Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (257)

Search Parameters:
Keywords = tree cover loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 25345 KiB  
Article
Mangrove Damage and Early-Stage Canopy Recovery Following Hurricane Roslyn in Marismas Nacionales, Mexico
by Samuel Velázquez-Salazar, Luis Valderrama-Landeros, Edgar Villeda-Chávez, Cecilia G. Cervantes-Rodríguez, Carlos Troche-Souza, José A. Alcántara-Maya, Berenice Vázquez-Balderas, María T. Rodríguez-Zúñiga, María I. Cruz-López and Francisco Flores-de-Santiago
Forests 2025, 16(8), 1207; https://doi.org/10.3390/f16081207 - 22 Jul 2025
Viewed by 1270
Abstract
Hurricanes are powerful tropical storms that can severely damage mangrove forests through uprooting trees, sediment erosion, and saltwater intrusion, disrupting their critical role in coastal protection and biodiversity. After a hurricane, evaluating mangrove damage helps prioritize rehabilitation efforts, as these ecosystems play a [...] Read more.
Hurricanes are powerful tropical storms that can severely damage mangrove forests through uprooting trees, sediment erosion, and saltwater intrusion, disrupting their critical role in coastal protection and biodiversity. After a hurricane, evaluating mangrove damage helps prioritize rehabilitation efforts, as these ecosystems play a key ecological role in coastal regions. Thus, we analyzed the defoliation of mangrove forest canopies and their early recovery, approximately 2.5 years after the landfall of Category 3 Hurricane Roslyn in October 2002 in Marismas Nacionales, Mexico. The following mangrove traits were analyzed: (1) the yearly time series of the Combined Mangrove Recognition Index (CMRI) standard deviation from 2020 to 2025, (2) the CMRI rate of change (slope) following the hurricane’s impact, and (3) the canopy height model (CHM) before and after the hurricane using satellite and UAV-LiDAR data. Hurricane Roslyn caused a substantial decrease in canopy cover, resulting in a loss of 47,202 ha, which represents 82.8% of the total area of 57,037 ha. The CMRI standard deviation indicated early signs of canopy recovery in one-third of the mangrove-damaged areas 2.5 years post-impact. The CMRI slope indicated that areas near the undammed rivers had a maximum recovery rate of 0.05 CMRI units per month, indicating a predicted canopy recovery of ~2.5 years. However, most mangrove areas exhibited CMRI rates between 0.01 and 0.03 CMRI units per month, anticipating a recovery time between 40 months (approximately 3.4 years) and 122 months (roughly 10 years). Unfortunately, most of the already degraded Laguncularia racemosa forests displayed a negative CMRI slope, suggesting a lack of canopy recovery so far. Additionally, the CHM showed a median significant difference of 3.3 m in the canopy height of fringe-type Rhizophora mangle and Laguncularia racemosa forests after the hurricane’s landfall. Full article
Show Figures

