Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (21,199)

Search Parameters:
Keywords = treatment surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8261 KB  
Article
Organic Acids for Lignin and Hemicellulose Extraction from Black Liquor: A Comparative Study in Structure Analysis and Heavy Metal Adsorption Potential
by Patrycja Miros-Kudra, Paulina Sobczak-Tyluś, Agata Jeziorna, Karolina Gzyra-Jagieła, Justyna Wietecha and Maciej Ciepliński
Polymers 2026, 18(2), 251; https://doi.org/10.3390/polym18020251 (registering DOI) - 16 Jan 2026
Abstract
This study presents a method for extracting lignin and hemicellulose from black liquor using organic acids (citric, malic, and acetic) in comparison to the traditional sulfuric acid method. We investigated and compared the influence of the acid type on the structural properties of [...] Read more.
This study presents a method for extracting lignin and hemicellulose from black liquor using organic acids (citric, malic, and acetic) in comparison to the traditional sulfuric acid method. We investigated and compared the influence of the acid type on the structural properties of the resulting precipitates in the context of their potential applications. The lignin fractions were characterized for their chemical structure (ATR-FTIR, NMR), thermal stability (TGA), morphology and surface elemental composition (SEM-EDS), bulk elemental composition (C, H, N, S), and molecular weight distribution (GPC). The hemicellulose fractions were analyzed for their molecular weight (GPC), surface elemental composition (EDS), and chemical structure (ATR-FTIR). These analyses revealed subtle differences in the properties of the individual materials depending on the extraction method. We showed that organic acids, particularly citric acid, can effectively precipitate lignin with yields comparable to the sulfuric acid method (47–60 g/dm3 vs. 50 g/dm3). Simultaneously, this method produces lignin with higher purity (regarding sulfur content) and an increased content of carboxyl groups. This latter aspect is of particular interest due to the enhanced potential of lignin’s adsorption functions towards metal ions. AAS analysis confirmed that lignin precipitated with citric acid showed better adsorption efficiency towards heavy metals compared to lignin precipitated with sulfuric acid, especially for Cu2+ ions (80% vs. 20%) and Cr3+ ions (46% vs. 2%). This enhanced adsorption efficiency of the isolated lignins, combined with the environmental benefits of using organic acids, opens a promising perspective for their application in water treatment and environmental remediation. Furthermore, the presented research on the valorization and reuse of paper industry by-products fully aligns with the fundamental principles of the Circular Economy. Full article
(This article belongs to the Special Issue Biobased Polymers and Its Composites)
Show Figures

