Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = triazolopyridine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1793 KB  
Article
Thiosemicarbazone- and Thiourea-Functionalized Calix[4]arenes in cone and 1,3-alternate Conformations: Receptors for the Recognition of Ions
by Andrés Ochoa, Belén Hernández-Arancibia, José Herrera-Muñoz, Horacio Gómez-Machuca and Claudio Saitz
Chemosensors 2025, 13(2), 48; https://doi.org/10.3390/chemosensors13020048 - 3 Feb 2025
Viewed by 1464
Abstract
In this research we have synthesized and evaluated five calix[4]arene-based receptors functionalized with thiosemicarbazone or thiourea groups, incorporating pyridinyl naphthalene or triazolopyridine chromophores in 1,3-alternate, pinched cone and cone conformations. The ion recognition capabilities of these receptors were investigated using UV-visible [...] Read more.
In this research we have synthesized and evaluated five calix[4]arene-based receptors functionalized with thiosemicarbazone or thiourea groups, incorporating pyridinyl naphthalene or triazolopyridine chromophores in 1,3-alternate, pinched cone and cone conformations. The ion recognition capabilities of these receptors were investigated using UV-visible and fluorescence spectroscopy. Receptor (I), which adopts a pinched cone conformation with thiosemicarbazone groups, demonstrated bifunctional sensing abilities by detecting both cations and anions. Receptors (II) and (III) showed remarkable selectivity and sensitivity for Cu2+ ions. Receptors (IV) and (V), in cone and 1,3-alternate conformations, respectively, where functionalized with a triazolo[1,5-a]pyridine fluorophore and exhibited highly sensitive ON-OFF fluorescence sensing for Co2+, Cu2+ and Ni2+ ions, with significant fluorescence quenching upon binding and a low detection limit of 2.94 µg/L for the Co2+ ion in receptor (IV). Ion receptor (I) demonstrates a strong performance in broad-spectrum ion detection, whereas the structural conformations of receptors (IV) and (V) play a pivotal role in their remarkable selectivity and sensitivity for specific transition metals in fluorescence-based sensing. Full article
Show Figures

Figure 1

5 pages, 606 KB  
Short Note
3-(4-(Benzyloxy)-3-methoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine
by Katrina E. Doherty, Arturo León Sandoval, Ethan T. Mercier and Nicholas E. Leadbeater
Molbank 2023, 2023(3), M1694; https://doi.org/10.3390/M1694 - 12 Jul 2023
Viewed by 2202
Abstract
The [1,2,4]triazolo[4,3-a]pyridine derivative 3-(4-(benzyloxy)-3-methoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine was prepared in a 73% isolated yield by means of an oxidative ring closure of a hydrazine intermediate. Sodium hypochlorite was used as the oxidant and ethanol as a solvent, making the process a clean, [...] Read more.
The [1,2,4]triazolo[4,3-a]pyridine derivative 3-(4-(benzyloxy)-3-methoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine was prepared in a 73% isolated yield by means of an oxidative ring closure of a hydrazine intermediate. Sodium hypochlorite was used as the oxidant and ethanol as a solvent, making the process a clean, green approach. The reaction was performed at room temperature for 3 h, and then the heterocycle was isolated in an analytically pure form by extraction, followed by passing the crude product mixture through a small plug of alumina. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Graphical abstract

