Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (463)

Search Parameters:
Keywords = transport policy climate policy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 355 KiB  
Review
Comprehensive Review of Life Cycle Carbon Footprint in Edible Vegetable Oils: Current Status, Impact Factors, and Mitigation Strategies
by Shuang Zhao, Sheng Yang, Qi Huang, Haochen Zhu, Junqing Xu, Dan Fu and Guangming Li
Waste 2025, 3(3), 26; https://doi.org/10.3390/waste3030026 - 6 Aug 2025
Abstract
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and [...] Read more.
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and transportation. It reveals the differential impacts of fertilizer application, energy structures, and regional policies. Unlike previous reviews that focus on single crops or regions, this study uniquely integrates global data across major edible oils, identifying three critical gaps: methodological inconsistency (60% of studies deviate from the requirements and guidelines for LCA); data imbalance (80% concentrated on soybean/rapeseed); weak policy-technical linkage. Key findings: fertilizer emissions dominate cultivation (40–60% of total footprint), while renewable energy substitution in processing reduces emissions by 35%. Future efforts should prioritize multidisciplinary integration, enhanced data infrastructure, and policy scenario analysis to provide scientific insights for the low-carbon transformation of the global edible oil industry. Full article
25 pages, 5978 KiB  
Review
Global Research Trends on the Role of Soil Erosion in Carbon Cycling Under Climate Change: A Bibliometric Analysis (1994–2024)
by Yongfu Li, Xiao Zhang, Yang Zhao, Xiaolin Yin, Xiong Wu and Liping Su
Atmosphere 2025, 16(8), 934; https://doi.org/10.3390/atmos16080934 - 4 Aug 2025
Viewed by 176
Abstract
Against the backdrop of multifaceted strategies to combat climate change, understanding soil erosion’s role in carbon cycling is critical due to terrestrial carbon pool vulnerability. This study integrates bibliometric methods with visualization tools (CiteSpace, VOSviewer) to analyze 3880 Web of Science core publications [...] Read more.
Against the backdrop of multifaceted strategies to combat climate change, understanding soil erosion’s role in carbon cycling is critical due to terrestrial carbon pool vulnerability. This study integrates bibliometric methods with visualization tools (CiteSpace, VOSviewer) to analyze 3880 Web of Science core publications (1994–2024, inclusive), constructing knowledge graphs and forecasting trends. The results show exponential publication growth, shifting from slow development (1994–2011) to rapid expansion (2012–2024), aligning with international climate policy milestones. The Chinese Academy of Sciences led productivity (519 articles), while the US demonstrated major influence (H-index 117; 52,297 citations), creating a China–US bipolar research pattern. It was also found that Dutch journals dominate this research field. A keyword analysis revealed a shift from erosion-driven carbon transport to ecosystem service assessments. Emerging hotspots include microbial community regulation, climate–erosion feedback, and model–policy integration, though developing country collaboration remains limited. Future research should prioritize isotope tracing, multiscale modeling, and studies in ecologically vulnerable regions to enhance global soil carbon management. This study provides a novel analytical framework and forward-looking perspective for the soil erosion research on soil carbon cycling, serving as an extension of climate change mitigation strategies. Full article
Show Figures

Figure 1

31 pages, 1698 KiB  
Article
Green Energy Fuelling Stations in Road Transport: Poland in the European and Global Context
by Tomasz Neumann
Energies 2025, 18(15), 4110; https://doi.org/10.3390/en18154110 - 2 Aug 2025
Viewed by 168
Abstract
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, [...] Read more.
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, across EU countries with a focus on Poland. It combines a policy and technology overview with a quantitative scientific analysis, offering a multidimensional perspective on green infrastructure deployment. A Pearson correlation analysis reveals significant links between charging station density and both GDP per capita and the share of renewable energy. The study introduces an original Infrastructure Accessibility Index (IAI) to compare infrastructure availability across EU member states and models Poland’s EV charging station demand up to 2030 under multiple growth scenarios. Furthermore, the article provides a comprehensive overview of biofuels, including first-, second-, and third-generation technologies, and highlights recent advances in hydrogen and renewable electricity integration. Emphasis is placed on life cycle considerations, energy source sustainability, and economic implications. The findings support policy development toward zero-emission mobility and the decarbonisation of transport systems, offering recommendations for infrastructure expansion and energy diversification strategies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