Graphical abstract

15 pages, 863 KB  
Article
Column Multisorption Studies of Herbicides onto ACs from Pomegranate Peels
by Assala Guedri, Souad Najar-Souissi, Beatriz Ledesma and Silvia Román
Appl. Sci. 2026, 16(2), 948; https://doi.org/10.3390/app16020948 - 16 Jan 2026
Abstract
The competitive adsorption of two model herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA), onto Activated Carbons (ACs) derived from pomegranate peels through chemical activation with phosphoric acid (H3PO4) was investigated in fixed-bed column mode. The prepared activated carbon [...] Read more.
The competitive adsorption of two model herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA), onto Activated Carbons (ACs) derived from pomegranate peels through chemical activation with phosphoric acid (H3PO4) was investigated in fixed-bed column mode. The prepared activated carbon (AC-PA) exhibited a high apparent surface area (up to 1409 m2/g) and a predominantly microporous structure. Morphological and chemical analyses (micrographic observation, X-ray difraction, N2 adsorption–desorption) confirmed the presence of well-developed pore networks and surface oxygenated functionalities. Column adsorption experiments were performed under varying flow rates (0.25–3 mL/min) for both single and binary solutions. The breakthrough data were modeled using the Thomas and Yoon–Nelson equations, achieving high determination coefficients (R2 = 0.91–0.99). Lower flow rates favored higher adsorption capacities, reaching 193.61 mg/g for 2,4-D at 0.25 mL/min. Under similar conditions (flow rate of 1.5 mL min−1), the AC provided a better adsorption for 2,4-D than for MCPA in single systems, which was attributed to stronger affinity based on its greater hydrophobicity and prominence to dispersive interactions. In binary systems, competitive effects shifted the results and a noticeable roll-up phenomenon was observed for 2,4-D, attributed to its displacement by MCPA along the bed; this made the adsorbent more effective for MCPA in binary mixtures than in single ones. These findings highlight the potential of pomegranate-based activated carbon as a cost-effective and sustainable adsorbent for herbicide removal in continuous water treatment systems. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
14 pages, 1856 KB  
Article
Autophagy Activation in Mesenchymal Stem Cells with Lithium Chloride and Trehalose: Implications for Regenerative Medicine
by Ali Fouad, Yasser ElSherbini, Elsayed Abdelhady and Mohamed Abdraboh
BioMed 2026, 6(1), 4; https://doi.org/10.3390/biomed6010004 - 16 Jan 2026
Abstract
Background/Objectives: Mesenchymal stem cells (MSCs) are deemed to be a highly safe model for autologous and allogeneic cellular therapy, owing to their inherent lack of HLA-DR expression, immunomodulatory properties, homing ability, and plasticity allowing differentiation into different cell types. The interest in [...] Read more.
Background/Objectives: Mesenchymal stem cells (MSCs) are deemed to be a highly safe model for autologous and allogeneic cellular therapy, owing to their inherent lack of HLA-DR expression, immunomodulatory properties, homing ability, and plasticity allowing differentiation into different cell types. The interest in activating autophagic signaling in MSCs has recently grown due to its significant potential in maintaining stemness, enhancing paracrine signaling, and providing therapeutic benefits for cancer and neurodegenerative diseases. This study aimed to explore the impact of autophagy induction on enhancing the therapeutic potential of MSCs by maintaining their plasticity and to assess different induction agents. Methods: In this study, MSCs were first extracted from the fat tissue of Sprague–Dawley (SD) rats and characterized phenotypically and molecularly by their positive expression of stemness markers CD29, CD106, and CD44, and their negative expression of hematopoietic surface markers CD14, CD34, and CD45, using a flow cytometry approach. Isolated MSCs were then treated separately with two FDA-approved autophagy inducers: Lithium Chloride and Trehalose, following assessment of autophagy activity. Results: Treated MSCs showed significant increases in autophagic activity at both the transcriptional and translational levels. The successful induction of autophagy in MSCs was confirmed through the elevated expression of autophagy-related genes such as ATG3, ATG13, ATG14, P62, and ULK1. These data were confirmed by the significant upregulation in LC3 protein expression and the formation of autophagosomes, which was detected using a transmission electron microscope. Furthermore, the expression of Oct4, Sox2, and Nanog genes was significantly enhanced after treatment with Trehalose and Lithium Chloride compared with untreated control MSCs which may indicate an upregulation of pluripotency. Meanwhile, Lithium Chloride and Trehalose did not significantly induce cellular apoptosis, indicated by the Bax/Bcl-2 expression ratio, and significantly decreased the expression of the antioxidant markers SOD and GPx. Conclusions: Treatment of MSCs with Trehalose and, in particular, Lithium Chloride significantly activated autophagic signaling, which showed a profound effect in enhancing cells’ pluripotency, reinforcing the usage of treated MSCs for autologous and/or allogenic cellular therapy. However, further in vivo studies for activating autophagy in cellular grafts should be conducted before their use in clinical trials. Full article
22 pages, 7810 KB  
Article
Hydrophobic Surface Treatment for the Protection of Carparo Stone
by Marianna Potenza, Edoardo Verza, Federica Scigliuzzo, Sandro Meli, Antonella Casoli, Pier Paolo Lottici, Claudia Graiff and Laura Bergamonti
Polymers 2026, 18(2), 237; https://doi.org/10.3390/polym18020237 - 16 Jan 2026
Abstract
The effectiveness of a hydrophobic coating based on TEOS/PDMS in protecting Carparo stone, a biocalcarenite characterized by high porosity and poor resistance to atmospheric agents and erosion, was evaluated. The hydrophobic treatment was applied over a pretreatment based on PMMA/ZrO2/SiO2 [...] Read more.
The effectiveness of a hydrophobic coating based on TEOS/PDMS in protecting Carparo stone, a biocalcarenite characterized by high porosity and poor resistance to atmospheric agents and erosion, was evaluated. The hydrophobic treatment was applied over a pretreatment based on PMMA/ZrO2/SiO2 to promote a uniform distribution on the surface. Micro-tomography analyses demonstrate that pretreatment forms a homogeneous coating on the surface. Scanning electron microscopy investigation shows that the hydrophobic treatment based on TEOS/PDMS spreads across the entire surface. The coating is effective in reducing capillary water absorption, and the coated stones exhibit hydrophobicity, achieving contact angles > 140°. The coating has proven esthetically acceptable based on colorimetric tests. The durability of the treatments was evaluated through artificial aging consisting of rain cycles alternating with UV irradiation cycles. The contact angle tests carried out at the end of each cycle demonstrate that the protective coating is not leached and is still very effective. The new sustainable hydrophobic treatment can be successfully proposed for the protection of porous stones. Full article
Show Figures

