Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (971)

Search Parameters:
Keywords = transport scheduling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2463 KB  
Proceeding Paper
Simulating Road Networks for Medium-Size Cities: Aswan City Case Study
by Seham Hemdan, Mahmoud Khames, Abdulmajeed Alsultan and Ayman Othman
Eng. Proc. 2026, 121(1), 22; https://doi.org/10.3390/engproc2025121022 - 16 Jan 2026
Abstract
This research simulates Aswan City’s urban transportation dynamics utilizing the Multi-Agent Transport Simulation (MATSim) framework. As a fast-expanding urban center, Aswan has many transportation difficulties that require extensive modeling toward sustainable mobility solutions. MATSim, recognized for its agent-based methodology, offers a detailed portrayal [...] Read more.
This research simulates Aswan City’s urban transportation dynamics utilizing the Multi-Agent Transport Simulation (MATSim) framework. As a fast-expanding urban center, Aswan has many transportation difficulties that require extensive modeling toward sustainable mobility solutions. MATSim, recognized for its agent-based methodology, offers a detailed portrayal and analysis of individual travel behaviors and their interactions within the metropolitan transportation system. This study compiled and combined many databases, including demographic data, road infrastructure, public transit plans, and travel demand trends. These data are altered to produce a realistic digital clone of Aswan’s transportation system. Simulated scenarios analyze the consequences of several actions, such as increased public transit scheduling, traffic flow management, and the adoption of alternative transport modes, on minimizing congestion and boosting accessibility. Pilot findings show that MATSim effectively captures the distinct features of Aswan’s transportation network and offers practical insights for decision-makers. The results identified some opportunities to improve mobility and promote sustainable urban growth in developing cities. This study emphasized the importance of agent-based simulations in designing future transportation systems and urban infrastructure. Full article
Show Figures

Figure 1

22 pages, 3305 KB  
Article
Digital Twin and Path Planning for Intelligent Port Inspection Robots
by Hao Jiang, Zijian Guo and Zhongyi Zhang
J. Mar. Sci. Eng. 2026, 14(2), 186; https://doi.org/10.3390/jmse14020186 - 16 Jan 2026
Abstract
In the context of the digital twin engineering of large smart hub seaports, port path planning faces more complex challenges, such as efficient logistics scheduling, unmanned transportation, coordination of port automation facilities, and rapid response to complex dynamic environments. Particularly in applications like [...] Read more.
In the context of the digital twin engineering of large smart hub seaports, port path planning faces more complex challenges, such as efficient logistics scheduling, unmanned transportation, coordination of port automation facilities, and rapid response to complex dynamic environments. Particularly in applications like robotic inspection, how to effectively plan paths, improve inspection efficiency, and ensure that robots complete tasks within their limited energy capacity has become a key issue in the design and realization of digital and intelligent seaport systems. To address these challenges, a path planning algorithm based on an improved Rapidly-exploring Random Tree (RRT) is proposed, considering the complexity and dynamics of the port’s digital twin environment. First, by optimizing the search strategy of the algorithm, the flexibility and adaptability of path planning can be enhanced, allowing it to better accommodate changes in the environment within the digital twin model. Secondly, an appropriate heuristic function is constructed for the digital twin seaport environment, which can effectively accelerate the convergence speed of the algorithm and improve path planning efficiency. Finally, trajectory smoothing techniques are applied to generate executable paths that comply with the robot’s motion constraints, enabling more efficient path planning in practical operations. To validate the feasibility of the proposed method, a combination of virtual and real digital twin environments is used, comparing the path planning results of the improved RRT algorithm with those of the traditional RRT algorithm. Experimental results show that the proposed improved algorithm outperforms the traditional RRT algorithm in terms of sampling frequency, planning time, path length, and smoothness, further validating the feasibility and advantages of this algorithm in the application of intelligent seaport digital twin engineering. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 2822 KB  
Article
A New Framework for Job Shop Integrated Scheduling and Vehicle Path Planning Problem
by Ruiqi Li, Jianlin Mao, Xing Wu, Wenna Zhou, Chengze Qian and Haoshuang Du
Sensors 2026, 26(2), 543; https://doi.org/10.3390/s26020543 - 13 Jan 2026
Viewed by 98
Abstract
With the development of manufacturing industry, traditional fixed process processing methods cannot adapt to the changes in workshop operations and the demand for small batches and multiple orders. Therefore, it is necessary to introduce multiple robots to provide a more flexible production mode. [...] Read more.
With the development of manufacturing industry, traditional fixed process processing methods cannot adapt to the changes in workshop operations and the demand for small batches and multiple orders. Therefore, it is necessary to introduce multiple robots to provide a more flexible production mode. Currently, some Job Shop Scheduling Problems with Transportation (JSP-T) only consider job scheduling and vehicle task allocation, and does not focus on the problem of collision free paths between vehicles. This article proposes a novel solution framework that integrates workshop scheduling, material handling robot task allocation, and conflict free path planning between robots. With the goal of minimizing the maximum completion time (Makespan) that includes handling, this paper first establishes an extended JSP-T problem model that integrates handling time and robot paths, and provides the corresponding workshop layout map. Secondly, in the scheduling layer, an improved Deep Q-Network (DQN) method is used for dynamic scheduling to generate a feasible and optimal machining scheduling scheme. Subsequently, considering the robot’s position information, the task sequence is assigned to the robot path execution layer. Finally, at the path execution layer, the Priority Based Search (PBS) algorithm is applied to solve conflict free paths for the handling robot. The optimized solution for obtaining the maximum completion time of all jobs under the condition of conflict free path handling. The experimental results show that compared with algorithms such as PPO, the scheduling algorithm proposed in this paper has improved performance by 9.7% in Makespan, and the PBS algorithm can obtain optimized paths for multiple handling robots under conflict free conditions. The framework can handle scheduling, task allocation, and conflict-free path planning in a unified optimization process, which can adapt well to job changes and then flexible manufacturing. Full article
Show Figures