Figure 1

16 pages, 1049 KiB  
Article
Limited Short-Term Impact of Annual Cover Crops on Soil Carbon and Soil Enzyme Activity in Subtropical Tree Crop Systems
by Abraham J. Gibson, Lee J. Kearney, Karina Griffin, Michael T. Rose and Terry J. Rose
Agronomy 2025, 15(7), 1750; https://doi.org/10.3390/agronomy15071750 - 21 Jul 2025
Viewed by 284
Abstract
In wet subtropical environments, perennial groundcovers are common in horticultural plantations to protect the soil from erosion. However, there has been little investigation into whether seeding annual cover crops into the perennial groundcovers provides additional soil services including carbon and nutrient cycling in [...] Read more.
In wet subtropical environments, perennial groundcovers are common in horticultural plantations to protect the soil from erosion. However, there has been little investigation into whether seeding annual cover crops into the perennial groundcovers provides additional soil services including carbon and nutrient cycling in these systems. To investigate this, farmer participatory field trials were conducted in commercial avocado, macadamia, and coffee plantations in the wet Australian subtropics. Cover crops were direct-seeded into existing inter-row groundcovers in winter (cool season cover crops), and into the same plots the following summer (warm season cover crops). Inter-row biomass was quantified at the end of winter and summer in the control (no cover crop) and cover crops treatments. Soil carbon and nutrient cycling parameters including hot water extractable carbon, water soluble carbon, autoclavable citrate-extractable protein and soil enzyme activities were quantified every two months from early spring (September) 2021 to late autumn (May) 2022. Seeded cover crops produced 500 to 800 kg ha−1 more total inter-row biomass over winter at the avocado coffee sites, and 3000 kg ha−1 biomass in summer at the coffee site. However, they had no effect on biomass production in either season at the macadamia site. Soil functional parameters changed with season (i.e., time of sampling), with few significant effects of cover crop treatments on soil function parameters across the three sits. Growing a highly productive annual summer cover crop at the coffee site led to suppression and death of perennial groundcovers, exposing bare soil in the inter-row by 3 weeks after termination of the summer cover crop. Annual cover crops seeded into existing perennial groundcovers in tree crop systems had few significant impacts on soil biological function over the 12-month period, and their integration needs careful management to avoid investment losses and exacerbating the risk of soil erosion on sloping lands in the wet subtropics. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

15 pages, 4146 KiB  
Article
Monitoring Forest Cover Trends in Nepal: Insights from 2000–2020
by Aditya Eaturu
Sustainability 2025, 17(14), 6511; https://doi.org/10.3390/su17146511 - 16 Jul 2025
Viewed by 534
Abstract
This study investigates the spatial relationship between population distribution and tree cover loss in Nepal from 2000 to 2020, using satellite-based forest cover and population data along with statistical and geospatial analysis. Two statistical methods—linear regression (LR) and Geographically Weighted Regression (GWR)—were used [...] Read more.
This study investigates the spatial relationship between population distribution and tree cover loss in Nepal from 2000 to 2020, using satellite-based forest cover and population data along with statistical and geospatial analysis. Two statistical methods—linear regression (LR) and Geographically Weighted Regression (GWR)—were used to assess the influence of population on forest cover change. The correlation between total population and forest loss at the national level suggested little to no direct impact of population growth on forest loss. However, sub-national analysis revealed localized forest degradation, highlighting the importance of spatial and regional assessments to uncover land cover changes masked by national trends. While LR showed a weak national-level correlation, GWR revealed substantial spatial variation, with the coefficient of determination values increasing from 0.21 in 2000 to 0.59 in 2020. In some regions, local R2 exceeded 0.75 during 2015 and 2020, highlighting emerging hotspot clusters where population pressure is strongly linked to deforestation, especially along major infrastructure corridors. Using very high-resolution spatial data enabled pixel-level analysis, capturing fine-scale deforestation patterns, and confirming hotspot accuracy. Overall, the findings emphasize the value of spatially explicit models like GWR for understanding human–environment interactions guiding targeted land use planning to balance development with environmental sustainability in Nepal. Full article
Show Figures

Figure 1

13 pages, 3118 KiB  
Article
Landscape Composition and Forest Structure Shape Phyllostomid Bat Assemblages in the Atlantic Forest Remnants
by Ricardo Bovendorp, Eduardo Mariano-Neto, Albérico Queiroz and Deborah Faria
Animals 2025, 15(14), 2082; https://doi.org/10.3390/ani15142082 - 15 Jul 2025
Viewed by 1020
Abstract
Habitat loss and land-use intensification are major threats to biodiversity in the Brazilian Atlantic Forest, particularly for bat assemblages that provide key ecosystem services. In this study, we examined how landscape composition (forest and pasture cover) and local forest structure influence the richness [...] Read more.
Habitat loss and land-use intensification are major threats to biodiversity in the Brazilian Atlantic Forest, particularly for bat assemblages that provide key ecosystem services. In this study, we examined how landscape composition (forest and pasture cover) and local forest structure influence the richness and abundance of phyllostomid bats across 20 forest fragments in southern Bahia. Bat sampling was conducted using mist nets, and forest structure was quantified using tree measurements and vertical foliage stratification. We applied structural equation modeling to test the direct and indirect effects of landscape and local variables. Our results show that forest cover has both direct and indirect positive effects on bat diversity, mediated by improved forest structure. In contrast, increased pasture cover negatively affected forest structure and was weakly associated with bat diversity. The most abundant species were generalist frugivores, such as Carollia perspicillata and Rhinophylla pumilio. These findings highlight the importance of maintaining forest cover and structural complexity to support bat diversity in agroforestry-dominated landscapes. Conservation strategies that integrate habitat protection with sustainable land-use practices are crucial to maintaining biodiversity and the ecological functions provided by bats in this globally threatened biome. Full article
(This article belongs to the Special Issue Conservation, Ecology and Health Issues of Forest Bats)
Show Figures