27 pages, 3107 KiB  
Article
Modeling School Commuting Mode Choice Under Normal and Adverse Weather Conditions in Chiang Rai City
by Chanyanuch Pangderm, Tosporn Arreeras and Xiaoyan Jia
Future Transp. 2025, 5(3), 101; https://doi.org/10.3390/futuretransp5030101 - 1 Aug 2025
Viewed by 118
Abstract
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit [...] Read more.
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit (MNL) regression model was applied to examine the effects of socio-demographic attributes, household vehicle ownership, travel distance, and spatial variables on mode selection. The results revealed notable modal shifts during adverse weather, with motorcycle usage decreasing and private vehicle reliance increasing, while school bus usage remained stable, highlighting its role as a resilient transport option. Car ownership emerged as a strong enabler of modal flexibility, whereas students with limited access to private transport demonstrated reduced adaptability. Additionally, increased waiting and travel times during adverse conditions underscored infrastructure and service vulnerabilities, particularly for mid-distance travelers. The findings suggest an urgent need for transport policies that promote inclusive and climate-resilient mobility systems, particularly in the context of Chiang Rai, including expanded school bus services, improved first-mile connectivity, and enhanced pedestrian infrastructure. This study contributes to the literature by addressing environmental variability in school travel behavior and offers actionable insights for sustainable transport planning in secondary cities and border regions. Full article
Show Figures

Figure 1

33 pages, 870 KiB  
Article
Decarbonizing Urban Transport: Policies and Challenges in Bucharest
by Adina-Petruța Pavel and Adina-Roxana Munteanu
Future Transp. 2025, 5(3), 99; https://doi.org/10.3390/futuretransp5030099 - 1 Aug 2025
Viewed by 209
Abstract
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for [...] Read more.
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for 55 package, are reflected in Romania’s transport policies, with a focus on implementation challenges and urban outcomes in Bucharest. By combining policy analysis, stakeholder mapping, and comparative mobility indicators, the paper critically assesses Bucharest’s current reliance on private vehicles, underperforming public transport satisfaction, and limited progress on active mobility. The study develops a context-sensitive reform framework for the Romanian capital, grounded in transferable lessons from Western and Central European cities. It emphasizes coordinated metropolitan governance, public trust-building, phased car-restraint measures, and investment alignment as key levers. Rather than merely cataloguing policy intentions, the paper offers practical recommendations informed by systemic governance barriers and public attitudes. The findings will contribute to academic debates on urban mobility transitions in post-socialist cities and provide actionable insights for policymakers seeking to operationalize EU decarbonization goals at the metropolitan scale. Full article
Show Figures

Figure 1

25 pages, 5543 KiB  
Article
Geospatial Drivers of China’s Nature Reserves: Implications for Sustainable Agricultural Development
by Shasha Ouyang and Jun Wen
Agriculture 2025, 15(15), 1596; https://doi.org/10.3390/agriculture15151596 - 24 Jul 2025
Viewed by 289
Abstract
The establishment and management of nature reserves play a crucial role in protecting biodiversity and supporting sustainable agriculture. This study focuses on 2538 nature reserves in 22 provinces, 5 autonomous regions and 4 municipalities directly under the central government in mainland China. Integrating [...] Read more.
The establishment and management of nature reserves play a crucial role in protecting biodiversity and supporting sustainable agriculture. This study focuses on 2538 nature reserves in 22 provinces, 5 autonomous regions and 4 municipalities directly under the central government in mainland China. Integrating GIS spatial statistics, imbalance index, and geodetector models, we reveal critical insights: (1) Pronounced spatial inequity is observed, where a small number of eastern provinces dominate the total reserve count, highlighting significant regional disparities in ecological resource allocation. The sparse kernel density in western regions, indicating sparse reserve coverage. The Standard Deviation Ellipse highlights directional dispersion and human-ecological conflicts in high-density zones. (2) Key sustainability indicators driving reserve distribution include: total water resources, water resources per capita, forest area. (3) The spatial distribution of China’s nature reserves, along with factors such as altitude, river distribution, and transportation infrastructure, plays a crucial role in their development. This research provides theoretical support for the scientific planning and policy-making of nature reserves in China and offers practical guidance for optimizing and adjusting sustainable agricultural development. The study emphasizes the vital functions of nature reserves in maintaining ecosystem balance, enhancing regional climate resilience, and serving as biodiversity reservoirs. This research offers strategic insights for integrating nature reserve spatial planning with sustainable agricultural development policies, providing a scientific basis for optimizing the eco-agricultural interface in China. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 387
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