Figure 1

21 pages, 2506 KB  
Article
Collaborative Dispatch of Power–Transportation Coupled Networks Based on Physics-Informed Priors
by Zhizeng Kou, Yingli Wei, Shiyan Luan, Yungang Wu, Hancong Guo, Bochao Yang and Su Su
Electronics 2026, 15(2), 343; https://doi.org/10.3390/electronics15020343 - 13 Jan 2026
Viewed by 107
Abstract
Under China’s “dual-carbon” strategic goals and the advancement of smart city development, the rapid adoption of electric vehicles (EVs) has deepened the spatiotemporal coupling between transportation networks and distribution grids, posing new challenges for integrated energy systems. To address this, we propose a [...] Read more.
Under China’s “dual-carbon” strategic goals and the advancement of smart city development, the rapid adoption of electric vehicles (EVs) has deepened the spatiotemporal coupling between transportation networks and distribution grids, posing new challenges for integrated energy systems. To address this, we propose a collaborative optimization framework for power–transportation coupled networks that integrates multi-modal data with physical priors. The framework constructs a joint feature space from traffic flow, pedestrian density, charging behavior, and grid operating states, and employs hypergraph modeling—guided by power flow balance and traffic flow conservation principles—to capture high-order cross-domain coupling. For prediction, spatiotemporal graph convolution combined with physics-informed attention significantly improves the accuracy of EV charging load forecasting. For optimization, a hierarchical multi-agent strategy integrating federated learning and the Alternating Direction Method of Multipliers (ADMM) enables privacy-preserving, distributed charging load scheduling. Case studies conducted on a 69-node distribution network using real traffic and charging data demonstrate that the proposed method reduces the grid’s peak–valley difference by 20.16%, reduces system operating costs by approximately 25%, and outperforms mainstream baseline models in prediction accuracy, algorithm convergence speed, and long-term operational stability. This work provides a practical and scalable technical pathway for the deep integration of energy and transportation systems in future smart cities. Full article
Show Figures

