Evaluating Urban Mobility Resilience in Petrópolis Through a Multicriteria Approach
Abstract
1. Introduction
2. Literature Review
3. Methodologies
3.1. Variables Used
- Walking time to the bus terminal;
- Bicycle travel time to the bus terminal;
- Terrain slope;
- Percentage of elderly population;
- Elderly percentage (IBGE);
- Bus access time to the bus terminal.
- Pedestrian access to bus terminals;
- Predisposition to cycling;
- Bus access to bus terminals;
- Access by other motorized modes to bus terminals;
- Declared monthly income;
- Local average income based on census data (IBGE);
- Population residing within a five-minute walking radius.
3.2. Parameterization and Normalization
3.3. Formation of Inference Blocks
- IB-1: Pedestrian Access Ease = average of [Walking Time to Terminal, Slope]
- IB-2: Bicycle Access Ease = average of [Bicycle Travel Time to Terminal, Slope]
- IB-3: Active Transport × Accessibility = average of [IB-1, IB-2]
- IB-4: Active Transport Mobility = average of [Pedestrian Access, Predisposition to Cycling]
- IB-5: Active Transport Factor = average of [IB-3, IB-4]
- IB-6: Mobility Indicator = average of [Bus Access, Access by Other Motorized Modes]
- IB-7: Fossil Fuel Dependency = average of [Bus Access Time to Terminal, IB-6]
- IB-8: Social Mobility Constraints = average of [Percentage of Elderly Population, Average Monthly Income]
- IB-9: Transport Indicator = average of [IB-5, IB-6, IB-7]
- IB-10: Socioeconomic Factor = average of [IB-8, Population Residing Within a 5-Minute Walking Radius]
3.4. Analysis of Factors Compromising Resilience
- For max blocks (where higher values indicate better performance), values below the media represent resilience-compromising factors.
- For min blocks (where lower values indicate better performance), values above the medians represent resilience-compromising factors.
- For max blocks, values below the media indicate low resilience.
- For min blocks, values above the media indicate low resilience.
- Quadrant I (high-high): Resilient neighborhoods with good conditions across the analyzed dimensions, considered lower priority for intervention;
- Quadrant II (low-high): Neighborhoods with weakness in one specific dimension but good conditions in another, indicating high potential for rapid improvements;
- Quadrant III (low-low): Critical areas requiring integrated interventions due to simultaneous deficiencies across the analyzed dimensions and
- Quadrant IV (high-low): Neighborhoods with good conditions in one dimension but significant vulnerability in another, requiring specific combined interventions.
4. Results and Discussion
4.1. Collinearity Analysis Between Block Pairs (With AHP Weights)
- IB-1 × IB-2 (ρ = 0.81): The correlation between the pedestrian and bicycle access blocks is high, indicating that these two aspects share a substantial similarity, especially considering that both use slope as a sub-variable. This collinearity is expected, given the similarity of the transportation modes analyzed.
- IB-3 × IB-4 (ρ = 0.12): The factors relating active transport to accessibility (IB-3) and mobility (IB-4) show a low correlation, demonstrating that these dimensions represent distinct aspects within active transportation: the former focuses on access potential, while the latter addresses actual use or predisposition.
- IB-5 × IB-7 (ρ = 0.15): The low correlation between the active transport factor (IB-5) and fossil fuel dependency (IB-7) reinforces that these blocks capture independent dimensions, with the former associated with active modes and the latter with motorized infrastructure dependent on fossil energy.
- IB-7 × IB-9 (ρ = 0.40): A moderate correlation is observed here, which is expected since IB-9 aggregates both active and motorized components. Fossil fuel dependency partially contributes to the overall transport indicator.
- IB-8 × IB-10 (ρ = −0.07): The correlation between social mobility constraints (IB-8) and the socioeconomic factor (IB-10) is practically null and negative, indicating that the aspects considered (such as the percentage of elderly population, income, and population within walking distance) are statistically independent. This distinction is important to preserve the plurality of social perspectives within the model.