Figure 1

16 pages, 689 KB  
Article
The Role of Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Peritoneal GIST-Induced Sarcomatosis (GISTosis)
by John Spiliotis, Nikolaos Kopanakis, Athanasios Rogdakis, George Peppas, Aphrodite Fotiadou, Kyriacos Evangelou and Nikolaos Vassos
J. Clin. Med. 2026, 15(2), 742; https://doi.org/10.3390/jcm15020742 - 16 Jan 2026
Abstract
Background: The introduction of tyrosine kinase inhibitors has revolutionised the treatment of gastrointestinal stromal tumours (GISTs), yet the role of cytoreductive surgery (CRS) plus hyperthermic intraperitoneal chemotherapy (HIPEC) in peritoneal GISTosis remains controversial. Methods: A retrospective analysis was conducted on patients with peritoneal [...] Read more.
Background: The introduction of tyrosine kinase inhibitors has revolutionised the treatment of gastrointestinal stromal tumours (GISTs), yet the role of cytoreductive surgery (CRS) plus hyperthermic intraperitoneal chemotherapy (HIPEC) in peritoneal GISTosis remains controversial. Methods: A retrospective analysis was conducted on patients with peritoneal GISTosis who underwent CRS plus HIPEC in an 18-year period. We analysed the clinicopathological characteristics and evaluated the perioperative and long-term outcomes based on the extent of disease (peritoneal cancer index, PCI), the resection (completeness of cytoreduction score) and the IM-administration. The survival factors were also analysed and the Kaplan–Meier estimator to model and estimate overall (OS) and progression-free survival (PFS). The median follow-up period was 72 months (range, 12–146). Results: A total of 25 patients (M:F = 15:10) with a median age of 57 years (range, 32–69) underwent CRS with HIPEC for peritoneal GIST metastases, detected either synchronously (n = 11) or metachronously (n = 14). The media PCI score was 9 (range, 4–20) and complete cytoreduction was achieved in 80%. Grade III complications were observed in two patients, whereas there was no postoperative mortality. Neoadjuvant imatinib-mesylate (IM) therapy was administered in 60% of patients who detected with metachronous metastases (n = 8/14), whereas adjuvant IM therapy was administered in 19 of 25 patients. Median OS was 62 months (95% CI = 22.8–101.2). Median OS and DFS for patients with PCI scores ≤ 10 were significantly longer compared to those with PCI scores > 10 (p = 0.009 and p = 0.024, respectively). Patients with CC scores of 0–1 had a significantly longer OS compared to those with CC scores of 2 (p = 0.005) and 3 (p = 0.002) and longer PFS compared to those with CC scores of 3 (p = 0.005). The need for imatinib did not significantly impact OS (p = 0.240) or PFS (p = 0.243). Conclusions: CRS combined with HIPEC shows promising results in peritoneal GISTosis, especially in patients with lower PCI and CC scores. Until larger studies validate its safety and efficacy, it should be primarily performed in expert hands in specialised peritoneal surface oncology centres. Full article
Show Figures