Figure 1

10 pages, 1829 KB  
Proceeding Paper
Machine Learning Based Agricultural Price Forecasting for Major Food Crops in India Using Environmental and Economic Factors
by P. Ankit Krishna, Gurugubelli V. S. Narayana, Siva Krishna Kotha and Debabrata Pattnayak
Biol. Life Sci. Forum 2025, 54(1), 7; https://doi.org/10.3390/blsf2025054007 - 12 Jan 2026
Viewed by 140
Abstract
The contemporary agricultural market is profoundly volatile, where agricultural prices are based on a complex supply chain, climatic irregularity or unscheduled market demand. Prices of crops need to be predicted in a reliable and timely manner for farmers, policy-makers and other stakeholders to [...] Read more.
The contemporary agricultural market is profoundly volatile, where agricultural prices are based on a complex supply chain, climatic irregularity or unscheduled market demand. Prices of crops need to be predicted in a reliable and timely manner for farmers, policy-makers and other stakeholders to take evidence-based decisions ultimately for the benefit towards sustainable agriculture and economic sustainability. Objective: The objective of this study is to develop and evaluate a comprehensive machine learning model for predicting agricultural prices incorporating logistic, economic and environmental considerations. It is the desire to make agriculture more profitable by building simple and accurate forecasting models. Methods: An assorted dataset was collected, which covers major factors to constitute the dataset of temperature, rainfall, fertiliser use, pest and disease attack level, cost of transportation, market demand-supply ratio and regional competitiveness. The data was subjected to pre-processing and feature extraction for quality control/quality assurance. Several machine learning models (Linear Regression, Support Vector Machines, AdaBoost, Random Forest, and XGBoost) were trained and evaluated using performance metrics such as R2 score, Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). Results: Out of the model approaches that were analysed, predictive performance was superior for XGBoost (with an R2 Score of 0.94, RMSE of 12.8 and MAE of 8.6). To generate accurate predictions, the ability to account for complex non-linear relationships between market and environmental information was necessary. Conclusions: The forecast model of the XGBoost-based prediction system is reliable, of low complexity and widely applicable to large-scale real-time forecasting of agricultural monitoring. The model substantially reduces the uncertainty of price forecasting, and does so by including multivariate environmental and economic aspects that permit more profitable management practices in a schedule for future sustainable agriculture. Full article
(This article belongs to the Proceedings of The 3rd International Online Conference on Agriculture)
Show Figures

Figure 1

16 pages, 523 KB  
Article
Perspectives of Community Health Center Employees on Public Bus Transportation in Rural Hawai‘i County
by L. Brooke Keliikoa, Claudia Hartz, Ansley Pontalti, Ke’ōpūlaulani Reelitz, Heidi Hansen Smith, Kiana Otsuka, Lance K. Ching and Meghan D. McGurk
Int. J. Environ. Res. Public Health 2026, 23(1), 78; https://doi.org/10.3390/ijerph23010078 - 6 Jan 2026
Viewed by 226
Abstract
People living in rural communities are typically underserved by public transportation services and face challenges in accessing healthcare, jobs, stores, and other destinations. Understanding the lived experiences of people who use public transportation in rural communities can help to inform a more equitable [...] Read more.
People living in rural communities are typically underserved by public transportation services and face challenges in accessing healthcare, jobs, stores, and other destinations. Understanding the lived experiences of people who use public transportation in rural communities can help to inform a more equitable transportation system. This qualitative study gathered the perspectives of community health center employees about the public bus system for Hawai‘i Island, a rural county in the United States. Using a community-engaged research approach, the evaluation team interviewed 10 employees through either in-person small group interviews or online individual interviews between April and July 2023. Transcripts were coded and analyzed using a thematic analysis approach. While all study participants were selected for their interest in commuting to work by bus, most believed the bus was not a reliable or convenient option. Participants shared their experiences about not being able to rely on the bus schedule, feeling unsafe while walking to bus stops or waiting for the bus, and other barriers to using the bus system. Participants also shared their insights about how a reliable bus system would benefit community health center patients who needed transportation to more than just their medical appointments, but also to places like pharmacies, laboratory services, and grocery stores. These findings can be used to initiate discussions around the ways that community health centers can further address transportation as a social determinant of health and inform transportation providers about how to best plan and invest in transportation infrastructure and services to meet the needs of rural populations. Full article
(This article belongs to the Special Issue Addressing Disparities in Health and Healthcare Globally)
Show Figures