17 pages, 6338 KB  
Article
BODIPY-Based Fluorescent Probes for Selective Visualization of Endogenous Hypochlorous Acid in Living Cells via Triazolopyridine Formation
by Peraya Hiranmartsuwan, Sirilak Wangngae, Jukkrit Nootem, Anyanee Kamkaew, Rathawat Daengngern, Worawat Wattanathana and Kantapat Chansaenpak
Biosensors 2022, 12(11), 923; https://doi.org/10.3390/bios12110923 - 25 Oct 2022
Cited by 9 | Viewed by 4023
Abstract
In this work, the two pyridylhydrazone-tethered BODIPY compounds (2 and 3) were synthesized. These compounds aimed to detect hypochlorous acid (HOCl) species via cyclic triazolopyridine formation. The open forms and the resulting cyclic forms of BODIPYs (2, 3, [...] Read more.
In this work, the two pyridylhydrazone-tethered BODIPY compounds (2 and 3) were synthesized. These compounds aimed to detect hypochlorous acid (HOCl) species via cyclic triazolopyridine formation. The open forms and the resulting cyclic forms of BODIPYs (2, 3, 4, and 5) were fully characterized by nuclear magnetic resonance, mass spectrometry, infrared spectroscopy, and single-crystal X-ray diffraction. These two probes can selectively detect HOCl through a fluorescence turn-on mechanism with the limit of detections of 0.21 µM and 0.77 µM for compounds 2 and 3, respectively. This fluorescence enhancement phenomenon could be the effect from C = N isomerization inhibition due to HOCl-triggered triazolopyridine formation. In cell imaging experiments, these compounds showed excellent biocompatibility toward RAW 264.7 murine live macrophage cells and greatly visualized endogenous HOCl in living cells stimulated with lipopolysaccharide. Full article
(This article belongs to the Special Issue Activatable Probes for Biosensing, Imaging, and Photomedicine)
Show Figures

Figure 1

6 pages, 1118 KB  
Communication
Synthesis of 4-(tert-Butyldimethylsilyl)-4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine
by Rasma Kroņkalne, Rūdolfs Beļaunieks and Māris Turks
Molbank 2022, 2022(3), M1427; https://doi.org/10.3390/M1427 - 16 Aug 2022
Cited by 1 | Viewed by 3324
Abstract
SN2 rection between 4-(tert-butyldimethylsilyl)hex-5-yn-1-yl 4-methylbenzenesulfonate and NaN3 in DMF at 80 °C provided (6-azidohex-1-yn-3-yl)(tert-butyl)dimethylsilane intermediate, which underwent in situ intramolecular thermal Huisgen azide–alkyne cycloaddition reaction. This one-pot process gave 4-(tert-butyldimethylsilyl)-4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine in 78% yield. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

17 pages, 4061 KB  
Article
The Structural and Optical Properties of 1,2,4-Triazolo[4,3-a]pyridine-3-amine
by Lucyna Dymińska, Jerzy Hanuza, Jan Janczak, Maciej Ptak and Radosław Lisiecki
Molecules 2022, 27(3), 721; https://doi.org/10.3390/molecules27030721 - 22 Jan 2022
Cited by 4 | Viewed by 4781
Abstract
The structural and spectroscopic properties of a new triazolopyridine derivative (1,2,4-triazolo[4,3-a]pyridin-3-amine) are described in this paper. Its FTIR spectrum was recorded in the 100–4000 cm−1 range and its FT-Raman spectrum in the range 80–4000 cm−1. The molecular structure [...] Read more.
The structural and spectroscopic properties of a new triazolopyridine derivative (1,2,4-triazolo[4,3-a]pyridin-3-amine) are described in this paper. Its FTIR spectrum was recorded in the 100–4000 cm−1 range and its FT-Raman spectrum in the range 80–4000 cm−1. The molecular structure and vibrational spectra were analyzed using the B3LYP/6-311G(2d,2p) approach and the GAUSSIAN 16W program. The assignment of the observed bands to the respective normal modes was proposed on the basis of PED calculations. XRD studies revealed that the studied compound crystallizes in the centrosymmetric monoclinic space group P21/n with eight molecules per unit cell. However, the asymmetric unit contains two 1,2,4-triazolo[4,3-a]pyridin-3-amine molecules linked via N–H⋯N hydrogen bonds with a R22(8) graph. The stability of the studied molecule was considered using NBO analysis. Electron absorption and the luminescence spectra were measured and discussed in terms of the calculated singlet, triplet, HOMO and LUMO electron energies. The Stokes shifts derived from the optical spectra were equal to 9410 cm−1 for the triazole ring and 7625 cm−1 for the pyridine ring. Full article
Show Figures