Figure 1

15 pages, 6206 KiB  
Article
Analyzing the Relationship Between Tree Canopy Coverage and Snowpack in the Great Salt Lake Watershed
by Kyle J. Bird, Grayson R. Morgan, Benjamin W. Abbott and Samuel M. Otterstrom
Sustainability 2025, 17(13), 5771; https://doi.org/10.3390/su17135771 - 23 Jun 2025
Viewed by 304
Abstract
Utah, USA, relies heavily on snowpack for water to sustain its growing population. Scientists and policy makers are exploring and proposing several potential sustainable solutions to improving flow to the Great Salk Lake as it recently has significantly declined in size, including removing [...] Read more.
Utah, USA, relies heavily on snowpack for water to sustain its growing population. Scientists and policy makers are exploring and proposing several potential sustainable solutions to improving flow to the Great Salk Lake as it recently has significantly declined in size, including removing tree canopy. This study examines the influence of tree canopy coverage, climate, and topography on snow water equivalent (SWE) within the Great Salt Lake Watershed. Using SNOTEL data, NLCD land use/land cover rasters, t-tests, and multiple linear regression (MLR), the study analyzed SWE variability in relation to canopy density, winter precipitation, elevation, temperature, and latitude. Initial t-tests showed significant differences in SWE between sites with canopy coverage below and above 70%, yet tree canopy was excluded as a significant predictor in the MLR model. Instead, SWE was primarily explained by mean winter precipitation, elevation, average winter high temperatures, and latitude. Additionally, canopy change analysis of the 2018 Pole Creek Fire in the Jordan River watershed showed no significant changes in SWE following canopy loss. This study highlights the dominant role of climatic factors in influencing snowpack dynamics on a watershed scale. It also provides important data for sustainable watershed and forestry management and a framework for understanding snowpack responses to climate and land cover changes in saline lake ecosystems. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

15 pages, 4822 KiB  
Article
Predicting the Current and Future Habitat Distribution for an Important Fruit Pest, Grapholita dimorpha Komai (Lepidoptera: Tortricidae), Using an Optimized MaxEnt Model
by Li Huang, Shichao Zuo, Yiqi Huo, Lizong Hu, Zhengbing Wang, Jiahui Zhang, Jin Liu, Weili Ding, Keshi Ma and Mingsheng Yang
Insects 2025, 16(6), 623; https://doi.org/10.3390/insects16060623 - 12 Jun 2025
Viewed by 1412
Abstract
The Grapholita dimorpha is one of the significant borer pests that primarily damage plum, pear, and apple trees, often resulting in substantial economic losses in fruit production. However, the potential distribution range of this economically important pest remains poorly understood. In this study, [...] Read more.
The Grapholita dimorpha is one of the significant borer pests that primarily damage plum, pear, and apple trees, often resulting in substantial economic losses in fruit production. However, the potential distribution range of this economically important pest remains poorly understood. In this study, we simulated an optimized maximum entropy (MaxEnt) model to predict the spatiotemporal distribution pattern of G. dimorpha and identified its underlying driving factors. The results indicate that suitable habitats, under current bioclimatic conditions, are mainly distributed in eastern China, northeastern China, Korea, and Japan, covering a total of 273.5 × 104 km2. The highly suitable habitats are primarily located in Korea and parts of central Japan, with a total area of 19.8 × 104 km2. In future projections, the suitable area is expected to increase by 17.74% to 62.10%, and the suitable habitats are predicted to shift northward overall. In particular, there are more highly suitable habitats for G. dimorpha in China and Japan compared to their predominance in Korea under current climatic conditions. The bio9 and bio18 contribute 51.9% and 20.7% to the modeling, respectively, indicating that the distribution of G. dimorpha may be shaped mainly by the mean temperature of the driest quarter and precipitation of the warmest quarter. In summary, the distribution range predicted, particularly for regions with highly suitable habitats, poses a high risk of G. dimorpha outbreaks, emphasizing the priority of pest monitoring and management. Furthermore, the key bioclimatic variables identified could also provide crucial reference for pest monitoring. Full article
Show Figures

