Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = tree trench

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1675 KiB  
Project Report
Tree Infiltration Trenches in the City of Leipzig—Experiences from Four Years of Operation
by Lucie Moeller, Katy Bernhard, Sabine Kruckow, Sabine Wolf, Anett Georgi, Jan Friesen, Katrin Mackenzie and Roland A. Müller
Land 2025, 14(7), 1315; https://doi.org/10.3390/land14071315 - 20 Jun 2025
Viewed by 385
Abstract
Increasing climate change requires cities to adapt to changing weather conditions. New elements for decentralized stormwater management must be installed to protect the sewer system from overloading during heavy rainfall events and to keep water in the city for irrigation use. A pilot [...] Read more.
Increasing climate change requires cities to adapt to changing weather conditions. New elements for decentralized stormwater management must be installed to protect the sewer system from overloading during heavy rainfall events and to keep water in the city for irrigation use. A pilot project was implemented in Leipzig in 2020, in which infiltration tree trench systems with three different designs were installed and equipped with measuring technology during a road renovation project. The catchment areas of these three tree trenches are between 215 and 300 m² each. In two of the systems, water retention was included to supply the tree with water during drought periods. The retention elements are sealed with clay in tree trench TT1 and bentonite in tree trench TT3. For tree trench TT2, no retention capacity was provided. This article presents the design, construction, and scientific monitoring of the three tree infiltration trenches. The conclusions after four years of operation from the perspective of two departments of the City of Leipzig are summarized. The tree trench TT1 with the clay pan for water storage shows the best performance in terms of water retention and tree fitness. For the next generation of such infiltration systems, improvements in the design of the street runoff inlets and the surface of the tree trench system’s interior are discussed. Full article
(This article belongs to the Special Issue Potential for Nature-Based Solutions in Urban Green Infrastructure)
Show Figures

Graphical abstract

16 pages, 4402 KiB  
Article
Impact of Soil Preparation Method and Stock Type on Root Architecture of Scots Pine, Norway Spruce, Silver Birch and Black Alder
by Kārlis Dūmiņš, Sindija Žīgure, Santa Celma, Toms Artūrs Štāls, Viktorija Vendiņa, Austra Zuševica and Dagnija Lazdiņa
Forests 2025, 16(5), 830; https://doi.org/10.3390/f16050830 - 16 May 2025
Viewed by 431
Abstract
This study examines the spatial root development patterns of bareroot, containerized, and plug plus (plug+) saplings in hemiboreal forests of Latvia, focusing on the effects of two common soil preparation methods: mounding and disc trenching. In northern Europe, forest regeneration after clearcutting often [...] Read more.
This study examines the spatial root development patterns of bareroot, containerized, and plug plus (plug+) saplings in hemiboreal forests of Latvia, focusing on the effects of two common soil preparation methods: mounding and disc trenching. In northern Europe, forest regeneration after clearcutting often involves planting, with soil preparation aimed at enhancing sapling survival and productivity. This study included four tree species: Pinus sylvestris, Picea abies, Betula pendula, and Alnus glutinosa. The results reveal that saplings planted in mounded sites developed more radially symmetrical root systems, while roots in trenched sites predominantly grew parallel to the furrow. This spatial root distribution was consistent across all forest types and did not show significant variation between stock types (containerized, bareroot, or plug+) or treatments (control or fertilized). Additionally, the number of main roots did not differ significantly between the soil preparation methods. These findings align with previous research and raise important questions regarding the impact of early root architecture on stand resilience at a mature stage, particularly in relation to windthrow, heavy snowfall, drought, and flooding resistance. The study underscores the need to consider root system development as a key factor in forest management practices aimed at ensuring long-term forest stability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

