22036 | 32.31608 | 0.475 |
T6BEET | −114.6984 | 171.6972 | 0.506 | 0 | (omitted) | |
T1DRAP | −48.53904 | 14.59006 | 0.001 | −4.105807 | 4.35782 | 0.35 |
T2DRAP | −76.50731 | 14.07893 | 0.000 | −1.607305 | 3.725719 | 0.668 |
T3SRAP | −67.72937 | 14.28007 | 0.000 | −3.552157 | 4.296259 | 0.412 |
T4DRAP | −38.04964 | 16.09459 | 0.021 | −2.210299 | 3.973224 | 0.58 |
T5DRAP | −57.0518 | 14.83822 | 0.000 | 0 | (omitted) | |
T6DRAP | −42.7218 | 16.27575 | 0.010 | −7.842293 | 10.38909 | 0.453 |
P. xylostella | 2018–19 | 2021–22 | ||||
---|---|---|---|---|---|---|
Coefficients | Std. Err. | p > t | Coefficients | Std. Err. | p > t | |
D1 | 0.081395 | 0.896328 | 0.927841 | 1.321656 | 4.408219 | 0.765181 |
D2 | 0.478261 | 0.913484 | 0.601846 | 0.015038 | 5.048541 | 0.997632 |
D3 | 1.545977 | 0.866054 | 0.077544 | 10.44872 | 5.27393 | 0.051388 |
D4 | 0.482353 | 0.901585 | 0.593937 | 0.902062 | 5.08536 | 0.859705 |
D5 | 0.77451 | 0.845584 | 0.362089 | −0.49048 | 4.327241 | 0.910072 |
D6 | 0.35 | 0.876183 | 0.69048 | 14.08824 | 6.471082 | 0.032752 |
CV | 3.125 | 0.692684 | 1.9E−05 | 7.357143 | 3.11213 | 0.021 |
D1CV | −0.71221 | 0.902531 | 0.432068 | −2.137398 | 4.0203 | 0.597 |
D2CV | −2.19996 | 0.752418 | 0.004352 | −5.930451 | 3.405427 | 0.086 |
D3CV | −0.59052 | 1.068465 | 0.581824 | −8.453297 | 4.766899 | 0.080 |
D4CV | −0.44853 | 1.075728 | 0.677683 | −2.279823 | 4.491046 | 0.613 |
D5CV | −1.86029 | 1.021907 | 0.071947 | 0 | Omitted | |
D6CV | −0.85 | 1.027416 | 0.410197 | −5.97479 | 5.25659 | 0.259 |
P. brassicae | 2018–19 | 2021–22 | ||||
---|---|---|---|---|---|---|
Coefficients | Std. Err. | p > t | Coefficients | Std. Err. | p > t | |
D1 | −0.10284 | 0.266701 | 0.700691 | 4.416667 | 2.06969 | 0.036 |
D2 | −0.09615 | 0.277755 | 0.729997 | 2.863636 | 2.161721 | 0.189 |
D3 | −0.08186 | 0.254743 | 0.748693 | 5.272727 | 2.161721 | 0.017 |
D4 | −0.01261 | 0.277589 | 0.96388 | 4.511628 | 2.319359 | 0.056 |
D5 | −0.07951 | 0.268061 | 0.767429 | 3.615385 | 1.988494 | 0.073 |
D6 | 0.297917 | 0.272076 | 0.276386 | 16 | 2.709861 | 0.0001 |
CG | 0.211538 | 0.104982 | 0.046823 | 3.38 | 5.445 | 0.536 |
D1CG | −0.08033 | 0.145542 | 0.582317 | −0.46 | 7.146601 | 0.948 |
D2CG | −0.07112 | 0.118913 | 0.551267 | −0.13 | 5.834106 | 0.982 |
D3CG | 0.201831 | 0.129943 | 0.1238 | 0.59 | 6.868749 | 0.931 |
D4CG | −0.06658 | 0.170532 | 0.697122 | 0.66 | 6.214622 | 0.915 |
D5CG | −0.07851 | 0.155453 | 0.614734 | 0 | (Omitted) | |
D6CG | −0.22716 | 0.141336 | 0.111424 | 19.1154 | 7.918388 | 0.018 |
Biodiversity Indices | Control | Cineraria | Candytuft | Daisy | Marigold | Calendula | Flower Mix |
---|---|---|---|---|---|---|---|
Second week of March, 2017–18 | |||||||
Taxa_S | 7 | 9 | 9 | 9 | 11 | 12 | 10 |
Individuals | 25 | 101 | 81 | 144 | 132 | 113 | 63 |
Dominance_D | 0.2448 | 0.2297 | 0.3291 | 0.2022 | 0.239 | 0.2098 | 0.2411 |
Simpson_1-D | 0.7552 | 0.7703 | 0.6709 | 0.7978 | 0.761 | 0.7902 | 0.7589 |
Shannon_H | 1.579 | 1.633 | 1.456 | 1.732 | 1.751 | 1.89 | 1.789 |
Evenness_e^H/S | 0.6926 | 0.569 | 0.4765 | 0.6282 | 0.5238 | 0.5518 | 0.5984 |
Second week of March, 2021–22 | |||||||
Taxa_S | 10 | 7 | 8 | 9 | 10 | 8 | 9 |
Individuals | 35 | 178 | 124 | 100 | 216 | 115 | 101 |