Figure 1

21 pages, 4751 KiB  
Article
Vulnerability and Adaptation of Coastal Forests to Climate Change: Insights from the Igneada Longos Forests of Türkiye
by Halil Barış Özel, Tuğrul Varol, İrşad Bayırhan, Ayhan Ateşoğlu, Fidan Şevval Bulut, Gürcan Büyüksalih and Cem Gazioğlu
Forests 2025, 16(6), 976; https://doi.org/10.3390/f16060976 - 10 Jun 2025
Viewed by 552
Abstract
As one of Europe’s rare floodplain forest ecosystems, the İğneada Longos Forests face increasing ecological pressures; this study examines land use and land cover (LULC) changes in the İğneada Longos Forests, a protected national park in Turkey, between 1984 and 2014, while also [...] Read more.
As one of Europe’s rare floodplain forest ecosystems, the İğneada Longos Forests face increasing ecological pressures; this study examines land use and land cover (LULC) changes in the İğneada Longos Forests, a protected national park in Turkey, between 1984 and 2014, while also assessing future climate change impacts under different shared socioeconomic pathways (SSPs). In this context, the MaxEnt model, which exhibits a very high sensitivity, was used to determine the land use/land change and the change in natural distribution habitats of the forest tree species in the İğneada Longos Forests, which constitute the research area, due to the effects of climate change. The analysis of forest management plans revealed significant LULC shifts, including wetland loss, cropland expansion, and declines in pioneer tree species, such as the lowland maple and the European ash, due to anthropogenic pressures and increasing droughts. Climate modeling using the Emberger and De Martonne indices projected severe aridity by 2100, with Mediterranean climate dominance expanding (up to 89.25% under SSP3–7.0) and humid zones disappearing. These changes threaten biodiversity, carbon sequestration capacity, and ecosystem stability, particularly in floodplain forests, which are critical for carbon storage. The findings underscore the urgent need for adaptive conservation strategies, stakeholder collaboration, and climate-resilient forest management to mitigate ecological degradation and sustain ecosystem services under escalating climate stress. Full article
Show Figures

Figure 1

23 pages, 10258 KiB  
Article
Characterizing Crop Distribution and the Impact on Forest Conservation in Central Africa
by Mohammed S. Ozigis, Serge Wich, Mahsa Abdolshahnejad, Adrià Descals, Zoltan Szantoi, Douglas Sheil and Erik Meijaard
Remote Sens. 2025, 17(11), 1958; https://doi.org/10.3390/rs17111958 - 5 Jun 2025
Viewed by 900
Abstract
While the role of expanding agriculture in deforestation and the loss of other natural ecosystems is well known, the specific drivers in the context of small- and large-scale agriculture remain poorly understood. In this study, we employed satellite data and a deep learning [...] Read more.
While the role of expanding agriculture in deforestation and the loss of other natural ecosystems is well known, the specific drivers in the context of small- and large-scale agriculture remain poorly understood. In this study, we employed satellite data and a deep learning algorithm to map the agricultural landscape of Central Africa (Cameroon, Central Africa Republic, Congo, Democratic Republic of Congo, Equatorial Guinea, and Gabon) into large- (including for plantations and intensively cultivated areas) and small-scale tree crops and non-tree crop cover. This permits the assessment of forest loss between the years 2000 and 2022 as a result of small- and large-scale agriculture. Thematic [user’s] accuracy ranged between 91.2 ± 2.5 percent (large-scale oil palm) and 17.8 ± 3.9 percent (large-scale non-tree crops). Small-scale tree crops achieved relatively low accuracy (63.5 ± 5.9 percent), highlighting the difficulties of reliably mapping crop types at a regional scale. In general, we observed that small-scale agriculture is fifteen times the size of large-scale agriculture, as area estimates of small-scale non-tree crops and small-scale tree crops ranged between 164,823 ± 4224 km2 and 293,249 ± 12,695 km2, respectively. Large-scale non-tree crops and large-scale tree crops ranged between 20,153 ± 1195 km2 and 7436 ± 280 km2, respectively. Small-scale cropping activities represent 12 percent of the total land cover and have led to dramatic encroachment into tropical moist forests in the past two decades in all six countries. We summarized key recommendations to help the forest conservation effort of existing policy frameworks. Full article
Show Figures