26 pages, 9187 KiB  
Article
A New Perspective on Blue–Green Infrastructure for Climate Adaptation in Urbanized Areas: A Soil-Pipe System as a Multifunctional Solution
by Henrike Walther, Christoph Bennerscheidt, Dirk Jan Boudeling, Markus Streckenbach, Felix Simon, Christoph Mudersbach, Saphira Schnaut, Mark Oelmann and Markus Quirmbach
Land 2025, 14(5), 1065; https://doi.org/10.3390/land14051065 - 14 May 2025
Viewed by 931
Abstract
The implementation of a decentralized blue–green infrastructure (BGI) is a key strategy in climate adaptation and stormwater management. However, the integration of urban trees into the multifunctional infrastructure remains insufficiently addressed, particularly regarding rooting space in dense urban environments. Addressing this gap, the [...] Read more.
The implementation of a decentralized blue–green infrastructure (BGI) is a key strategy in climate adaptation and stormwater management. However, the integration of urban trees into the multifunctional infrastructure remains insufficiently addressed, particularly regarding rooting space in dense urban environments. Addressing this gap, the BoRSiS project developed the soil-pipe system (SPS), which repurposes the existing underground pipe trenches and roadway space to provide trees with significantly larger root zones without competing for additional urban space. This enhances tree-related ecosystem services, such as cooling, air purification, and runoff reduction. The SPS serves as a stormwater retention system by capturing excess rainwater during heavy precipitation events of up to 180 min, reducing the pressure on drainage systems. System evaluations show that, on average, each SPS module (20 m trench length) can store 1028–1285 L of water, enabling a moisture supply to trees for 3.4 to 25.7 days depending on the species and site conditions. This capacity allows the system to buffer short-term drought periods, which, according to climate data, recur with frequencies of 9 (7-day) and 2 (14-day) events per year. Geotechnical and economic assessments confirm the system stability and cost-efficiency. These findings position the SPS as a scalable, multifunctional solution for urban climate adaptation, tree vitality, and a resilient infrastructure. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

18 pages, 2448 KiB  
Article
The History of a Pinus Stand on a Bog Degraded by Post-War Drainage and Exploitation in Southern Poland
by Anna Cedro, Bernard Cedro, Katarzyna Piotrowicz, Anna Hrynowiecka, Tomasz Mirosław Karasiewicz and Michał Mirgos
Appl. Sci. 2025, 15(9), 5172; https://doi.org/10.3390/app15095172 - 6 May 2025
Viewed by 537
Abstract
A dendrochronological study was conducted on a submontane raised bog, Bór na Czerwonem, in the Orava–Nowy Targ Basin in Southern Poland. In the past, the bog was drained to enable peat extraction. In recent years, a number of measures considered as active protection [...] Read more.
A dendrochronological study was conducted on a submontane raised bog, Bór na Czerwonem, in the Orava–Nowy Targ Basin in Southern Poland. In the past, the bog was drained to enable peat extraction. In recent years, a number of measures considered as active protection were undertaken, including the construction of ridges and locks, filling of the drainage trenches, and clearance of most of the tree stand on the bog dome. Pinus sylvestris, P. × rhaetica, and P. mugo were the focuses of the study, which aimed to determine the age of the genus stand and its age structure and to identify the factors influencing tree ring width. The age of the trees indicates a post-war succession induced by large-scale drainage in 1942, although single trees were present on the bog dome as early as the late 19th century, and probably earlier. High values of pith eccentricity at ground level testify to substratum instability and the impact of strong winds on tree ring formation. The growth–climate relationships change with the progressive climate change: the significance of insolation increases, while the significance of the absolute air temperature decreases. The thermal and pluvial conditions of the summer in the previous growth season, however, make the strongest impact on the tree ring width in the following growth season. The health of the trees left growing on the bog, due to the constantly rising water level, will likely deteriorate, and a decreasing number of seedlings will be observed. A full assessment of the conducted restoration efforts, however, will be possible after years of monitoring of the bog environment. Full article
Show Figures