4.2. Cronbach’s Alpha
4.3. Principal Component Analysis (PCA–Urban Resilience Blocks)
4.4. Urban Resilience Results for the Municipality of Petrópolis
- Posse (northern sector);
- Corrêas (central-eastern sector);
- Centro (central sector);
- Itamaraty 1 (central-eastern sector);
- Bingen (central-western sector).
4.5. Analysis of Normalized Urban Resilience
- Quadrant I (IB-9 ↑, IB-10 ↑): neighborhoods with good transport conditions and favorable socioeconomic indicators. These are considered resilient and of lower priority for intervention.
- Quadrant II (IB-9 ↓, IB-10 ↑): neighborhoods with transport deficiencies but good social conditions. Mobility interventions could quickly enhance resilience.
- Quadrant III (IB-9 ↓, IB-10 ↓): neighborhoods with deficiencies in both dimensions. These represent critical areas for integrated public policies.
- Quadrant IV (IB-9 ↑, IB-10 ↓): neighborhoods with good infrastructure but high levels of social vulnerability, requiring combined social assistance and physical interventions.
4.6. Sensitivity Analysis
4.7. Discussion
5. Conclusions
Suggestions for Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Results of the Normalization of the Inference Blocks
Neighborhoods | Walking Time to Terminal | Cycling Time to Terminal | Slope | Pedestrian Access | Predisposition to Cycling | Bus Access | Other Motorized Access | Elderly Population (%) | Elderly Population (IBGE) | Monthly Income | Average Income (IBGE) | Bus Access Time to Terminal | The Population Within a 5 min Walking Radius |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADRIANO TEIXEIRA BASTOS (CHAFARIZ) | 181 | 48 | 38.5491 | 0 | 4.2 | 26.4 | 7 | 0.128674 | 0.128674 | 1936.248 | 1187.703 | 37.95 | 2187.2 |
Águas Lindas 2 | 10 | 22 | 37.7898 | 1 | 12.2 | 24 | 12 | 0.116256 | 0 | 2499.754 | 1062.374 | 25 | 1408.2 |
Águas Lindas 2 | 10 | 22 | 37.7898 | 1 | 7.84 | 24 | 12 | 0.126655 | 0 | 2499.754 | 1062.374 | 25 | 1942.98 |
Alcobaça | 14.25 | 4 | 57.051 | 4 | 5 | 21 | 1.6 | 0.145085 | 0.145085 | 2259.88 | 1124.02 | 8.952381 | 1475 |
Alto da Serra | 25 | 9 | 40.7191 | 3 | 5 | 36 | 2 | 0.182538 | 0.182538 | 2214.79 | 1277.015 | 27.71429 | 8590 |
Alto do Pegado | 149 | 35 | 36.312 | 0 | 3.44 | 30.88 | 7.2 | 0.128674 | 0.130904 | 1936.248 | 921.4397 | 42.69231 | 1160 |
Amazonas | 161 | 11 | 24.7533 | 0 | 11.2 | 20.4 | 2.6 | 0.104314 | 0.079726 | 3939.005 | 937.2129 | 35.6381 | 6297.9 |