Graphical abstract

28 pages, 3343 KiB  
Article
Evaluating the Spatial Relationships Between Tree Cover and Regional Temperature and Precipitation of the Yucatán Peninsula Applying Spatial Autoregressive Models
by Mayra Vázquez-Luna, Edward A. Ellis, María Angélica Navarro-Martínez, Carlos Roberto Cerdán-Cabrera and Gustavo Celestino Ortiz-Ceballos
Land 2025, 14(5), 943; https://doi.org/10.3390/land14050943 - 26 Apr 2025
Viewed by 2069
Abstract
Deforestation and forest degradation are important drivers of global warming, yet their implications on regional temperature and precipitation patterns are more elusive. In the Yucatán Peninsula, forest cover loss and deterioration has been rapidly advancing over the past decades. We applied local indicators [...] Read more.
Deforestation and forest degradation are important drivers of global warming, yet their implications on regional temperature and precipitation patterns are more elusive. In the Yucatán Peninsula, forest cover loss and deterioration has been rapidly advancing over the past decades. We applied local indicators of spatial association (LISA) cluster analysis and spatial autoregressive models (SAR) to evaluate the spatial relationships between tree cover and regional temperature and precipitation. We integrated NASA’s Global Forest Cover Change (GFCC) and WorldClim’s historical monthly weather datasets (2000–2015) to assess the effects of deforested, degraded, and dense forest land cover on temperature and precipitation distributions on the Yucatán Peninsula. LISA cluster analyses show warmer and drier conditions geographically coincide with deforested and degraded tree cover, but outliers allude to the potential influence of forest cover impacts on regional climate. Controlling spatial dependencies and including covariates, SAR models indicate that deforestation is associated with higher annual mean temperatures and minimum temperatures during dry and wet seasons, and decreased precipitation in the dry season. Degraded tree cover was related to higher maximum temperatures but did not relate to precipitation variability. We highlight the complex interactions between forest cover and climate and emphasize the importance of forest conservation for mitigating regional climate change. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

18 pages, 1621 KiB  
Article
Performance Optimization of Machine-Learning Algorithms for Fault Detection and Diagnosis in PV Systems
by Eduardo Quiles-Cucarella, Pedro Sánchez-Roca and Ignacio Agustí-Mercader
Electronics 2025, 14(9), 1709; https://doi.org/10.3390/electronics14091709 - 23 Apr 2025
Cited by 2 | Viewed by 786
Abstract
The early detection of faults in photovoltaic (PV) systems is crucial for ensuring efficiency, minimizing energy losses, and extending operational lifespan. This study evaluates and compares multiple machine-learning models for fault diagnosis in PV systems, analyzing their performance across different fault types and [...] Read more.
The early detection of faults in photovoltaic (PV) systems is crucial for ensuring efficiency, minimizing energy losses, and extending operational lifespan. This study evaluates and compares multiple machine-learning models for fault diagnosis in PV systems, analyzing their performance across different fault types and operational modes. A dataset comprising 2.2 million measurements from a laboratory-based PV model, covering seven fault categories—including inverter failures, partial shading, and sensor faults—is used for training and validation. Models are assessed under both Maximum Power Point Tracking (MPPT) and Limited Power Point Tracking (LPPT) conditions to determine their adaptability. The results indicate that the ensemble bagged tree classifier achieves the highest accuracy (92.2%) across all fault scenarios, while neural network-based models perform better under MPPT conditions. Additionally, the study highlights variations in model performance based on power mode, suggesting the potential for adaptive diagnostic approaches. The findings reinforce the feasibility of machine learning for predictive maintenance in PV systems, offering a cost-effective, sensor-free method for real-time fault detection. Future research should explore hybrid models that dynamically switch between classifiers based on system conditions, as well as validation using real-world PV installations. Full article
Show Figures