Figure 1

8 pages, 854 KB  
Article
Efficient Synthesis and X-ray Structure of [1,2,4]Triazolo[4,3-a]pyridines via Oxidative Cyclization Using N-Chlorosuccinimide (NCS)
by Said El-Kurdi, Bassam Abu Thaher, Kanan Wahedy, Dieter Schollmeyer, Levin Nopper, Oliver Riester and Hans-Peter Deigner
Crystals 2021, 11(10), 1156; https://doi.org/10.3390/cryst11101156 - 23 Sep 2021
Cited by 1 | Viewed by 3956
Abstract
Triazolopyridines are a family of compounds that, owing to their biological activity, have many pharmaceutical applications. In this study, 3-(pyridine-4-yl)-[1,2,4]triazolo[4,3-a]pyridine and 6-bromo-3-(pyridine-4-yl)-[1,2,4]triazolo[4,3-a]pyridine were synthesized by using the chlorinated agent NCS for hydrazones under very mild conditions. The characterization of [...] Read more.
Triazolopyridines are a family of compounds that, owing to their biological activity, have many pharmaceutical applications. In this study, 3-(pyridine-4-yl)-[1,2,4]triazolo[4,3-a]pyridine and 6-bromo-3-(pyridine-4-yl)-[1,2,4]triazolo[4,3-a]pyridine were synthesized by using the chlorinated agent NCS for hydrazones under very mild conditions. The characterization of these compounds was achieved by 1H NMR, 13C NMR, FTIR, MS and X-ray diffraction. The compound 3-(pyridine-4-yl)-[1,2,4]triazolo[4,3-a]pyridine was crystallized in the monoclinic space group P 21/c with a = 15.1413(12), b = 6.9179(4), c = 13.0938(8) Å, β = 105.102(6)°, V = 1324.16(16)Å3, Z = 4, and R = 0.0337. Also compound 6-bromo-3-(pyridine-4-yl)-[1,2,4]triazolo[4,3-a]pyridine was crystallized in the monoclinic space group P 21/c with a = 14.3213(11), b = 6.9452(4) (4), c = 12.6860(8)Å, β = 100.265(6)°, V = 1241.62(14)Å3, Z = 4, and R = 0.0561. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

13 pages, 4803 KB  
Article
Discovery of a Novel Triazolopyridine Derivative as a Tankyrase Inhibitor
by Hwani Ryu, Ky-Youb Nam, Hyo Jeong Kim, Jie-Young Song, Sang-Gu Hwang, Jae Sung Kim, Joon Kim and Jiyeon Ahn
Int. J. Mol. Sci. 2021, 22(14), 7330; https://doi.org/10.3390/ijms22147330 - 8 Jul 2021
Cited by 8 | Viewed by 3910
Abstract
More than 80% of colorectal cancer patients have adenomatous polyposis coli (APC) mutations, which induce abnormal WNT/β-catenin activation. Tankyrase (TNKS) mediates the release of active β-catenin, which occurs regardless of the ligand that translocates into the nucleus by AXIN degradation via the ubiquitin-proteasome [...] Read more.
More than 80% of colorectal cancer patients have adenomatous polyposis coli (APC) mutations, which induce abnormal WNT/β-catenin activation. Tankyrase (TNKS) mediates the release of active β-catenin, which occurs regardless of the ligand that translocates into the nucleus by AXIN degradation via the ubiquitin-proteasome pathway. Therefore, TNKS inhibition has emerged as an attractive strategy for cancer therapy. In this study, we identified pyridine derivatives by evaluating in vitro TNKS enzyme activity and investigated N-([1,2,4]triazolo[4,3-a]pyridin-3-yl)-1-(2-cyanophenyl)piperidine-4-carboxamide (TI-12403) as a novel TNKS inhibitor. TI-12403 stabilized AXIN2, reduced active β-catenin, and downregulated β-catenin target genes in COLO320DM and DLD-1 cells. The antitumor activities of TI-12403 were confirmed by the viability of the colorectal cancer cells and its lack of visible toxicity in DLD-1 xenograft mouse model. In addition, combined 5-FU and TI-12403 treatment synergistically inhibited proliferation to a greater extent than that in a single drug treatment. Our observations suggest that TI-12403, a novel selective TNKS1 inhibitor, may be a suitable compound for anticancer drug development. Full article
(This article belongs to the Special Issue Computational Methods in Drug Design)
Show Figures