Figure 1

33 pages, 5097 KB  
Article
Upcycling Pultruded Polyester–Glass Thermoset Scraps into Polyolefin Composites: A Comparative Structure–Property Insights
by Hasan Kasim, Yongzhe Yan, Haibin Ning and Selvum Brian Pillay
J. Compos. Sci. 2026, 10(1), 52; https://doi.org/10.3390/jcs10010052 - 16 Jan 2026
Abstract
This study investigates the reuse of mechanically recycled polyester–glass thermoset scraps (PS) as fillers in LDPE and HDPE matrices at 10–50 wt.% loading. Composites were produced through mechanical size reduction, single-screw extrusion, and compression molding without compatibilizers, and their mechanical and microstructural properties [...] Read more.
This study investigates the reuse of mechanically recycled polyester–glass thermoset scraps (PS) as fillers in LDPE and HDPE matrices at 10–50 wt.% loading. Composites were produced through mechanical size reduction, single-screw extrusion, and compression molding without compatibilizers, and their mechanical and microstructural properties were systematically evaluated. LDPE composites exhibited a notable stiffness increase, with tensile modulus rising from 318.8 MPa (neat) to 1245.6 MPA (+291%) and tensile strength improving from 9.50 to 11.45 MPa (+20.5%). Flexural performance showed even stronger reinforcement: flexural modulus increased from 0.40 to 3.00 GPa (+650%) and flexural strength from 14.5 to 35.6 MPa (+145%). HDPE composites displayed similar behavior, with flexural modulus increasing from 1.2 to 3.1 GPa (+158%) and strength from 34.1 to 45.5 MPa (+33%). Surface-treated fillers provided additional stiffness gains (+36% in sPL4; +33% in sPH3). Impact strength decreased with loading (LDPE: −51%, HDPE: −61%), though surface treatment partially mitigated this (+14–19% in LDPE; +13% in HDPE). Density increased proportionally (PL: 0.95 → 1.20 g/cm3, PH: 0.99 → 1.23 g/cm3), while moisture uptake remained low (≤0.25%). Optical and SEM analyses indicated increasingly interconnected fiber networks at high loadings, driving stiffness and fracture behavior. Overall, PS-filled polyolefins offer a scalable route for converting thermoset waste into functional semi-structural materials. Full article
Show Figures

Figure 1

20 pages, 5021 KB  
Article
Bio-Inspired Reduced TiO2 Nanotube Photocatalyst Modified with Polydopamine and Silk Fibroin Quantum Dots for Enhanced UV and Visible-Light Photocatalysis
by Cristina Dumitriu, Simona Popescu, Roberta Miftode, Angela Gabriela Păun, Andreea Mădălina Pandele, Andrei Kuncser and Mihaela Mîndroiu
Materials 2026, 19(2), 358; https://doi.org/10.3390/ma19020358 - 16 Jan 2026
Abstract
Y-branched TiO2 nanotubes (NTs) were produced by anodizing titanium plates derived from aerospace production leftovers and subsequently engineered to develop an enhanced TiO2-based photocatalytic system. The NTs were electrochemically reduced to obtain reduced TiO2 nanotubes (rTN) with a narrowed [...] Read more.
Y-branched TiO2 nanotubes (NTs) were produced by anodizing titanium plates derived from aerospace production leftovers and subsequently engineered to develop an enhanced TiO2-based photocatalytic system. The NTs were electrochemically reduced to obtain reduced TiO2 nanotubes (rTN) with a narrowed bandgap, followed by surface modification with polydopamine (PD) and silk fibroin-derived quantum dots (QDs) to promote enhanced UV and visible-light photocatalysis for wastewater treatment. The QDs were hydrothermally synthesized from Bombyx mori silk fibroin. Scanning Electron Microscopy (SEM) revealed spherical QD agglomerates encapsulated within the PD layer, while Energy Dispersive X-ray Spectroscopy (EDX) confirmed the presence of carbon and nitrogen originating from both PD and QD. The resulting rNT/PD/QD photocatalyst exhibited a significantly reduced bandgap (1.03 eV), increased Urbach energy (1.35 eV), and moderate hydrophilicity. A high double-layer capacitance (Cdl) indicated an enlarged electrochemically active surface due to the combination of treatments. Electrochemical characterization demonstrated reduced electrical resistance, higher charge density, and lower electron–hole recombination, leading to improved interfacial charge transfer efficiency and electrochemical stability during multi-cycle cyclic voltammetry measurements. Preliminary photocatalytic tests show that the rNT/PD/QD photocatalyst achieved a degradation efficiency of 79.26% for methyl orange (MO) and 35% for tetracycline (TC). Full article
Show Figures