Figure 1

26 pages, 3699 KB  
Article
Measuring Inter-Stop Distances to Improve Scheduling, Costing, and Enhance Sustainable Urban Mobility
by Marcin Jacek Kłos and Aleksander Sobota
Sustainability 2026, 18(2), 556; https://doi.org/10.3390/su18020556 - 6 Jan 2026
Viewed by 202
Abstract
This paper quantifies the economic and operational impact of spatial accuracy in metropolitan public transport systems, proposing a standardized GIS-based method for measuring inter-stop distances. Addressing the geometric limitations of legacy GTFS data, this study introduces a replicable workflow that integrates open spatial [...] Read more.
This paper quantifies the economic and operational impact of spatial accuracy in metropolitan public transport systems, proposing a standardized GIS-based method for measuring inter-stop distances. Addressing the geometric limitations of legacy GTFS data, this study introduces a replicable workflow that integrates open spatial data with infrastructure-specific maneuvering constraints. The method was validated in the Górnośląsko-Zagłębiowska Metropolis (GZM), achieving near-identical precision to manual field measurements (MAPE ≈ 0.02%) while offering superior scalability compared to traditional odometer or satellite-based techniques. The analysis reveals that even minor measurement errors (approx. 2.5%) in legacy datasets propagate into significant budget misallocations, estimated at tens of thousands of PLN per line annually. These findings demonstrate that precise distance computation is a fundamental driver of cost efficiency and schedule reliability in large-scale transit networks. Full article
(This article belongs to the Special Issue Sustainable and Smart Transportation Systems)
Show Figures

Figure 1

19 pages, 684 KB  
Article
Sensor Driven Resource Optimization Framework for Intelligent Fog Enabled IoHT Systems
by Salman Khan, Ibrar Ali Shah, Woong-Kee Loh, Javed Ali Khan, Alexios Mylonas and Nikolaos Pitropakis
Sensors 2026, 26(1), 348; https://doi.org/10.3390/s26010348 - 5 Jan 2026
Viewed by 306
Abstract
Fog computing has revolutionized the world by providing its services close to the user premises, which results in reducing the communication latency for many real-time applications. This communication latency has been a major constraint in cloud computing and ultimately causes user dissatisfaction due [...] Read more.
Fog computing has revolutionized the world by providing its services close to the user premises, which results in reducing the communication latency for many real-time applications. This communication latency has been a major constraint in cloud computing and ultimately causes user dissatisfaction due to slow response time. Many real-time applications like smart transportation, smart healthcare systems, smart cities, smart farming, video surveillance, and virtual and augmented reality are delay-sensitive real-time applications and require quick response times. The response delay in certain critical healthcare applications might cause serious loss to health patients. Therefore, by leveraging fog computing, a substantial portion of healthcare-related computational tasks can be offloaded to nearby fog nodes. This localized processing significantly reduces latency and enhances system availability, making it particularly advantageous for time-sensitive and mission-critical healthcare applications. Due to close proximity to end users, fog computing is considered to be the most suitable computing platform for real-time applications. However, fog devices are resource constrained and require proper resource management techniques for efficient resource utilization. This study presents an optimized resource allocation and scheduling framework for delay-sensitive healthcare applications using a Modified Particle Swarm Optimization (MPSO) algorithm. Using the iFogSim toolkit, the proposed technique was evaluated for many extensive simulations to obtain the desired results in terms of system response time, cost of execution and execution time. Experimental results demonstrate that the MPSO-based method reduces makespan by up to 8% and execution cost by up to 3% compared to existing metaheuristic algorithms, highlighting its effectiveness in enhancing overall fog computing performance for healthcare systems. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

22 pages, 5644 KB  
Article
Design of Prediction Models for Estimation of the Strength of the Compressed Stabilized Earth Blocks
by Robert Hillyard and Brett Story
Sustainability 2026, 18(1), 426; https://doi.org/10.3390/su18010426 - 1 Jan 2026
Viewed by 135
Abstract
Compressing a mixture of soil, water, and stabilizer forms compressed stabilized earth blocks (CSEBs), a modernized earthen construction material capable of performance similar to that of engineered masonry with added sustainability achieved by usage of raw materials on-site, reduction in transportation costs of [...] Read more.
Compressing a mixture of soil, water, and stabilizer forms compressed stabilized earth blocks (CSEBs), a modernized earthen construction material capable of performance similar to that of engineered masonry with added sustainability achieved by usage of raw materials on-site, reduction in transportation costs of bulk materials to the build site, and improved thermal performance of built CSEB structures. CSEBs have a wide range of potential physical properties due to variations in base soil, mix composition, stabilizer, admixtures, and initial compression achieved in CSEB creation. While CSEB construction offers several opportunities to improve the sustainability of construction practices, assuring codifiable, standardized mix design for a target strength or durability remains a challenge as the mechanical character of the primary base soil varies from site to site. Quality control may be achieved through creation and testing of CSEB samples, but this adds time to a construction schedule. Such delays may be reduced through development of predictive CSEB compressive strength estimation models. This study experimentally determined CSEB compressive strength for six different mix compositions. Compressive strength predictive models were developed for 7-day and 28-day CSEB samples through multiple numerical models (i.e., linear regression, back-propagation neural network) designed and implemented to relate design inputs to 7-day and 28-day compressive strength. Model results provide insight into the predictive performance of linear regression and back-propagation neural networks operating on designed data streams. Performance, robustness, and significance of changes to the model dataset and feature set are characterized, revealing that linear regression outperformed neural networks on 28-day data and that inclusion of downstream data (i.e., cylinder compressive strength) did not significantly impact model performance. Full article
Show Figures