Araras 1 | 15.4 | 33 | 25.8062 | 5 | 8 | 98 | 2 | 0.123067 | 0 | 2392.262 | 974.8539 | 34.3299 | 1376 |
Araras 2 | 141 | 44 | 43.9392 | 0 | 2.8 | 28.6 | 4.2 | 0.096283 | 0.135167 | 2392.262 | 1464.758 | 80 | 242.9 |
Araras 3 | 157 | 45 | 47.0944 | 0 | 3.96 | 30.32 | 4.84 | 0.11478 | 0 | 2392.262 | 1177.471 | 26 | 807 |
Atílio Marotti | 86 | 20 | 38.7761 | 0 | 2 | 6 | 2.4 | 0.110012 | 0.110012 | 2171.505 | 923.3922 | 32.5 | 1618 |
Barão do Rio Branco | 58 | 19 | 41.9982 | 0 | 3.4 | 1 | 2.68 | 0.178812 | 0.178812 | 2424.005 | 2045.254 | 15 | 1784 |
Barra Mansa | 4 | 24 | 33.1171 | 2 | 4.928 | 10 | 6.84 | 0.118142 | 0.118142 | 2903.755 | 1115.666 | 34.5 | 2734 |
Balllard | 74 | 23 | 41.9156 | 0 | 3.6 | 1 | 3.416 | 0.097299 | 0.097299 | 12726.01 | 1017.133 | 35 | 3443 |
Bela Vista 1 | 9.16 | 5 | 39.0003 | 6 | 7 | 29 | 1.72 | 0.198515 | 0 | 2216.233 | 930.4553 | 16.41379 | 2296.6 |
Bela Vista 2 | 22 | 7 | 50.537 | 0 | 7.8 | 29.6 | 1.264 | 0.200691 | 0 | 2216.233 | 683.3643 | 12.5 | 3336 |
Benfica | 34 | 7 | 30.012 | 2 | 5 | 7 | 8.4 | 0.113081 | 0 | 3939.005 | 1648.53 | 20.71429 | 1722.636 |
Bingen | 7.58 | 14 | 24.8656 | 12 | 26 | 137 | 3 | 0.188258 | 0.188258 | 3219.885 | 1979.038 | 24.13333 | 2061 |
Boa Vista | 30 | 11 | 38.5549 | 0 | 7.4 | 5 | 2.056 | 0.160272 | 0.160272 | 2242.204 | 1069.892 | 18 | 2945 |
Bonfim | 12 | 15 | 43.8017 | 1 | 2 | 38 | 1 | 0.111597 | 0.111597 | 1855.88 | 1172.341 | 22.83784 | 914 |
Bonsucesso 2 | 62 | 15 | 36.197 | 0 | 1 | 18 | 6.4 | 0.134525 | 0.134525 | 2205.172 | 1790.768 | 24.52941 | 1063 |
Bonsucesso 3 | 46 | 16 | 25.3037 | 0 | 9.008 | 31.2 | 7.08 | 0.134525 | 0 | 2205.172 | 1852.344 | 24.52941 | 1063 |
Caititu | 15 | 6 | 37.7914 | 1 | 1 | 53.8 | 3.8 | 0.151515 | 0.151515 | 5454.005 | 1076.989 | 62.04 | 759 |
Calembe | 116 | 30 | 38.0148 | 0 | 14.808 | 7 | 8.2 | 0.11157 | 0.11157 | 3289.719 | 1610.502 | 28.57143 | 242 |
Calembe 3 | 98 | 25 | 46.15 | 0 | 11.1696 | 32 | 8.72 | 0.114621 | 0 | 2499.754 | 2139.942 | 25 | 1375.236 |
Campo do Serrano | 56 | 17 | 28.0231 | 0 | 8.92 | 38 | 2.8992 | 0.181863 | 0.164474 | 909.005 | 1082.295 | 101.7 | 2051 |
Capela | 13 | 5 | 32.0238 | 0 | 13.04 | 2 | 3.09984 | 0.162056 | 0.162056 | 3939.005 | 1659.653 | 27.5 | 3832 |
Carangola 1 | 57 | 16 | 41.3036 | 0 | 2 | 32 | 1 | 0.07491 | 0.07491 | 2281.973 | 2091.609 | 32.5625 | 2216 |
Carangola 2 | 51 | 13 | 31.222 | 0 | 3.08 | 23.16 | 4.7712 | 0.130402 | 0.163369 | 2676.505 | 832.6784 | 62.04 | 759 |