Figure 1

15 pages, 1803 KB  
Article
Synthesis, Molecular Docking and In Vitro Screening of Some Newly Synthesized Triazolopyridine, Pyridotriazine and Pyridine–Pyrazole Hybrid Derivatives
by Eman M. Flefel, Walaa I. El-Sofany, Mahmoud El-Shahat, Arshi Naqvi and Eman Assirey
Molecules 2018, 23(10), 2548; https://doi.org/10.3390/molecules23102548 - 6 Oct 2018
Cited by 43 | Viewed by 5362
Abstract
A series of novel pyridine and fused pyridine derivatives have been prepared starting from 6-(3,4-dimethylphenyl)-2-hydrazinyl-4-(thiophen-2-yl)-pyridine-3-carbonitrile 1 which on treatment with appropriate formic acid, acetic acid/acetic anhydride, benzoyl chloride and/or carbon disulfide afforded the corresponding triazolopyridine derivatives 25. Also, treatment of [...] Read more.
A series of novel pyridine and fused pyridine derivatives have been prepared starting from 6-(3,4-dimethylphenyl)-2-hydrazinyl-4-(thiophen-2-yl)-pyridine-3-carbonitrile 1 which on treatment with appropriate formic acid, acetic acid/acetic anhydride, benzoyl chloride and/or carbon disulfide afforded the corresponding triazolopyridine derivatives 25. Also, treatment of hydrazide 1 with diethyloxalate, chloroacetyl chloride, chloroacetic acid and/or 1,2-dichloroethane yielded the corresponding pyridotriazine derivatives 710. Further transformation of compound 1 with a different active methylene group, namely acetyl acetone, diethylmalonate, ethyl cyanoacetate, ethyl benzoylacetate and/or ethyl acetoacetate, produced the pyridine–pyrazole hybrid derivatives 1115. These newly synthesized compounds (115) were subjected to in silico molecular docking screenings towards GlcN-6-P synthase as the target protein. The results revealed moderate to good binding energies of the ligands on the target protein. All the newly prepared products exhibited antimicrobial and antioxidant activity. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

22 pages, 4438 KB  
Article
Molecular Modeling Studies of 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors through Receptor-Based 3D-QSAR and Molecular Dynamics Simulations
by Haiyan Qian, Jiongjiong Chen, Youlu Pan and Jianzhong Chen
Molecules 2016, 21(9), 1222; https://doi.org/10.3390/molecules21091222 - 19 Sep 2016
Cited by 15 | Viewed by 8509
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a potential target for the treatment of numerous human disorders, such as diabetes, obesity, and metabolic syndrome. In this work, molecular modeling studies combining molecular docking, 3D-QSAR, MESP, MD simulations and free energy calculations were performed on [...] Read more.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a potential target for the treatment of numerous human disorders, such as diabetes, obesity, and metabolic syndrome. In this work, molecular modeling studies combining molecular docking, 3D-QSAR, MESP, MD simulations and free energy calculations were performed on pyridine amides and 1,2,4-triazolopyridines as 11β-HSD1 inhibitors to explore structure-activity relationships and structural requirement for the inhibitory activity. 3D-QSAR models, including CoMFA and CoMSIA, were developed from the conformations obtained by docking strategy. The derived pharmacophoric features were further supported by MESP and Mulliken charge analyses using density functional theory. In addition, MD simulations and free energy calculations were employed to determine the detailed binding process and to compare the binding modes of inhibitors with different bioactivities. The binding free energies calculated by MM/PBSA showed a good correlation with the experimental biological activities. Free energy analyses and per-residue energy decomposition indicated the van der Waals interaction would be the major driving force for the interactions between an inhibitor and 11β-HSD1. These unified results may provide that hydrogen bond interactions with Ser170 and Tyr183 are favorable for enhancing activity. Thr124, Ser170, Tyr177, Tyr183, Val227, and Val231 are the key amino acid residues in the binding pocket. The obtained results are expected to be valuable for the rational design of novel potent 11β-HSD1 inhibitors. Full article
(This article belongs to the Collection Molecular Docking)
Show Figures

Graphical abstract

Back to TopTop