Figure 1

24 pages, 14080 KiB  
Article
Analysis and Optimization of Driving Performance for Tree Transplanting Machine in Hilly Mountainous Areas
by Yexin Chen, Jianxi Zhu, Liwen Yao, Zidong Yang, Zhongqiang Hu, Lijun Xu and Lijian Yao
Forests 2024, 15(12), 2128; https://doi.org/10.3390/f15122128 - 1 Dec 2024
Viewed by 1035
Abstract
A structural optimization scheme for the prototype is proposed to improve the driving performance of tree transplanting machines operating in hilly and mountainous environments. Through theoretical analysis of the tree transplanting machine’s stability and passability, we determined the relationship between the center of [...] Read more.
A structural optimization scheme for the prototype is proposed to improve the driving performance of tree transplanting machines operating in hilly and mountainous environments. Through theoretical analysis of the tree transplanting machine’s stability and passability, we determined the relationship between the center of gravity offset distance and overall performance when climbing slopes and crossing steps and trenches. This analysis determined the optimal parameter for the center of gravity offset distance. Subsequently, the prototype structure was optimized, and the center of gravity position was adjusted accordingly. The stability and passability of the prototype were simulated using the multi-body dynamics analysis software RecurDyn V9R4. Finally, the driving performance of the optimized prototype is evaluated through extensive tests. The test results revealed that the optimized prototype achieves the maximum lateral travel and longitudinal climbing angle of more than 30°, the maximum height over steps of 330 mm, and the maximum width across trenches of 890 mm. The outcomes of the real-vehicle tests are largely consistent with the simulation results, and the test outcomes meet the driving performance requirements for transplanting operations in hilly and mountainous terrains. Full article
(This article belongs to the Special Issue Research Advances in Management and Planning of Forest Operations)
Show Figures

Figure 1

26 pages, 5054 KiB  
Article
Potential Identification of Root System Architecture Using GPR for Tree Translocation as a Sustainable Forestry Task: A Case Study of the Wild Service Tree
by Ewa E. Kurowska, Andrzej Czerniak, Janusz Bańkowski and Adrian Kasztelan
Sustainability 2024, 16(20), 9037; https://doi.org/10.3390/su16209037 - 18 Oct 2024
Viewed by 1463
Abstract
Sustainable economic development serves society but requires taking over space, often at the expense of areas occupied by single trees or even parts of forest areas. Techniques for transplanting adult trees used in various conflict situations at the interface of economy and nature [...] Read more.
Sustainable economic development serves society but requires taking over space, often at the expense of areas occupied by single trees or even parts of forest areas. Techniques for transplanting adult trees used in various conflict situations at the interface of economy and nature work as a tool for sustainable management of urbanized and industrial areas, as well as, in certain circumstances, forest or naturally valuable areas. This study aimed to evaluate the effectiveness of ground-penetrating radar (GPR) in determining the horizontal and vertical extent of tree root systems before transplantation. Employing this non-invasive method to map root system architecture aids in the appropriate equipment selection and helps define the dimensions and depth of trenches to minimize root damage during excavation. This study specifically focused on the root systems of wild service trees (Sorbus torminalis (L.) Crantz) found in a limestone mine area, where some specimens were planned to be transplanted, as the species is protected under law in Poland. The root systems were scanned with a ground-penetrating radar equipped with a 750 MHz antenna. Then, the root balls were dug out, and the root parameters and other dendrometric parameters were measured. The GPR survey and manual root analyses provided rich comparative graphic material. The number of the main roots detected by the GPR was comparable to those inventoried after extracting the stump. The research was carried out in problematic soil, causing non-standard deformations of the root systems. Especially in such conditions, identifying unusually arranged roots using the GPR method is valuable because it helps in a detailed planning of the transplanting process, minimizing root breakage during the activities carried out, which increases the survival chances of the transplanted tree in a new location. Full article
Show Figures