19 pages, 5629 KiB  
Article
Achieving Net-Zero in Canada: Sectoral GHG Reductions Through Provincial Clustering and the Carbon Mitigation Initiative’s Stabilization Wedges Concept
by Alaba Boluwade
Sustainability 2025, 17(15), 6665; https://doi.org/10.3390/su17156665 - 22 Jul 2025
Viewed by 359
Abstract
The primary objective of this paper is to quantify a realistic pathway for Canada to reach net-zero emissions by 2050. This study analyzed greenhouse gas (GHG) emissions from the 10 provinces and 3 territories of Canada based on the emissions from their economic [...] Read more.
The primary objective of this paper is to quantify a realistic pathway for Canada to reach net-zero emissions by 2050. This study analyzed greenhouse gas (GHG) emissions from the 10 provinces and 3 territories of Canada based on the emissions from their economic sectors. A time series analysis was performed to understand the trajectory of the emissions profile from 1990 to 2023. Using the 2023 emissions as the baseline, a linear reduction, based on the GHG proportions from each jurisdiction, was performed and projected to 2050 (except for Prince Edward Island (PEI), where net zero was targeted for 2040). Moreover, a machine learning technique (k-means unsupervised algorithm) was used to group all the jurisdictions into homogeneous regions for national strategic climate policy initiatives. The within-cluster sum of squares identified the following clusters: Cluster 1: Manitoba (MB), New Brunswick, Nova Scotia, and Newfoundland and Labrador; Cluster 2: Alberta (AB); Cluster 3: Quebec (QC) and Saskatchewan; Cluster 4: Ontario (ON); and Cluster 5: PEI, Northwest Territories, Nunavut, and Northwest Territories. Considering the maximum GHG reductions needed per cluster (Clusters 1–5), the results show that 0.309 Mt CO2 eq/year, 5.447 Mt CO2 eq/year, 1.293 Mt CO2 eq/year, 2.217 Mt CO2 eq/year, and 0.04 Mt CO2 eq/year must be targeted from MB (transportation), AB (stationary combustion), QC (transportation), ON (stationary combustion) and PEI (transportation), respectively. The concept of climate stabilization wedges, which provides a practical framework for addressing the monumental challenge of mitigating climate change, was introduced to each derived region to cut GHG emissions in Canada through tangible, measurable actions that is specific to each sector/cluster. The clustering-based method breaks climate mitigation problems down into manageable pieces by grouping the jurisdictions into efficient regions that can be managed effectively by fostering collaboration across jurisdictions and economic sectors. Actionable and strategic recommendations were made within each province to reach the goal of net-zero. The implications of this study for policy and climate action include the fact that actionable strategies and tailored policies are applied to each cluster’s emission profile and economic sector, ensuring equitable and effective climate mitigation strategies in Canada. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