Graphical abstract

21 pages, 5291 KB  
Article
Green Surface Engineering of Spun-Bonded Nonwovens Using Polyphenol-Rich Berry Extracts for Bioactive and Functional Applications
by Karolina Gzyra-Jagieła, Bartosz Kopyciński, Piotr Czarnecki, Sławomir Kęska, Natalia Słabęcka, Anna Bednarowicz, Nina Tarzyńska, Dorota Zielińska, Longina Madej-Kiełbik and Patryk Śniarowski
Eng 2026, 7(1), 49; https://doi.org/10.3390/eng7010049 - 16 Jan 2026
Abstract
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts [...] Read more.
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts from Vaccinium myrtillus L. and Sambucus nigra L. were applied onto a nonwoven’s surface via aerographic spraying using a water/ethanol system. The resulting materials were characterized in terms of morphology, physicochemical and mechanical behavior, surface characteristics, and stability under accelerated ageing and hydrolytic conditions. Treatment with the extracts increased the tensile strength by roughly 38% and elongation at break by about 50%, and it changed the surface from hydrophobic (contact angle of 115°) to hydrophilic, with contact angles of 83° for the blueberry-modified nonwoven and 55° for the elderberry-modified nonwoven. The modified nonwovens also showed sustained release of polyphenolic compounds over 72 h, which is beneficial for biomedical, healthcare, and cosmetic applications, where short-term use, controlled release of active compounds, and bioactivity are more important than long-term durability. Overall, the results indicate that BIOPLAST®-based spun-bonded nonwovens can serve as fully bio-based carriers for fruit extracts in MedTech-related technical textiles, offering a straightforward way to introduce additional functionality into biodegradable nonwovens. Full article
Show Figures

Figure 1

21 pages, 5367 KB  
Article
Fluorescent Nanoporous Gene Drugs with Fenton-like Catalysis Vector Research
by Yulin Li, Jianjun Pan, Lili Xu, Yan Sun and Tong Li
Nanomaterials 2026, 16(2), 120; https://doi.org/10.3390/nano16020120 - 16 Jan 2026
Abstract
A multifunctional diagnosis and treatment carrier, ZIF-8@CDs, based on carbon quantum dots (CDs) and the zeolitic imidazolate framework-8 (ZIF-8) metal–organic framework which serves as a core structure for constructing the responsive delivery platform, is developed in this paper. The anticancer drug doxorubicin (DOX) [...] Read more.
A multifunctional diagnosis and treatment carrier, ZIF-8@CDs, based on carbon quantum dots (CDs) and the zeolitic imidazolate framework-8 (ZIF-8) metal–organic framework which serves as a core structure for constructing the responsive delivery platform, is developed in this paper. The anticancer drug doxorubicin (DOX) and Survivin oligo (siRNA) are loaded to form a ZIF-8@CDs/DOX@siRNA dual loading platform. CDs of 5–10 nm are synthesized by the solvent method and combined with ZIF-8. Electron microscopy shows that the composites are nearly spherical particles of approximately 200 nm, and the surface potential decreases from +36 mV before loading CDs to +25.7 mV after loading. The composite system shows unique advantages: (1) It has Fenton-like catalytic activity, catalyzes H2O2 to generate hydroxyl radicals, and consumes glutathione in the tumor microenvironment. The level of reactive oxygen species (ROS) in the ZIF-8@CDs group is significantly higher than that in the control group. (2) To achieve visual diagnosis and treatment, its fluorescence intensity is superior to that of the traditional Fluorescein isothiocyanate (FITC)-labeled vector; (3) It has a high loading capacity, with the loading amount of small nucleic acids reaching 36.25 μg/mg, and the uptake rate of siRNA by liver cancer cells is relatively ideal. The ZIF-8@CDs/DOX@siRNA dual-loading system is further constructed. Flow cytometry shows that the apoptosis rate of HepG2 cells induced by the ZIF-8@CDs/DOX@siRNA dual-loading system is 49%, which is significantly higher than that of the single-loading system (ZIF-8@CDs/DOX: 34.3%, ZIF-8@CDs@siRNA: 24.2%) and the blank vector (ZIF-8@CDs: 12.6%). The platform provides a new strategy for the integration of tumor diagnosis and treatment through the multi-mechanism synergy of chemical kinetic therapy, gene silencing and chemotherapy. Full article
(This article belongs to the Topic Advanced Nanocarriers for Targeted Drug and Gene Delivery)
Show Figures