Figure 1

18 pages, 1911 KiB  
Article
Effect of Pit and Soil Types on Growth and Development, Nutrient Content and Fruit Quality of Pomegranate in the Central Deccan Plateau Region, India
by Rajagopal Vadivel, Kotha Sammi Reddy, Yogeshwar Singh and Dhananjay D. Nangare
Sustainability 2024, 16(18), 8099; https://doi.org/10.3390/su16188099 - 16 Sep 2024
Cited by 1 | Viewed by 1613
Abstract
To enhance pomegranate production on marginal gravelly lands, standardized planting techniques were evaluated in an 8-year-old orchard. Trenching, wider pit excavation, pit digging, and auger digs with dimensions of 1 and 2 m were employed. Utilizing native soil from barren land, with or [...] Read more.
To enhance pomegranate production on marginal gravelly lands, standardized planting techniques were evaluated in an 8-year-old orchard. Trenching, wider pit excavation, pit digging, and auger digs with dimensions of 1 and 2 m were employed. Utilizing native soil from barren land, with or without spent wash, and mixing it with black soil up to 1 m deep, growth parameters, leaf nutrients, fruit production, and fruit quality were assessed. The trench and wider pit methods outperformed others, yielding greater above-ground biomass (>70.3 kg tree−1), root biomass (>24.5 kg, tree−1), and cross-sectional area (>3.30 m2 tree−1). These methods also produced longer roots (>4.0 m tree−1) and higher leaf phosphorus (>0.28%) and potassium (>1.81%) levels, fruit juice content (>48.50%), and total soluble solids (>16.05°) compared to other planting methods. This resulted in higher and more sustainable fruit yield production under the trench and wider pit planting methods (>7.21 t ha−1). Similarly, the native and black soil mixture produced healthy fruit trees, improved fruit quality, and sustainably higher fruit yield over the native soil alone. In summary, the trench and wider pit methods (2–3 m3), combined with a soil mixture, are recommended for sustainable, high-quality fruit production in shallow gravelly terrains, thereby improving food security and the livelihoods of farmers in arid regions. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

20 pages, 1745 KiB  
Article
Differential Responses of Soil Nitrogen Forms to Climate Warming in Castanopsis hystrix and Quercus aliena Forests of China
by Weiwei Shu, Hui Wang, Shirong Liu, Yanchun Liu, Huilin Min, Zhaoying Li, Bernard Dell and Lin Chen
Forests 2024, 15(9), 1570; https://doi.org/10.3390/f15091570 - 6 Sep 2024
Cited by 3 | Viewed by 974
Abstract
Climate warming impacts soil nitrogen cycling in forest ecosystems, thus influencing their productivity, but this has not yet been sufficiently studied. Experiments commenced in January 2012 in a subtropical Castanopsis hystrix Hook. f. and Thomson ex A. DC. plantation and in May 2011 [...] Read more.
Climate warming impacts soil nitrogen cycling in forest ecosystems, thus influencing their productivity, but this has not yet been sufficiently studied. Experiments commenced in January 2012 in a subtropical Castanopsis hystrix Hook. f. and Thomson ex A. DC. plantation and in May 2011 in a temperate Quercus aliena Blume forest, China. Four treatments were established comprising trenching, artificial warming (up to 2 °C), artificial warming + trenching, and untreated control plots. The plots were 2 × 3 m in size. In 2021 and 2022, soil nitrogen mineralization, soil nutrient availability, fine root biomass and microbial biomass were measured at 0–20 cm soil depth in 6 replicate plots per treatment. Warming significantly increased soil temperature in both forests. In the C. hystrix plantation, warming significantly increased available phosphorus (AP) and fine root biomass (FRB), but it did not affect soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP) and their ratios. Warming depressed the net mineralization rate (NMR) and net ammonification rate (NAR) of the C. hystrix plantation, probably because the competition for nitrogen uptake by fine roots and microorganisms increased, thus decreasing substrates for nitrogen mineralization and ammonification processes. Trenching and warming + trenching increased the net nitrification rate (NNR), which might be related to decreased NH4+-N absorption of trees in the trenched plots and the increased microbial activity involved in soil nitrification. In the Q. aliena forest, warming significantly increased NH4+-N, MBC/MBN, Root C/N, Root N/P, and decreased pH, MBN, MBN/MBP and Root P; and there was no effect of trenching. Notably, the NAR, NNR and NMR were largely unaffected by long-term warming. We attributed this to the negative effect of increasing NH4+-N and decreasing MBN/MBP offsetting the positive effect of soil warming. This study highlights the vulnerability of subtropical forest stands to long-term warming due to decreased soil N mineralization and increased NO3-N leaching. In contrast, the soil N cycle in the temperate forest was more resilient to a decade of continuous warming. Full article
(This article belongs to the Special Issue Forest Plant, Soil, Microorganisms and Their Interactions)
Show Figures