Cascatinha | 10.33 | 7 | 33.8249 | 6 | 6 | 78 | 4 | 0.169409 | 0.169409 | 2601.626 | 1347.114 | 15.47297 | 6989 |
Castelanea | 17.5 | 15 | 28.9813 | 4 | 2 | 10 | 1 | 0.165386 | 0.186047 | 2662.076 | 1218.477 | 27 | 1677 |
Castelo São Manuel | 20 | 11 | 36.8604 | 1 | 6 | 30 | 2 | 0.126269 | 0.126269 | 2378.096 | 2102.049 | 23.44828 | 5219 |
Castrioto | 50 | 14 | 33.1034 | 0 | 2 | 10 | 3.083008 | 0.130506 | 0.130506 | 2727.005 | 1041.163 | 17 | 613 |
Caxambu | 23 | 9 | 36.5836 | 0 | 19.2 | 6 | 1 | 0.187635 | 0.187635 | 3073.291 | 1198.953 | 37.5 | 2313 |
Centenário | 32 | 13 | 29.898 | 0 | 10.792 | 37 | 3.61641 | 0.162056 | 0 | 3939.005 | 1422.105 | 27.67143 | 5339.2 |
Centro | 10.17 | 2 | 28.9116 | 175 | 78 | 265 | 6 | 0.247188 | 0.247188 | 2497.542 | 1306.128 | 27.79389 | 21425 |
Chácara Flora | 52 | 16 | 22.1669 | 0 | 2.6 | 10.2 | 2.4 | 0.103796 | 0.183243 | 1666.505 | 2862.419 | 27.71429 | 8590 |
Coronel Veiga | 50 | 14 | 27.1793 | 0 | 1 | 2 | 2.88 | 0.185004 | 0.185004 | 3181.505 | 1277.015 | 20 | 2454 |
Correas | 10.51852 | 7 | 31.653 | 27 | 36 | 203 | 13 | 0.151515 | 0.153587 | 2512.173 | 1812.33 | 26.27723 | 4753 |
Corrego Grande | 38 | 8 | 31.9083 | 0 | 4.9136 | 35.68 | 5.808 | 0.112245 | 0.098191 | 3939.005 | 1836.071 | 45 | 529.2 |
Dr. Thouzet | 72 | 21 | 33.1963 | 0 | 5.8 | 1 | 2.976 | 0.115864 | 0.115864 | 2424.005 | 888.9771 | 50 | 4091 |
Duarte da Silveira | 51 | 16 | 28.4928 | 0 | 4 | 22 | 3.139692 | 0.151633 | 0.151633 | 2961.141 | 1338.15 | 21.28571 | 6674 |
Duchas | 36 | 12 | 30.0774 | 0 | 1 | 2 | 3.59904 | 0.219247 | 0.219247 | 2424.005 | 1150.32 | 12.5 | 1382 |
Duques | 163 | 26 | 41.6801 | 0 | 11.608 | 2 | 3.135168 | 0.123194 | 0 | 3939.005 | 1943.927 | 25 | 4293.58 |
Esperaça | 20 | 13 | 44.3353 | 4 | 3 | 3 | 1.1968 | 0.184961 | 0.117206 | 2207.576 | 1129.941 | 12.5 | 3336 |
Espírito Santo | 88 | 21 | 30.2933 | 0 | 16.6064 | 27.28 | 3.66325 | 0.070861 | 0.077626 | 4671.255 | 888.521 | 14 | 1911 |
Estrada da Saudade 1 | 25 | 18 | 44.0345 | 2 | 6 | 31 | 1 | 0.120152 | 0.120152 | 2281.417 | 983.9111 | 28.06667 | 5801 |
Estrada da Saudade 2 | 23 | 8 | 51.4108 | 0 | 8.28 | 41 | 1.9312 | 0.160272 | 0 | 2242.204 | 883.199 | 10.83108 | 6989 |
Fagundes | 253 | 79 | 33.6488 | 0 | 3.728 | 16 | 5.576 | 0.115346 | 0 | 2196.754 | 1156.913 | 33.75 | 1033.84 |
Fazenda Inglesa 1 | 125 | 45 | 41.8606 | 0 | 6.4784 | 12 | 3.230862 | 0.079314 | 0.079314 | 3181.505 | 1070.122 | 30.41667 | 1866 |