Figure 1

15 pages, 1431 KiB  
Article
Sunflower and Sunn Hemp Potential as Summer Cover Crops in Southern Texas
by Dileep Kumar Alapati, Veronica Ancona, Mamoudou Sétamou, Consuelo Donato, Shad D. Nelson and Joel Reyes-Cabrera
Agronomy 2025, 15(4), 986; https://doi.org/10.3390/agronomy15040986 - 20 Apr 2025
Viewed by 456
Abstract
The strategic incorporation of low-cost management practices, such as cover crops (CCs), to citrus production in southern Texas could add valuable ecosystem services that increase trees’ resilience to changing climatic conditions. To provide insight into how producers can manage CCs to optimize ecosystem [...] Read more.
The strategic incorporation of low-cost management practices, such as cover crops (CCs), to citrus production in southern Texas could add valuable ecosystem services that increase trees’ resilience to changing climatic conditions. To provide insight into how producers can manage CCs to optimize ecosystem services, we conducted a study in controlled conditions to examine the potential of adding three annual summer CCs species: common buckwheat (Fagopyrum esculentum), sunflower (Helianthus annuus L.), and sunn hemp (Crotalaria juncea L.) as monocultures growing in two representative soil types of the citrus region in Texas, and receiving one of these irrigation volumes based on calculated daily water losses [i.e., evapotranspiration (ET)] corresponding to 100, 75, 50, and 25% field capacity replenishment. Sunflower and sunn hemp produced the highest aboveground dry matter, which was on average 338 and 342% greater than buckwheat. Sunn hemp emerged faster than the other CCs, and mortality was relatively uniform across CCs, but buckwheat exhibited the highest sensitivity to drought and heat distress. Sunn hemp exhibited superior aboveground biomass accumulation, height, and chlorophyll content. All CCs performed similarly in both experimental soils, under native fertility conditions, and without the addition of mineral fertilizers. Irrigation at 75 and 100% ET levels were conducive to enhanced plant growth, which indicates that a minimum of 86.4 mm (75% ET) is required during CCs lifespan, but sunn hemp and sunflower were also capable of tolerating medium (50% ET) drought stress. Overall, our findings suggest that sunflower and sunn hemp exhibited traits desirable for incorporation as CCs to a perennial citrus production system. The primary benefit was the addition of organic matter with minimum management; however, both CCs’ performance was dependent on planting timing, successful early establishment, and favorable environmental conditions. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