Figure 1

18 pages, 9383 KiB  
Article
Impact of Root Cutting on Acer platanoides and Tilia cordata Tree Stability in Urban Parks: A Case Study in Quebec City, Canada
by Clément Pallafray, Sivajanani Sivarajah and Jean-Claude Ruel
Forests 2024, 15(6), 1041; https://doi.org/10.3390/f15061041 - 16 Jun 2024
Cited by 1 | Viewed by 2888
Abstract
Trees growing in urban environments are often impacted by maintenance or construction work involving the cutting of roots. Tree protection zones have been proposed to avoid critical damage to the tree. However, despite incorporating quantitative information, they heavily rely on expert judgement that [...] Read more.
Trees growing in urban environments are often impacted by maintenance or construction work involving the cutting of roots. Tree protection zones have been proposed to avoid critical damage to the tree. However, despite incorporating quantitative information, they heavily rely on expert judgement that remains to be validated. In a study conducted across six parks in Quebec City, Canada, two commonly found tree species, Acer platanoides L. and Tilia cordata Mill., presumed to be different in terms of vulnerability to root damage, were subjected to a range of trenching treatments. The trees were between 23 and 40 cm diameter at breast height (DBH). A safety factor was calculated relating the turning moment the tree can withstand to the turning moment imposed by high winds likely to occur. The safety factor against uprooting was assessed for each tree before and after root trenching using a non-destructive pulling approach. The effects of tree species, distance to the trench, and their combined interaction were tested on tree stability. The relationship between tree stability and soil texture, tree characteristics, and the number of damaged roots were also tested. Safety factors were initially variable, ranging from 0.5 to 4.5. T. cordata safety factors were lower than those of A. platanoides and influenced by soil texture. Trenching treatments had no effect on the safety factor, even when two perpendicular trenches were dug at 1 m from the stem. No index of the amount of root damaged was significantly related to the safety factor. Root trenching treatments that encroached closer to the tree trunk than the recommended tree protection zones did not affect the stability of both species. Nevertheless, it is essential to recognize that other ecophysiological processes might still be influenced, and long-term monitoring is crucial. Both should be taken into account when determining these zones. Full article
(This article belongs to the Special Issue Urban Forestry and Sustainable Cities)
Show Figures