Dominance_D | 0.2 | 0.4111 | 0.5046 | 0.2614 | 0.3474 | 0.1909 | 0.2642 |
Simpson_1-D | 0.8 | 0.5889 | 0.4954 | 0.7386 | 0.6526 | 0.8091 | 0.7358 |
Shannon_H | 1.113 | 1.131 | 1.316 | 1.564 | 1.896 | 1.836 | 1.529 |
Evenness_e^H/S | 0.6661 | 0.4428 | 0.3804 | 0.5307 | 0.3728 | 0.7839 | 0.5126 |
Flowers | Adult Longevity * (Days) | Total Sugar Concentration (mg/g) | Total Protein Concentration (mg/g) | r Value (TS) | r Value (TP) |
---|---|---|---|---|---|
Marigold | 8.1 ± 2.60 ab | 2.52 | 1.59 | 0.57 | 0.69 |
Control | 3.89 ± 1.05 d | 0.00 | 0.00 | ||
Calendula | 5.9 ± 1.66 bcd | 6.44 | 1.62 | ||
Cineraria | 4.63 ± 1.19 cd | 2.30 | 1.98 | ||
Candytuft | 8.67 ± 3.35 a | 5.90 | 2.62 | ||
Daisy | 6 ± 2 bc | 1.58 | 1.65 |
Intercropping System | Yield (t/ha) | % Increase over Control | Intercrop Seed Yield (kg/ha) | Monetary Return (Cauliflower) | Monetary Return (Flower Crop) | Gross Return | Net Return | B:C Ratio |
---|---|---|---|---|---|---|---|---|
Candytuft | 14.22 ± 0.08 | 39.14 | 32 ± 0.71 | 213,300 | 320,000 | 533,300 | 473,800 | 7.96 |
Calendula | 15.58 ± 0.34 | 52.44 | 100 ± 3.54 | 233,671.5 | 500,000 | 733,671.5 | 674,171.5 | 11.33 |
Marigold | 15.35 ± 0.24 | 50.21 | 12 ± 1.41 | 230,215.5 | 120,000 | 350,215.5 | 290,715.5 | 4.89 |
Daisy | 9.94 ± 0.10 | −2.74 | 60 ± 1.41 | 149,148 | 300,000 | 449,148 | 389,648 | 6.55 |
Cineraria | 13.63 ± 0.53 | 13.37 | 20 ± 2.12 | 204,511.5 | 200,000 | 404,511.5 | 345,011.5 | 5.80 |
Flower mix | 11.73 ± 0.08 | 14.77 | - | 175,999.5 | 288,000 | 463,999.5 | 404,499.5 | 6.80 |
Control | 10.22 ± 0.15 | - | 0 | 153,240 | 0 | 153,240 | 93,740 | 1.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrashekara, K.M.; Suroshe, S.S.; Hithesh, G.R.; Chander, S.; Kumar, R.; Nagaraju, K.G.; Kummari, S.; Siddaswamy, R.H.; Mallanagouda, C.; Madhuri, E.V.; et al. Floral Diversity Shapes Herbivore Colonization, Natural Enemy Performance, and Economic Returns in Cauliflower. Horticulturae 2025, 11, 1045. https://doi.org/10.3390/horticulturae11091045
Chandrashekara KM, Suroshe SS, Hithesh GR, Chander S, Kumar R, Nagaraju KG, Kummari S, Siddaswamy RH, Mallanagouda C, Madhuri EV, et al. Floral Diversity Shapes Herbivore Colonization, Natural Enemy Performance, and Economic Returns in Cauliflower. Horticulturae. 2025; 11(9):1045. https://doi.org/10.3390/horticulturae11091045
Chicago/Turabian StyleChandrashekara, Keerthi Manikyanahalli, Sachin Suresh Suroshe, Grandhi Ramamurthy Hithesh, Subhash Chander, Rakesh Kumar, Kirankumar G. Nagaraju, Srinivas Kummari, Rakshith H. Siddaswamy, Chaitanya Mallanagouda, Eere Vidya Madhuri, and et al. 2025. "Floral Diversity Shapes Herbivore Colonization, Natural Enemy Performance, and Economic Returns in Cauliflower" Horticulturae 11, no. 9: 1045. https://doi.org/10.3390/horticulturae11091045
APA StyleChandrashekara, K. M., Suroshe, S. S., Hithesh, G. R., Chander, S., Kumar, R., Nagaraju, K. G., Kummari, S., Siddaswamy, R. H., Mallanagouda, C., Madhuri, E. V., Rupali, J. S., Ramakrishnan, L., & Venkatachalapathi, H. H. (2025). Floral Diversity Shapes Herbivore Colonization, Natural Enemy Performance, and Economic Returns in Cauliflower. Horticulturae, 11(9), 1045. https://doi.org/10.3390/horticulturae11091045