22 pages, 791 KiB  
Article
Turkiye’s Carbon Emission Profile: A Global Analysis with the MEREC-PROMETHEE Hybrid Method
by İrem Pelit and İlker İbrahim Avşar
Sustainability 2025, 17(14), 6527; https://doi.org/10.3390/su17146527 - 16 Jul 2025
Viewed by 367
Abstract
This study conducts a comparative evaluation of Turkiye’s carbon emission profile from both sectoral and global perspectives. Utilizing 2022 data from 76 countries, it applies two widely recognized multi-criteria decision-making (MCDM) methods: MEREC, for determining objective weights of criteria, and PROMETHEE II, for [...] Read more.
This study conducts a comparative evaluation of Turkiye’s carbon emission profile from both sectoral and global perspectives. Utilizing 2022 data from 76 countries, it applies two widely recognized multi-criteria decision-making (MCDM) methods: MEREC, for determining objective weights of criteria, and PROMETHEE II, for ranking countries based on these criteria. All data used in the analysis were obtained from the World Bank, a globally recognized and credible statistical source. The study evaluates seven criteria, including carbon emissions from the energy, transport, industry, and residential sectors, along with GDP-related indicators. The results indicate that Turkiye’s carbon emissions, particularly from industry, transport, and energy, are substantially higher than the global average. Moreover, countries with higher levels of industrialization generally rank lower in environmental performance, highlighting a direct relationship between industrial activity and increased carbon emissions. According to PROMETHEE II rankings, Turkiye falls into the lower-middle tier among the assessed countries. In light of these findings, the study suggests that Turkiye should implement targeted, sector-specific policy measures to reduce emissions. The research aims to provide policymakers with a structured, data-driven framework that aligns with the country’s broader sustainable development goals. MEREC was selected for its ability to produce unbiased criterion weights, while PROMETHEE II was chosen for its capacity to deliver clear and meaningful comparative rankings, making both methods highly suitable for evaluating environmental performance. This study also offers a broader analysis of how selected countries compare in terms of their carbon emissions. As carbon emissions remain one of the most pressing environmental challenges in the context of global warming and climate change, ranking countries based on emission levels serves both to support scientific inquiry and to increase international awareness. By relying on recent 2022 data, the study offers a timely snapshot of the global carbon emission landscape. Alongside its contribution to public awareness, the findings are expected to support policymakers in developing effective environmental strategies. Ultimately, this research contributes to the academic literature and lays a foundation for more sustainable environmental policy development. Full article
Show Figures

Graphical abstract

36 pages, 1973 KiB  
Article
A Comparative Life Cycle Assessment of an Electric and a Conventional Mid-Segment Car: Evaluating the Role of Critical Raw Materials in Potential Abiotic Resource Depletion
by Andrea Cappelli, Nicola Stefano Trimarchi, Simone Marzeddu, Riccardo Paoli and Francesco Romagnoli
Energies 2025, 18(14), 3698; https://doi.org/10.3390/en18143698 - 13 Jul 2025
Viewed by 613
Abstract
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) [...] Read more.
Electric passenger vehicles are set to dominate the European car market, driven by EU climate policies and the 2035 ban on internal combustion engine production. This study assesses the sustainability of this transition, focusing on global warming potential and Critical Raw Material (CRM) extraction throughout its life cycle. The intensive use of CRMs raises environmental, economic, social, and geopolitical concerns. These materials are scarce and are concentrated in a few politically sensitive regions, leaving the EU highly dependent on external suppliers. The extraction, transport, and refining of CRMs and battery production are high-emission processes that contribute to climate change and pose risks to ecosystems and human health. A Life Cycle Assessment (LCA) was conducted, using OpenLCA software and the Ecoinvent 3.10 database, comparing a Peugeot 308 in its diesel and electric versions. This study adopts a cradle-to-grave approach, analyzing three phases: production, utilization, and end-of-life treatment. Key indicators included Global Warming Potential (GWP100) and Abiotic Resource Depletion Potential (ADP) to assess CO2 emissions and mineral resource consumption. Technological advancements could mitigate mineral depletion concerns. Li-ion battery recycling is still underdeveloped, but has high recovery potential, with the sector expected to expand significantly. Moreover, repurposing used Li-ion batteries for stationary energy storage in renewable energy systems can extend their lifespan by over a decade, decreasing the demand for new batteries. Such innovations underscore the potential for a more sustainable electric vehicle industry. Full article
Show Figures

Figure 1

30 pages, 2860 KiB  
Article
Objectifying Inland Shipping Decision Frameworks: A Case Study on the Climate Resilience of Dutch Inland Waterway Transport Policies
by Frederik Vinke, Cornelis van Dorsser and Mark van Koningsveld
Climate 2025, 13(7), 146; https://doi.org/10.3390/cli13070146 - 12 Jul 2025
Viewed by 485
Abstract
Inland waterway transport (IWT) is a key function of river systems worldwide. It is vulnerable to climate change, specifically to discharge extremes, and competes for water with multiple other functions. A clear framework describing its interests to inform decision-making during regular conditions as [...] Read more.
Inland waterway transport (IWT) is a key function of river systems worldwide. It is vulnerable to climate change, specifically to discharge extremes, and competes for water with multiple other functions. A clear framework describing its interests to inform decision-making during regular conditions as well as during climate extremes is as yet unavailable in the literature. To address this gap we examine how inland shipping is taken into account in waterway policies in the Netherlands. We apply the frame of reference method to ‘objectify’ current inland waterway transport (IWT) policies, addressing the themes of waterway capacity, safety, service level, and sustainability. By ‘objectifying’ we mean turning the implicit into an explicit ‘object’ of study on the one hand and revealing underlying ‘objectives’ on the other. We show that policies for waterway capacity and service level are well developed, while waterway safety policies are more implicit, and waterway resilience lacks a quantitative decision framework. We furthermore show that current policies mainly focus on regular conditions, leaving it unclear what changes under extreme river discharge conditions. The results provide important insights into shipping-related decision challenges during climate extremes, highlighting aspects that should be developed further to improve the climate resilience of inland shipping. While some of these implications are specific to the Dutch case, the method applied here can also be used for other river systems that support multiple functions. Full article
(This article belongs to the Section Policy, Governance, and Social Equity)
Show Figures