Graphical abstract

21 pages, 4861 KB  
Article
Synthesis and Characterization of ITO Films via Forced Hydrolysis for Surface Functionalization of PET Sheets
by Silvia del Carmen Madrigal-Diaz, Laura Cristel Rodríguez-López, Isaura Victoria Fernández-Orozco, Saúl García-López, Cecilia del Carmen Díaz-Reyes, Claudio Martínez-Pacheco, José Luis Cervantes-López, Ibis Ricárdez-Vargas and Laura Lorena Díaz-Flores
Coatings 2026, 16(1), 120; https://doi.org/10.3390/coatings16010120 - 16 Jan 2026
Abstract
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a [...] Read more.
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a low-cost, reproducible alternative. SnO2 nanoparticles were synthesized by forced hydrolysis at 180 °C for 3 h and 6 h, yielding crystalline nanoparticles with a cassiterite phase and an average crystallite size of 20.34 nm. The process showed high reproducibility, enabling consistent structural properties without complex equipment or high-temperature treatments. The SnO2 sample obtained at 3 h was incorporated into commercial In2O3 to form a mixed In–Sn–O oxide, which was subsequently deposited onto PET substrates by spin coating onto UV-activated PET. The resulting 1.1 µm ITO films demonstrated good adhesion (4B according to ASTM D3359), a low resistivity of 1.27 × 10−6 Ω·m, and an average optical transmittance of 80% in the visible range. Although their resistivity is higher than vacuum-processed films, this route provides a superior balance of mechanical robustness, featuring a hardness of (H) of 3.8 GPa and an elastic modulus (E) of 110 GPa. These results highlight forced hydrolysis as a reproducible route for producing ITO/PET thin films. The thickness was strategically optimized to act as a structural buffer, preventing crack propagation during bending. Forced hydrolysis-driven PET sheet functionalization is an effective route for producing durable ITO/PET electrodes that are suitable for flexible sensors and solar cells. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

29 pages, 4949 KB  
Article
Multivariate Statistical Insights into Copper Adsorption by Graphene Oxide-Based Adsorbents
by Jovana Pešić Bajić, Marko Šolić, Jasmina Nikić, Branko Kordić, Tamara Apostolović and Malcolm Watson
Processes 2026, 14(2), 315; https://doi.org/10.3390/pr14020315 - 16 Jan 2026
Abstract
Copper contamination in aquatic environments poses significant ecological and health risks, necessitating efficient and resilient treatment strategies. In this study, graphene oxide (GO) and magnetic graphene oxide (MGO) were synthesized and comprehensively evaluated for Cu(II) removal using an integrated multivariate approach combining kinetic [...] Read more.
Copper contamination in aquatic environments poses significant ecological and health risks, necessitating efficient and resilient treatment strategies. In this study, graphene oxide (GO) and magnetic graphene oxide (MGO) were synthesized and comprehensively evaluated for Cu(II) removal using an integrated multivariate approach combining kinetic and isotherm modelling, Response Surface Methodology (RSM), and advanced statistical analyses. Both adsorbents achieved high removal efficiencies (>90%) under optimized conditions, with Langmuir capacities of 59.2 mg g−1 for GO and 40.1 mg g−1 for MGO. Kinetic modelling confirmed reaction-controlled adsorption, while Freundlich isotherms highlighted heterogeneous surface binding. RSM identified pH as the dominant factor governing removal efficiency, with significant interactions among pH, Cu(II), and DOC reflecting competitive matrix effects. Principal Component Analysis (PCA) revealed that GO performance is strongly influenced by solution chemistry, whereas MGO exhibits reduced sensitivity due to modified physicochemical properties. FTIR analysis confirmed that adsorption proceeds primarily through electrostatic attraction and inner-sphere complexation, with Fe–O sites contributing to MGO’s enhanced affinity. Regeneration studies demonstrated superior reusability of MGO, which retained ~64% efficiency after five cycles compared to ~52% for GO. Collectively, these multivariate and mechanistic insights identify MGO as a more robust, versatile, and regenerable sorbent for Cu(II) removal under realistic water-matrix conditions. Full article
Show Figures