Figure 1

20 pages, 9832 KB  
Article
PatchConvFormer: A Patch-Based and Convolution-Augmented Transformer for Periodic Metro Energy Consumption Forecasting
by Liheng Long, Linlin Li, Lijie Zhang, Qing Fu, Runzong Zou, Fan Feng and Ronghui Zhang
Electronics 2026, 15(1), 178; https://doi.org/10.3390/electronics15010178 - 30 Dec 2025
Viewed by 163
Abstract
Accurate forecasting of metro energy consumption is essential for intelligent power management and sustainable urban transportation systems. However, existing studies often overlook the intrinsic properties of metro energy time series, such as strong periodicity, inter-line heterogeneity, and pronounced non-stationarity. To address this gap, [...] Read more.
Accurate forecasting of metro energy consumption is essential for intelligent power management and sustainable urban transportation systems. However, existing studies often overlook the intrinsic properties of metro energy time series, such as strong periodicity, inter-line heterogeneity, and pronounced non-stationarity. To address this gap, this paper proposes an enhanced Informer-based framework, PatchConvFormer (PCformer). The model integrates three key innovations: (1) a channel-independent modeling mechanism that reduces interference across metro lines; (2) a patch-based temporal segmentation strategy that captures fine-grained intra-cycle energy fluctuations; and (3) a multi-scale convolution-augmented attention module that jointly models short-term variations and long-term temporal dependencies. Using real operation data from 16 metro lines in a major city in China, PCformer achieves significant improvements in forecasting accuracy (MSE = 0.043, MAE = 0.145). Compared with the strongest baseline model in each experiment (i.e., the second-best model), the MSE and MAE are reduced by approximately 41.9% and 19.8%, respectively. In addition, the model maintains strong stability and generalization across different prediction horizons and cross-line transfer experiments. The results demonstrate that PCformer effectively enhances Informer’s capability in modeling complex temporal patterns and provides a reliable technical framework for metro energy forecasting and intelligent power scheduling. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Conversion Systems)
Show Figures