Figure 1

34 pages, 2634 KiB  
Article
Toward Low-Carbon Mobility: Greenhouse Gas Emissions and Reduction Opportunities in Thailand’s Road Transport Sector
by Pantitcha Thanatrakolsri and Duanpen Sirithian
Clean Technol. 2025, 7(3), 60; https://doi.org/10.3390/cleantechnol7030060 - 11 Jul 2025
Viewed by 931
Abstract
Road transportation is a major contributor to greenhouse gas (GHG) emissions in Thailand. This study assesses the potential for GHG mitigation in the road transport sector from 2018 to 2030. Emission factors for various vehicle types and technologies were derived using the International [...] Read more.
Road transportation is a major contributor to greenhouse gas (GHG) emissions in Thailand. This study assesses the potential for GHG mitigation in the road transport sector from 2018 to 2030. Emission factors for various vehicle types and technologies were derived using the International Vehicle Emissions (IVE) model. Emissions were then estimated based on country-specific vehicle data. In the baseline year 2018, total emissions were estimated at 23,914.02 GgCO2eq, primarily from pickups (24.38%), trucks (20.96%), passenger cars (19.48%), and buses (16.95%). Multiple mitigation scenarios were evaluated, including the adoption of electric vehicles (EVs), improvements in fuel efficiency, and a shift to renewable energy. Results indicate that transitioning all newly registered passenger cars (PCs) to EVs while phasing out older models could lead to a 16.42% reduction in total GHG emissions by 2030. The most effective integrated scenario, combining the expansion of electric vehicles with improvements in internal combustion engine efficiency, could achieve a 41.96% reduction, equivalent to 18,378.04 GgCO2eq. These findings highlight the importance of clean technology deployment and fuel transition policies in meeting Thailand’s climate goals, while providing a valuable database to support strategic planning and implementation. Full article
Show Figures

Figure 1

44 pages, 1977 KiB  
Article
Evaluating Urban Mobility Resilience in Petrópolis Through a Multicriteria Approach
by Alexandre Simas de Medeiros, Marcelino Aurélio Vieira da Silva, Marcus Hugo Sant’Anna Cardoso, Tálita Floriano Santos, Catalina Toro, Gonzalo Rojas and Vicente Aprigliano
Urban Sci. 2025, 9(7), 269; https://doi.org/10.3390/urbansci9070269 - 11 Jul 2025
Viewed by 696
Abstract
Urban mobility resilience plays a central role in sustainable urban planning discussions, especially considering the challenges of extreme events, climate change, and the increasing scarcity of fossil fuels. This study evaluates urban mobility resilience in Petrópolis (RJ), incorporating socio-spatial heterogeneity and energy vulnerability. [...] Read more.
Urban mobility resilience plays a central role in sustainable urban planning discussions, especially considering the challenges of extreme events, climate change, and the increasing scarcity of fossil fuels. This study evaluates urban mobility resilience in Petrópolis (RJ), incorporating socio-spatial heterogeneity and energy vulnerability. This research fills methodological gaps in the literature by proposing a composite resilience index that integrates technical, socioeconomic, and fossil fuel dependency variables within a robust multicriteria framework. We selected eleven variables relevant to urban mobility and organized them into inference blocks. We normalized the variables using Gaussian functions, respecting their maximization or minimization characteristics. We applied the Analytic Hierarchy Process (AHP) to assign weights to the criteria and then aggregated and ranked the results using multicriteria analysis. The final index represents the adaptive capacity of urban territories facing the energy crisis, and we applied it spatially to the neighborhoods of Petrópolis. The analysis identified a significant concentration of neighborhoods with low resilience, particularly in quadrants, combining deficiencies in public transportation, high dependence on fossil fuels, and socioeconomic constraints. Factors such as limited pedestrian access, insufficient motorized public transport coverage, and a high proportion of elderly residents emerged as significant constraints on urban resilience. Intervention strategies that promote active mobility, improve accessibility, and diversify transportation modes proved essential for strengthening local resilience. The results emphasize the urgent need for public policies to reduce energy vulnerability, foster active mobility, and promote equity in access to transportation infrastructure. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