Figure 1

21 pages, 5098 KiB  
Article
Potential of Decentral Nature-Based Solutions for Mitigation of Pluvial Floods in Urban Areas—A Simulation Study Based on 1D/2D Coupled Modeling
by Jonas Neumann, Christian Scheid and Ulrich Dittmer
Water 2024, 16(6), 811; https://doi.org/10.3390/w16060811 - 8 Mar 2024
Cited by 7 | Viewed by 2546
Abstract
Urban drainage systems are generally designed to handle rainfall events only up to a certain intensity or volume. With climate change, extreme events that exceed the design storms and consequently result in flooding are occurring more frequently. Nature-based solutions (NBSs) have the potential [...] Read more.
Urban drainage systems are generally designed to handle rainfall events only up to a certain intensity or volume. With climate change, extreme events that exceed the design storms and consequently result in flooding are occurring more frequently. Nature-based solutions (NBSs) have the potential to reduce the pressure on urban drainage systems and to increase their resilience. This study presents an approach to compare and evaluate the effectiveness of NBSs for flood mitigation using a coupled 1D/2D model of surface and sewer flow. The study analyzes the effect of infiltration systems (dimensioned to return periods of T = 5 and 100 years), various green roofs, and tree pits considering the different degrees of implementation. The NBSs are represented as LID elements according to SWMM. As expected, the mitigation effect of NBSs declines with increasing rainfall intensities. However, infiltration systems dimensioned to T = 100 years achieve almost three times the flood reduction compared to systems dimensioned to T = 5 years, even during extremely heavy rainfall events (100 mm), resulting in a reduced total flood volume of 15.1% to 25.8%. Overall, green roofs (excluding extensive green roofs) provide the most significant flood reduction (33.5%), while tree locations have the least effect. Full article
Show Figures

Figure 1

19 pages, 1657 KiB  
Article
Optimization of a Tree Pit as a Blue–Green Infrastructure Object
by Lukas Novak, Ivana Kabelkova, David Hora and David Stransky
Sustainability 2023, 15(22), 15731; https://doi.org/10.3390/su152215731 - 8 Nov 2023
Cited by 3 | Viewed by 1997
Abstract
Trees in dense urban environments are often planted in bioretention cells with an underlying trench (BC-T) providing both stormwater pretreatment and storage. The BC-T design is based on a water balance; however, some input data (tree water uptake and water-holding capacities of soil [...] Read more.
Trees in dense urban environments are often planted in bioretention cells with an underlying trench (BC-T) providing both stormwater pretreatment and storage. The BC-T design is based on a water balance; however, some input data (tree water uptake and water-holding capacities of soil filter and trench substrate) are difficult to obtain. The goals of this paper were (i) to study the sensitivity of such data in the BC-T design (i.e., their effect on the size of the drained area which may be connected to the tree pit), and (ii) to recommend a possible simplification of the water balance for engineering practice. Global sensitivity analysis was performed for the setup of a BC-T used in Prague, Czech Republic, assuming three different trench exfiltration rates. The most sensitive variable affecting the size of the drained area is the available water-holding capacity in the trench. The simplification of the water balance is highly dependent on exfiltration conditions. At high exfiltration rates (18 mm·h−1 and more) or for a trench with an underdrain, the water-holding capacity in the soil filter and the tree water uptake can be omitted; whereas, at low trench exfiltration rates (1.8 mm·h−1, without an underdrain), both the water-holding capacity of the trench substrate and the potential tree water uptake have a significant influence and cannot be omitted. Full article
(This article belongs to the Special Issue Sustainable Rainwater Management: Challenges and Perspectives)
Show Figures