41 pages, 10191 KiB  
Review
Impact of Land-Use Change on Vascular Epiphytes: A Review
by Thorsten Krömer, Helena J. R. Einzmann, Glenda Mendieta-Leiva and Gerhard Zotz
Plants 2025, 14(8), 1188; https://doi.org/10.3390/plants14081188 - 11 Apr 2025
Cited by 1 | Viewed by 1045
Abstract
Human-caused habitat conversion, degradation, and climate change threaten global biodiversity, particularly in tropical forests where vascular epiphytes—non-parasitic plants growing on other plants—may be especially vulnerable. Epiphytes play vital ecological roles, in nutrient cycling and by providing habitat, but are disproportionately affected by land-use [...] Read more.
Human-caused habitat conversion, degradation, and climate change threaten global biodiversity, particularly in tropical forests where vascular epiphytes—non-parasitic plants growing on other plants—may be especially vulnerable. Epiphytes play vital ecological roles, in nutrient cycling and by providing habitat, but are disproportionately affected by land-use changes due to their reliance on host trees and specific microclimatic conditions. While tree species in secondary forests recover relatively quickly, epiphyte recolonization is slower, especially in humid montane regions, where species richness may decline by up to 96% compared to primary or old-growth forests. A review of nearly 300 pertinent studies has revealed a geographic bias toward the Neotropics, with limited research from tropical Asia, Africa, and temperate regions. The studies can be grouped into four main areas: 1. trade, use and conservation, 2. ecological effects of climate and land-use change, 3. diversity in human-modified habitats, and 4. responses to disturbance. In agricultural and timber plantations, particularly those using exotic species like pine and eucalyptus, epiphyte diversity is significantly reduced. In contrast, most native tree species and shade-grown agroforestry systems support higher species richness. Traditional polycultures with dense canopy cover maintain up to 88% of epiphyte diversity, while intensive management practices, such as epiphyte removal in coffee and cacao plantations, cause substantial biodiversity losses. Conservation strategies should prioritize preserving old-growth forests, maintaining forest fragments, and minimizing intensive land management. Active restoration, including the translocation of fallen epiphytes and planting vegetation nuclei, is more effective than passive approaches. Future research should include long-term monitoring to understand epiphyte dynamics and assess the broader impacts of epiphyte loss on biodiversity and ecosystem functioning. Full article
Show Figures

Figure 1

16 pages, 8030 KiB  
Article
Breeding Habitat Suitability Modeling to Inform Management Practices for the European Turtle Dove (Streptopelia turtur) in NE Greece
by Charalambos T. Thoma, Konstantina N. Makridou and Dimitrios E. Bakaloudis
Ecologies 2025, 6(2), 25; https://doi.org/10.3390/ecologies6020025 - 28 Mar 2025
Viewed by 2234
Abstract
The European Turtle Dove (Streptopelia turtur) has experienced significant population declines across its European breeding range, primarily due to habitat loss. Our study aimed to provide a new reference for the conservation of Turtle Doves in Evros province, a biodiversity hotspot. [...] Read more.
The European Turtle Dove (Streptopelia turtur) has experienced significant population declines across its European breeding range, primarily due to habitat loss. Our study aimed to provide a new reference for the conservation of Turtle Doves in Evros province, a biodiversity hotspot. We used Maximum Entropy (MaxEnt) modeling to assess Turtle Dove breeding habitat suitability and account for the area of suitable habitats that is not protected or have been affected by a recent mega-fire. The best performing model identified tree cover density, the percent cover of permanently irrigated land and heterogenous agricultural areas, proximity to non-irrigated agricultural land, and forest edge length as the most important predictors of habitat suitability, signifying the importance of an interplay between open and forested land. Our results indicate that 39% of the study area provides a suitable breeding habitat, with the majority located in central and southeastern regions. Conversely, irrigated agricultural areas in the northeast are unsuitable. We found that more than 60% of suitable habitats fall within the Natura 2000 network, underscoring the importance of protected areas for conservation. However, wildfires pose a major threat, with almost 25% of suitable habitats being affected by a recent mega-fire, highlighting the need for recovery in these areas. Our study provides a foundation for targeted habitat management and restoration efforts in NE Greece and contributes to the broader understanding of the species’ habitat requirements across its breeding range. Full article
Show Figures