Graphical abstract

19 pages, 1529 KB  
Review
Marrow Microenvironmental Pathobiology and Therapeutic Opportunities for TP53-Mutated Myelodysplastic Syndrome/Acute Myeloid Leukemia
by Cameron J. Hunter, Annie P. Im and Rory M. Shallis
Cancers 2026, 18(2), 275; https://doi.org/10.3390/cancers18020275 - 16 Jan 2026
Abstract
Mutations in TP53 inhibit p53 protective behaviors including cell cycle arrest, DNA damage repair protein recruitment, and apoptosis. The ubiquity of p53 in genome-stabilizing functions leads to an aberrant tumor microenvironment in TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Profound [...] Read more.
Mutations in TP53 inhibit p53 protective behaviors including cell cycle arrest, DNA damage repair protein recruitment, and apoptosis. The ubiquity of p53 in genome-stabilizing functions leads to an aberrant tumor microenvironment in TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Profound immunosuppression mediated by myeloid-derived suppressor cells, the upregulation of cytokines and cell-surface receptors on leukemic cells, the suppression of native immune regulator cells, and metabolic aberrations in the bone marrow are features of the TP53-mutated AML/MDS marrow microenvironment. These localized changes in the bone marrow microenvironment (BMME) explain why traditional therapies for MDS/AML, including chemotherapeutics and hypomethylating agents, are not as effective in TP53-mutated myeloid neoplasms and demonstrate the dire need for new treatments in this patient population. The unique pathophysiology of TP53-mutated disease also provides new therapeutic approaches which are being studied, including intracellular targets (MDM2, p53), cell-surface protein biologics (immune checkpoint inhibitors, BiTE therapy, and antibody–drug conjugates), cell therapies (CAR-T, NK-cell), signal transduction pathways (Hedgehog, Wnt, NF-κB, CCRL2, and HIF-1α), and co-opted biologic pathways (cholesterol synthesis and glycolysis). In this review, we will discuss the pathophysiologic anomalies of the tumor microenvironment in TP53-mutant MDS/AML, the hypothesized mechanisms of chemoresistance it imparts, and how novel therapies are leveraging diverse therapeutic targets to address this critical area of need. Full article
Show Figures

Figure 1

15 pages, 4800 KB  
Article
Impact of Dry Eye Disease and Lipid-Containing Artificial Tears on Keratometric Reproducibility and Intraocular Lens Calculation in Cataract Patients
by Valentina Lacmanović Lončar, Danijel Mikulić, Vedrana Aljinović-Vučić, Zoran Vatavuk and Ivanka Petric Vicković
Medicina 2026, 62(1), 179; https://doi.org/10.3390/medicina62010179 - 15 Jan 2026
Abstract
Background and Objectives: Tear film instability and corneal surface irregularity are important sources of variability in keratometric and corneal topographic measurements, particularly affecting astigmatic magnitude and axis. Accurate preoperative biometry is crucial for optimal refractive outcomes in cataract surgery. Dry eye disease [...] Read more.
Background and Objectives: Tear film instability and corneal surface irregularity are important sources of variability in keratometric and corneal topographic measurements, particularly affecting astigmatic magnitude and axis. Accurate preoperative biometry is crucial for optimal refractive outcomes in cataract surgery. Dry eye disease (DED) may compromise the reproducibility of keratometric parameters, leading to errors in intraocular lens (IOL) power calculation. This study aimed to evaluate the impact of DED on the reproducibility of keratometric measurements and to assess the effect of a four-week treatment with lipid-containing artificial tears on these parameters in cataract patients. Materials and Methods: This cross-sectional study included 116 patients scheduled for cataract surgery, of whom 65 (56.0%) had DED and 51 (44.0%) served as controls. All patients underwent two preoperative keratometric measurements 10–20 min apart (IOL1 and IOL2). The control group proceeded to surgery the next day, while surgery in the DED group was postponed. Patients with DED received preoperative therapy with lipid-containing artificial tears. Follow-up assessments occurred one month after therapy (keratometric measurement named IOL3) and eight weeks postoperatively. Clinical evaluation included slit-lamp examination, dry eye testing according to Dry eye Workshop II (DEWS II) criteria: Ocular surface Disease Index (OSDI), Tear Break-Up Time (TBUT), Schirmer I, Oxford staining, and meibomian gland assessment), ocular biometry, and postoperative spherical equivalent measurement using an auto ref-keratometer. Nonparametric statistical analyses were applied to evaluate associations between parameters. Results: In the DED group, corneal astigmatism showed a significant difference between IOL1 and IOL2 (Wilcoxon signed-rank test {Z = 2.43; p = 0.015}). Significant changes in predicted IOL power were observed between pretreatment and posttreatment values (t = 2.57; p = 0.013) and between IOL2 and IOL3 (t = 2.23; p = 0.029), indicating improved keratometric stability following tear film therapy. No additional significant correlations were identified. Conclusions: DED adversely affects the reproducibility of keratometric measurements and may compromise IOL power selection. Preoperative identification and treatment of DED, followed by repeated biometry after tear film stabilization, are strongly recommended to enhance refractive accuracy and optimize surgical outcomes in cataract patients. Full article
(This article belongs to the Special Issue Advances in Corneal Management)
Show Figures