Figure 1

29 pages, 5905 KiB  
Article
Analysis of Poplar’s (Populus nigra ita.) Root Systems for Quantifying Bio-Engineering Measures in New Zealand Pastoral Hill Country
by Ha My Ngo, Feiko Bernard van Zadelhoff, Ivo Gasparini, Julien Plaschy, Gianluca Flepp, Luuk Dorren, Chris Phillips, Filippo Giadrossich and Massimiliano Schwarz
Forests 2023, 14(6), 1240; https://doi.org/10.3390/f14061240 - 15 Jun 2023
Cited by 2 | Viewed by 2987
Abstract
Populus nigra ita. is an important tree species for preventing rainfall-triggered shallow landslides and hydraulic bank erosion in New Zealand. However, the quantification of its spatial root distribution and reinforcement remains challenging. The objective of this study is to calibrate and validate models [...] Read more.
Populus nigra ita. is an important tree species for preventing rainfall-triggered shallow landslides and hydraulic bank erosion in New Zealand. However, the quantification of its spatial root distribution and reinforcement remains challenging. The objective of this study is to calibrate and validate models for the spatial upscaling of root distribution and root reinforcement. The data were collected in a 26-year-old “Tasman” poplar stand at Ballantrae Hill Country Research Station in New Zealand. We assessed root distribution at different distances from the stem of four poplar trees and from eleven soil pits along a transect located in a sparse to densely planting poplar stand. 124 laboratory tensile tests and 66 field pullout tests on roots with diameters up to 0.04 m were carried out to estimate root mechanical properties. The results show that the spatial distribution of roots can be well predicted in trenches of individual tree root systems (R2 = 0.78), whereas it tends to overestimate root distribution when planting density was higher than 200 stems per hectare. The root reinforcement is underestimated within single tree root systems (R2 = 0.64), but it performs better for the data along the transect. In conclusion, our study provided a unique and detailed database for quantifying root distribution and reinforcement of poplars on a hillslope. The implementation of these models for the simulation of shallow landslides and hydraulic bank erosion is crucial for identifying hazardous zones and for the prioritization of bio-engineering measures in New Zealand catchments. Results from this study are useful in formulating a general guideline for the planning of bio-engineering measures considering the temporal dynamics of poplar’s growth and their effectiveness in sediment and erosion control. Full article
(This article belongs to the Special Issue Spatial Distribution and Growth Dynamics of Tree Species)
Show Figures

Figure 1

20 pages, 3831 KiB  
Article
Assessing Potential Effects of Nature-Based Solutions (NBS) on Water Ecosystem Service in the Interurban Micro-Watershed Río Torres, Costa Rica
by Aurorita Espinal-Giron, Laura Benegas Negri, Christian Brenes, Christian Birkel and Cornelis Prins
Forests 2023, 14(5), 937; https://doi.org/10.3390/f14050937 - 3 May 2023
Cited by 10 | Viewed by 3906
Abstract
The implementation of green infrastructure (GI) as Nature-Based Solutions (NBS) generates positive effects on the water ecosystem service in an urban context. Practices such as bioretention cells, green roofs, rain gardens, permeable pavements, and infiltration trenches contribute to treating large volumes of runoff [...] Read more.
The implementation of green infrastructure (GI) as Nature-Based Solutions (NBS) generates positive effects on the water ecosystem service in an urban context. Practices such as bioretention cells, green roofs, rain gardens, permeable pavements, and infiltration trenches contribute to treating large volumes of runoff and providing safe spaces for populations living in highly urbanized areas. With the aim to simulate these effects, a hydrological modeling was carried out using the i-Tree Hydro Plus model, which quantified the runoff generated from precipitation events and effective transformations (NBS) to cope with runoff. Eight scenarios were developed: a baseline scenario, five future scenarios with green infrastructure, a scenario with increased tree coverage, and a scenario with increased urbanization. Our hypothesis is that NBS would reduce runoff and increase permeable flow. The analysis of the feasibility of implementing the modeled green infrastructures was carried out through consultation with local stakeholders in the micro-watershed. We found that bioretention cells decrease runoff by 5%, green roofs by 4%, rain gardens by 4%, permeable pavements by 4.5%, and infiltration trenches by 7.5% compared to the baseline scenario where runoff accounts for 32% of water balance flows. The scenario of increased tree coverage had a similar behavior to the baseline scenario, indicating that efforts in this alternative would generate a limited impact on the reduction of runoff. With increased urbanization, impermeable flow increases up to 78%, which would generate floods. Implementing NBS would be feasible since this type of initiative is included in the agenda of many regulatory instruments of urban planning in Costa Rica. Full article
(This article belongs to the Special Issue Nature-Based Solutions for Climate and Environmental Change)
Show Figures