Figure 1

33 pages, 4154 KB  
Article
A Reinforcement Learning Method for Automated Guided Vehicle Dispatching and Path Planning Considering Charging and Path Conflicts at an Automated Container Terminal
by Tianli Zuo, Huakun Liu, Shichun Yang, Wenyuan Wang, Yun Peng and Ruchong Wang
J. Mar. Sci. Eng. 2026, 14(1), 55; https://doi.org/10.3390/jmse14010055 - 28 Dec 2025
Viewed by 441
Abstract
The continued growth of international maritime trade has driven automated container terminals (ACTs) to pursue more efficient operational management strategies. In practice, the horizontal yard layout in ACTs significantly enhances transshipment efficiency. However, the more complex horizontal transporting system calls for an effective [...] Read more.
The continued growth of international maritime trade has driven automated container terminals (ACTs) to pursue more efficient operational management strategies. In practice, the horizontal yard layout in ACTs significantly enhances transshipment efficiency. However, the more complex horizontal transporting system calls for an effective approach to enhance automated guided vehicle (AGV) scheduling. Considering AGV charging and path conflicts, this paper proposes a multi-agent reinforcement learning (MARL) approach to address the AGV dispatching and path planning (VD2P) problem under a horizontal layout. The VD2P problem is formulated as a Markov decision process model. To mitigate the challenges of high-dimensional state-action space, a multi-agent framework is developed to control the AGV dispatching and path planning separately. A mixed global–individual reward mechanism is tailored to enhance both exploration and corporation. A proximal policy optimization method is used to train the scheduling policies. Experiments indicate that the proposed MARL approach can provide high-quality solutions for a real-world-sized scenario within tens of seconds. Compared with benchmark methods, the proposed approach achieves an improvement of 8.4% to 53.8%. Moreover, sensitivity analyses are conducted to explore the impact of different AGV configurations and charging strategies on scheduling. Managerial insights are obtained to support more efficient terminal operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 2135 KB  
Article
An Artificial Intelligence Enhanced Transfer Graph Framework for Time-Dependent Intermodal Transport Optimization
by Khalid Anbri, Mohamed El Moufid, Yassine Zahidi, Wafaa Dachry, Hassan Gziri and Hicham Medromi
Appl. Syst. Innov. 2026, 9(1), 10; https://doi.org/10.3390/asi9010010 - 26 Dec 2025
Viewed by 417
Abstract
In the digital era, rapid urban growth and the demand for sustainable mobility are placing increasing pressure on transport systems, where congestion, energy consumption, and schedule variability complicate intermodal journey planning. This work proposes an AI-enhanced transfer-graph framework that models each transport mode [...] Read more.
In the digital era, rapid urban growth and the demand for sustainable mobility are placing increasing pressure on transport systems, where congestion, energy consumption, and schedule variability complicate intermodal journey planning. This work proposes an AI-enhanced transfer-graph framework that models each transport mode as an independent subnetwork connected through explicit transfer arcs. This modular structure captures modal interactions while reducing graph complexity, enabling algorithms to operate more efficiently in time-dependent contexts. A Deep Q-Network (DQN) agent is further introduced as an exploratory alternative to exact and meta-heuristic methods for learning adaptive routing strategies. Exact (Dijkstra) and meta-heuristic (ACO, DFS, GA) algorithms were evaluated on synthetic networks reflecting Casablanca’s intermodal structure, achieving coherent routing with favorable computation and memory performance. The results demonstrate the potential of combining transfer-graph decomposition with learning-based components to support scalable intermodal routing. Full article
Show Figures

Figure 1

27 pages, 5814 KB  
Article
Sustainable Customized Bus Services: A Data-Driven Framework for Joint Demand Analysis and Route Optimization
by Hui Jin, Zheyu Li, Guanglei Wang and Shuailong Zhang
Sustainability 2026, 18(1), 250; https://doi.org/10.3390/su18010250 - 25 Dec 2025
Viewed by 400
Abstract
Promoting demand-responsive transit (DRT) is crucial for developing sustainable and green transportation systems in urban areas, especially in light of decreasing transit ridership and increasingly varying demand. However, the effectiveness of such services hinges on their ability to efficiently match varying travel demand. [...] Read more.
Promoting demand-responsive transit (DRT) is crucial for developing sustainable and green transportation systems in urban areas, especially in light of decreasing transit ridership and increasingly varying demand. However, the effectiveness of such services hinges on their ability to efficiently match varying travel demand. This paper presents a data-driven framework for the joint optimization of customized bus routes and timetables, to enhance both service quality and operational sustainability. Our approach leverages large-scale taxi trip data to identify latent travel demand, applying a spatial–temporal clustering method to group trip requests and identify DRT stops by trip origin, destination, and direction. An adaptive large neighborhood search (ALNS) algorithm is improved to co-optimize passenger waiting times and bus operation costs, where an unbalanced penalty for early or late schedule deviations is developed to better reflect passengers’ discomfort. The framework’s performance is validated through a real-world case study, demonstrating its ability to generate efficient routes and schedules. The model manages to improve passenger experience and reduce operation costs. By creating a more appealing and efficient service, this model contributes directly to the goals of green transport in terms of reducing the total vehicle kilometers that are traveled, and demonstrating a viable, high-quality alternative to private car usage. This study offers a practical and robust tool for transit planners to design a next-generation DRT system that is both economically viable and environmentally sustainable. Full article
Show Figures