20 pages, 2004 KiB  
Review
An Overview of Intelligent Transportation Systems in Europe
by Nicolae Cordoș, Irina Duma, Dan Moldovanu, Adrian Todoruț and István Barabás
World Electr. Veh. J. 2025, 16(7), 387; https://doi.org/10.3390/wevj16070387 - 9 Jul 2025
Viewed by 672
Abstract
This paper provides a comprehensive review of the development, deployment and challenges of Intelligent Transport Systems (ITSs) in Europe. Driven by the EU Directive 2010/40/EU, the deployment of ITSs has become essential for improving the safety, efficiency and sustainability of transport. The study [...] Read more.
This paper provides a comprehensive review of the development, deployment and challenges of Intelligent Transport Systems (ITSs) in Europe. Driven by the EU Directive 2010/40/EU, the deployment of ITSs has become essential for improving the safety, efficiency and sustainability of transport. The study examines how ITS technologies, such as automation, real-time traffic data analytics and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, have been integrated to improve urban mobility and road safety. In addition, it reviews significant European initiatives and case studies from several cities, which show visible improvements in reducing congestion, reducing CO2 emissions and increasing the use of public transport. The paper highlights, despite progress, major obstacles to widespread adoption, such as technical interoperability, inadequate regulatory frameworks and insufficient data sharing between stakeholders. These issues prevent ITS applications from scaling up and functioning well in EU Member States. To overcome these problems, the study highlights the need for common standards and cooperation frameworks. The research analyses the laws, technological developments and socio-economic effects of ITSs. By promoting sustainable and inclusive mobility, ITSs can contribute to the European Green Deal and climate goals. Finally, the paper presents ITSs as a revolutionary solution for future European transport systems and offers suggestions to improve their interoperability, data governance and policy support. Full article
Show Figures

Graphical abstract

28 pages, 516 KiB  
Article
Evaluation and Selection of Public Transportation Projects in Terms of Urban Sustainability Through a Multi-Criteria Decision-Support Methodology
by Konstantina Anastasiadou and Nikolaos Gavanas
Future Transp. 2025, 5(3), 90; https://doi.org/10.3390/futuretransp5030090 - 9 Jul 2025
Viewed by 362
Abstract
Climate change, the consequences of which have been more intense than ever in the last few decades, makes the need for sustainable transportation even more imperative. The promotion of public transportation and the discouragement of private car use are among the main priorities [...] Read more.
Climate change, the consequences of which have been more intense than ever in the last few decades, makes the need for sustainable transportation even more imperative. The promotion of public transportation and the discouragement of private car use are among the main priorities of sustainable transport planning in modern urban areas. However, the selection of the most appropriate transport project, apart from significant opportunities, is also accompanied by significant challenges, especially under the demand of compromising—often conflicting—social, environmental, and economic criteria, as well as different stakeholders’ interests. The aim of the present paper is to provide decision analysts and policy-makers with a decision-support tool for the prioritization and optimum selection of public transport projects for an urban area within the framework of sustainability. For this purpose, a comprehensive inventory of criteria for the evaluation of urban public transport systems (alternatives), along with a standardized table with the relevant performance of the most common alternatives (i.e., metro, tram, monorail, and BRT) are provided based on international literature review. A multi-criteria decision-aiding methodology based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), allowing for the direct exclusion of an alternative not meeting certain “binding” criteria from further evaluation, thus saving time, effort and cost, taking into account different stakeholders’ interests and preferences, as well as the particularities and special characteristics of the study area, is then proposed and tested through a theoretical case study. Full article
Show Figures

Figure 1

Back to TopTop