Figure 1

19 pages, 24278 KiB  
Article
Automatic Identification and Mapping of Cone-Shaped Volcanoes Based on the Morphological Characteristics of Contour Lines
by Hu Li, Wentao Nong, Anbo Li and Hao Shang
Sustainability 2023, 15(5), 3922; https://doi.org/10.3390/su15053922 - 21 Feb 2023
Viewed by 2156
Abstract
Cone-shaped volcanoes have important research significance and application value due to their typical cone shape and unique structural features. The existing methods for recognizing volcanoes are mainly morphological feature matching and machine learning. In general, the former has low recognition accuracy, while the [...] Read more.
Cone-shaped volcanoes have important research significance and application value due to their typical cone shape and unique structural features. The existing methods for recognizing volcanoes are mainly morphological feature matching and machine learning. In general, the former has low recognition accuracy, while the latter requires a large number of training samples. The contour lines of cone-shaped volcanoes are distributed in concentric circles. Furthermore, from the center outwards, the elevation of the contour lines increases first and then decreases. Based on the morphological characteristics of cone-shaped volcanoes and the Hough transform algorithm, the main algorithm includes (1) preliminary filtering of contour lines, (2) filtering circular contour lines based on random Hough transform, (3) grouping contour lines based on contour trees, (4) recognizing cone-shaped volcanoes based on concentric-circle contour lines, and (5) automatically mapping cone-shaped volcanoes. Case studies demonstrate the effectiveness of this method for detecting cone-shaped volcanoes in the Western Galapagos shield volcanoes and the Mariana Trench submarine volcano group. The proposed algorithm has low missed and false alarm rates, which is basically consistent with the manual recognition results. This method can effectively automatically recognize cone-shaped volcanoes and cone-shaped landscapes and is a powerful means to support deep-space and deep-sea exploration. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

17 pages, 4008 KiB  
Article
Palaeoenvironment, Settlement, and Land Use in the Late Neolithic—Bronze Age Site of Colombare di Negrar di Valpolicella (N Italy, On-Site)
by Umberto Tecchiati, Paola Salzani, Fiorenza Gulino, Barbara Proserpio, Chiara Reggio, Cristiano Putzolu, Eleonora Rattighieri, Eleonora Clò, Anna Maria Mercuri and Assunta Florenzano
Quaternary 2022, 5(4), 50; https://doi.org/10.3390/quat5040050 - 5 Dec 2022
Cited by 3 | Viewed by 2513
Abstract
Palynological and archaeobotanical analyses have been carried out as part of the interdisciplinary project of Colombare di Negrar, a prehistoric site in the Lessini Mountains (northern Italy). The palaeoenvironmental and economic reconstruction from the Late Neolithic to the beginning of the Early Bronze [...] Read more.
Palynological and archaeobotanical analyses have been carried out as part of the interdisciplinary project of Colombare di Negrar, a prehistoric site in the Lessini Mountains (northern Italy). The palaeoenvironmental and economic reconstruction from the Late Neolithic to the beginning of the Early Bronze Age was based on 16 pollen samples and three samples of macroremains taken from two contiguous trenches. The landscape reconstruction shows the presence of natural clearings in the wood. Forest cover was characterised by oak wood, with Ulmus and Tilia. The intermediate morphology of size and exine of Tilia cordata/platyphyllos pollen may be regarded as the first palynological evidence of lime hybrids in palaeorecords. Hygrophilous trees and Vitis vinifera testify to the presence of riparian forests and moist soils. Among trees supplying fruits, in addition to the grapevine, hazelnut (Corylus avellana) and walnut (Juglans regia) were present. A mixed economy based on animal breeding and cultivation of cereals (Hordeum vulgare, Triticum monococcum, T. dicoccum, T. timopheevii) emerged from the data. The combined analysis of pollen and plant macroremains suggests that different activities were carried out simultaneously in Colombare and a relationship between natural resources and the socio-economic and cultural evolution of the territory. Full article
Show Figures

Figure 1

Back to TopTop