Figure 1

53 pages, 10304 KB  
Article
Flow-Balanced Scheduled Routing and Robust Refueling for Inland LNG-Fuelled Liner Shipping
by De-Chang Li, Kun Li, Yu-Hua Duan, Yong-Bo Ji, Zhou-Meng Ai, Fang-Fang Jiao and Hua-Long Yang
J. Mar. Sci. Eng. 2026, 14(1), 26; https://doi.org/10.3390/jmse14010026 - 23 Dec 2025
Viewed by 235
Abstract
Inland LNG-fuelled liner shipping is emerging as a significant trend, yet limited refueling infrastructure presents operational challenges. The complexity of inland navigation requires frequent speed adjustments to meet scheduled arrivals, which directly affects fuel consumption and refueling strategies. Additionally, imbalances in domestic and [...] Read more.
Inland LNG-fuelled liner shipping is emerging as a significant trend, yet limited refueling infrastructure presents operational challenges. The complexity of inland navigation requires frequent speed adjustments to meet scheduled arrivals, which directly affects fuel consumption and refueling strategies. Additionally, imbalances in domestic and foreign trade container flows further increase operating costs for liner shipping companies. Given estimated weekly demands, considering navigational restrictions such as water depth and bridge clearance, as well as streamflow velocity, port time windows, empty container repositioning, port selection, speed adjustment, and uncertain fuel consumption, two novel models based on empty container arc variables and node variables are formulated, aiming to maximize voyage profit. These models are extended from divisible demand to indivisible demand cases. The explicit expression for the maximum fuel consumption under the worst-case speed deviation is derived, and an external linear approximation algorithm is proposed to linearize the nonlinear models while controlling approximation errors. Furthermore, the NP-hardness of the problem, the strict equivalence of the two modeling approaches, and the solution properties are proved. A case study of LNG-fuelled liner shipping on the Yangtze River shows the following: (1) for divisible demand, both models achieve optimal solutions within seconds, while for indivisible demand, the node-variable model outperforms the arc-variable model; (2) tactical strategies should be flexibly adjusted based on seasonal water depth, fuel prices, carbon taxes, speed deviations, and expected lock passage times; and (3) increasing fuel prices and carbon taxes generally reduce port calls and sailing speeds, suggesting that stricter fuel price and carbon tax policies can support the transition to green shipping. This study provides both theoretical guidance and managerial insights, supporting shipping companies in optimizing operations and promoting the development of sustainable inland shipping. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 2291 KB  
Article
Enhancing Flight Connectivity via Synchronization of Arrivals and Departures in Hub Airports with Evolutionary and Swarm-Based Metaheuristics
by Halil Ibrahim Demir and Suraka Dervis
Biomimetics 2026, 11(1), 6; https://doi.org/10.3390/biomimetics11010006 - 23 Dec 2025
Viewed by 490
Abstract
Global air transport has become the dominant mode of long-distance travel, carrying more than four billion passengers in 2019 and projected to exceed 8 billion by 2040. Nevertheless, limited demand and economic inefficiencies often make direct connections unfeasible, forcing many passengers to rely [...] Read more.
Global air transport has become the dominant mode of long-distance travel, carrying more than four billion passengers in 2019 and projected to exceed 8 billion by 2040. Nevertheless, limited demand and economic inefficiencies often make direct connections unfeasible, forcing many passengers to rely on transfers. In such cases, synchronizing arrivals and departures at hub airports is crucial to minimizing transfer times and maximizing passenger retention. This study investigates the synchronization problem at Istanbul Airport, one of the world’s largest hubs, using metaheuristic optimization. Three algorithms—Genetic Algorithms (GA), Modified Discrete Particle Swarm Optimization (MDPSO), and Evolutionary Strategies (ES)—were applied in parallel to optimize arrival and departure schedules for a major airline. The proposed chromosome-based framework was tested through parameter tuning and validated with statistical analyses, including ANOVA and Games–Howell pairwise comparisons. The results show that MDPSO achieved strong improvements, while ES consistently outperformed both GA and MDPSO, increasing successful passenger transfers by more than 200% compared to the original schedule. These findings demonstrate the effectiveness of evolutionary metaheuristics for large-scale airline scheduling and highlight their potential for improving hub connectivity. This framework is generalizable to other hub airports and airlines, and future research could extend it by integrating hybrid metaheuristics or applying enhanced forecasting methods and more dynamic scheduling approaches. Full article
(This article belongs to the Special Issue Advances in Digital Biomimetics)
Show Figures

Figure 1

Back to TopTop