Figure 1

16 pages, 2662 KB  
Article
Non-Invasive Assessment of Water-Based Gel Cleaning on a Capogrossi Oil Painting Using NMR-MOUSE
by Noemi Proietti, Patrizia Moretti, Eleonora Maniccia, Paola Carnazza, Daphne De Luca, Costanza Miliani and Valeria Di Tullio
Heritage 2026, 9(1), 30; https://doi.org/10.3390/heritage9010030 - 15 Jan 2026
Abstract
This study investigates water-based gel and gel-like cleaning treatments on Superficie 553, an oil painting on canvas by Giuseppe Capogrossi, using portable NMR to assess their impact. The objective was to evaluate the effects of four cleaning systems composed of a buffer [...] Read more.
This study investigates water-based gel and gel-like cleaning treatments on Superficie 553, an oil painting on canvas by Giuseppe Capogrossi, using portable NMR to assess their impact. The objective was to evaluate the effects of four cleaning systems composed of a buffer solution released in free form and combined with xanthan gum, a cross-linked silicone polymer gel, and an agar gel matrix. Two distinct NMR experiments were conducted. The first involved the acquisition of 1H depth profiles to detect the distribution of the cleaning solution within the painted layer and the thickness variations resulting from cleaning procedures. The second employed the acquisition of relaxation times, facilitating the investigation of molecular mobility within the organic components of the paint layer. NMR results indicated that the agar gel system caused negligible structural changes, whereas the silicone gel induced rigidification, and the other systems permanently increased molecular mobility. These measurements provided insights into alterations in the dynamic behavior of the polymerized oil. A key strength of this investigation lies in the direct application of diagnostic methods on Superficie 553, made possible by the non-invasive nature and portability of the NMR-MOUSE system. Additionally, portable FTIR was used to detect residues and obtain chemical information, confirming that the silicone gel left detectable residues and identifying the agar gel as the most conservative cleaning method. This enabled in situ analysis of the original artwork without sampling or relocation—a crucial advantage given the difficulty of replicating the complex physicochemical conditions of historical paint surfaces under laboratory constraints. Such real-time, on-site monitoring ensured an authentic evaluation of the treatment effects, preserving the integrity of the artwork throughout the conservation process. Full article
(This article belongs to the Special Issue Innovative Materials and Tools for the Cleaning of Cultural Heritage)
16 pages, 722 KB  
Review
Intentional Tooth Replantation: Current Evidence and Future Research Directions for Case Selection, Extraction Approaches, and Post-Operative Management
by Rahul Minesh Shah, Thomas Manders and Georgios Romanos
Dent. J. 2026, 14(1), 59; https://doi.org/10.3390/dj14010059 - 15 Jan 2026
Abstract
Background: Intentional tooth replantation (ITR) is a promising treatment option for preserving teeth in cases where conventional endodontic therapy is challenging, or when previous endodontic treatment and apicoectomy have been unsuccessful. The procedure involves extracting the compromised tooth, preserving the alveolar socket and [...] Read more.
Background: Intentional tooth replantation (ITR) is a promising treatment option for preserving teeth in cases where conventional endodontic therapy is challenging, or when previous endodontic treatment and apicoectomy have been unsuccessful. The procedure involves extracting the compromised tooth, preserving the alveolar socket and root surface, performing extraoral endodontic therapy, and replanting the tooth in the alveolar socket. Objective: An increase in evidence-based support for ITR has improved the viability of ITR as a treatment option for patients. This review aims to further establish and provide new areas of potential research for ITR with respect to root morphology, extraction, and surgical techniques, maintenance of the tooth socket, and methods for post-op stabilization. Materials and Methods: A literature review was performed across PubMed from 1 January 1980 to 1 July 2025, with a focus on oral surgery techniques, atraumatic extraction techniques, topographical discrepancies in root system anatomy, and ITR procedural outcomes. Conclusions: Although ITR is not a common procedure performed in contemporary clinical practice, gathering sufficient data on the variables influencing the procedure may help patient outcome and improve communication between the endodontist and oral surgeons. Full article
(This article belongs to the Section Dental Education)
Show Figures

Figure 1

Back to TopTop