Figure 1

17 pages, 2164 KiB  
Article
Stand Structures and Carbon Storage Potential of Mangroves in Chaungkaphee Protected Public Forest, Tanintharyi Coastal Region, Myanmar
by Aung Wunna Tun, Xiaojuan Tong, Wai Nyein Aye and Jun Li
Forests 2025, 16(3), 554; https://doi.org/10.3390/f16030554 - 20 Mar 2025
Viewed by 1100
Abstract
Coastal ecosystems, particularly mangroves, are essential for ecological stability and human livelihoods, yet they face significant degradation from natural and anthropogenic pressures. This study focuses on the Chaungkaphee Protected Public Forest (PPF) in the Tanintharyi region of Myanmar, which hosts diverse mangrove species [...] Read more.
Coastal ecosystems, particularly mangroves, are essential for ecological stability and human livelihoods, yet they face significant degradation from natural and anthropogenic pressures. This study focuses on the Chaungkaphee Protected Public Forest (PPF) in the Tanintharyi region of Myanmar, which hosts diverse mangrove species critical for carbon storage. Between 2010 and 2020, mangrove forest cover in Myanmar decreased from 540,000 ha to 431,228 ha, resulting in a loss of 108,772 ha. This decline is primarily attributed to illegal logging and agricultural expansion. Our research aims to assess the structural characteristics, biomass, and carbon storage potential of mangrove ecosystems within the Chaungkaphee PPF. Field data collected in early 2024 applied non-destructive sampling methods to gather information on tree structure, species composition, and soil carbon stocks. We identified six dominant mangrove species, with Rhizophora apiculata Blume showing the highest biomass and carbon storage potential. The total biomass was measured at 493.91 Mg ha⁻1, yielding a carbon stock of 218.76 Mg C ha⁻1. Soil carbon assessments revealed an average organic carbon stock of 921.09 Mg C ha⁻1, underscoring the vital role of soil in carbon sequestration. Our findings highlight the significant contribution of mangrove ecosystems to climate change mitigation, emphasizing the urgent need for effective conservation strategies and community involvement in restoration efforts. This study enhances the understanding of mangrove resilience and sustainability, advocating for the protection of these crucial ecosystems amidst ongoing environmental challenges. By recognizing the ecological functions and services provided by mangroves, we can better address the threats they face and promote their restoration for future generations. Full article
(This article belongs to the Special Issue Advances in Forest Carbon, Water Use and Growth Under Climate Change)
Show Figures

Figure 1

23 pages, 4494 KiB  
Review
Conservation Biodiversity in Arid Areas: A Review
by Voichita Timis-Gansac, Lucian Dinca, Cristinel Constandache, Gabriel Murariu, Gabriel Cheregi and Claudia Simona Cleopatra Timofte
Sustainability 2025, 17(6), 2422; https://doi.org/10.3390/su17062422 - 10 Mar 2025
Cited by 11 | Viewed by 1828
Abstract
Drylands cover a vast area, and biodiversity conservation in these regions represents a major challenge. A bibliometric study of published research highlighted several key aspects, including publication types, research fields, years of publication, contributing countries, institutions, languages, journals, publishers, authors, and frequently used [...] Read more.
Drylands cover a vast area, and biodiversity conservation in these regions represents a major challenge. A bibliometric study of published research highlighted several key aspects, including publication types, research fields, years of publication, contributing countries, institutions, languages, journals, publishers, authors, and frequently used keywords. The analysis also included plants related to biodiversity conservation in arid areas, animals related to biodiversity conservation in arid areas, and causes of biodiversity decline in arid regions, effects of biodiversity loss in these regions, and restoration methods aimed at improving biodiversity conservation in arid areas. A total of 947 publications were identified, starting from 1994, authored by researchers from 99 countries, primarily from Australia, the USA, China, Spain, and South Africa, and published in 345 journals, with the most prominent being Journal of Arid Environments, Biodiversity and Conservation, and Biological Conservation. The most commonly appearing keywords included biodiversity, conservation, diversity, vegetation, and patterns, with recent years showing an increased use of terms related to the causes and effects of aridification: climate change, land use, and ecosystem services. The causes of biodiversity loss in drylands are primarily linked to human activities and climatic changes, while the effects impact the entire ecosystem. Methods to improve biodiversity include traditional agroforestry systems, tree plantations and other plant species, grazing management, and other approaches. Combined actions among stakeholders and ecologically appropriate nature-based solutions are also recommended. Improvements in conservation biodiversity in arid areas are very important also for achieving the sustainability goals in these areas. However, numerous aspects of this topic remain to be studied in greater detail. Full article
(This article belongs to the Special Issue Biodiversity, Biologic Conservation and Ecological Sustainability)
Show Figures

Figure 1

Back to TopTop