Fazenda Inglesa 2 | 164 | 56 | 44.7408 | 0 | 4.85408 | 10.6 | 3.297194 | 0.080414 | 0.112261 | 2856.862 | 979.1192 | 36.5 | 1492.8 |
Floresta | 22 | 5 | 36.1224 | 0 | 1 | 4 | 1.18336 | 0.11146 | 0.11146 | 2424.005 | 1849.391 | 14 | 1911 |
Frias | 49 | 17 | 51.4181 | 0 | 15.3616 | 67.6 | 5.44 | 0.135463 | 0.10084 | 2751.053 | 896.3124 | 28.90495 | 4277.7 |
Gentio | 10 | 15 | 33.8883 | 1 | 6.67392 | 3 | 9.864 | 0.116557 | 0.116557 | 3181.505 | 1125.433 | 30 | 1673 |
Gulf | 44 | 13 | 23.3861 | 0 | 2.12 | 5.8 | 2.2512 | 0.195223 | 0.170398 | 2866.851 | 1487.387 | 20 | 2454 |
Humberto Rovigatti | 49 | 15 | 34.8184 | 0 | 5.2 | 4 | 2.11744 | 0.135904 | 0.135904 | 1969.504 | 1634.304 | 11.25 | 1582 |
Independência | 161 | 28 | 26.9839 | 0 | 6 | 20 | 1 | 0.085204 | 0.085204 | 2640.434 | 1224.371 | 40 | 5035 |
Itaipava 2 | 8.17 | 73 | 40.0536 | 112 | 34 | 235 | 13 | 0.134168 | 0.134168 | 2533.186 | 931.0773 | 28.11489 | 559 |
Itaipava 3 | 41 | 13 | 33.2113 | 0 | 5.774784 | 17.8 | 10.1968 | 0.110366 | 0.153161 | 3939.005 | 1033.571 | 28.11489 | 559 |
Itamarati 1 | 6.14 | 6 | 21.6382 | 51 | 17 | 70 | 1 | 0.216173 | 0.216173 | 2484.605 | 2340.878 | 18.19118 | 1249 |
Itamarati 2 | 10 | 4 | 45.2427 | 0 | 7.96 | 30.52 | 1.35616 | 0.216173 | 0.14364 | 2484.605 | 864.7597 | 20.01029 | 1249 |
Jardim Salvador | 28 | 7 | 43.1911 | 0 | 2 | 6 | 3.348928 | 0.130402 | 0.130402 | 2676.505 | 1144.532 | 46.66667 | 2615 |
Laginha | 39 | 8 | 33.7593 | 0 | 2 | 10 | 8.49216 | 0.122772 | 0.122772 | 1616.004 | 1048.449 | 44.5 | 3030 |
Lopes Trovão | 72 | 29 | 40.156 | 0 | 2.52 | 12.64 | 1.68 | 0.103796 | 0.084967 | 1666.505 | 1039.737 | 48 | 2014 |
Loteamento Boa Vista | 98 | 25 | 40.9608 | 0 | 3.728 | 30.656 | 6.306432 | 0.132939 | 0.108607 | 2195.326 | 883.8619 | 71.25 | 186 |
Lusitano | 45 | 13 | 31.5688 | 0 | 7.6 | 14.32 | 1.272832 | 0.187635 | 0.106132 | 3073.291 | 775.9549 | 45 | 2313 |
Madame Machado | 23.33 | 20 | 30.7827 | 3 | 3 | 45 | 9.83616 | 0.083163 | 0.083163 | 2266.192 | 833.352 | 28.62222 | 2453 |
Malta | 399 | 127 | 41.4701 | 0 | 3.826496 | 14.04 | 3.390151 | 0.080414 | 0.114367 | 2856.862 | 918.2113 | 17.61429 | 2027 |
Manga Larga | 22.5 | 28 | 41.7581 | 2 | 2 | 3 | 5.744 | 0.085502 | 0.085502 | 2424.005 | 1230.108 | 43.33333 | 807 |
Mauá | 145 | 22 | 25.127 | 0 | 9.6816 | 20.8 | 3.022234 | 0.13181 | 0.107427 | 1212.004 | 1177.471 | 27 | 569 |
Meio da Serra | 110 | 47 | 35.3427 | 0 | 2.424 | 1 | 1.816 | 0.096161 | 0.096161 | 5454.005 | 1326.535 | 20 | 2839 |
Moinho Preto | 86 | 23 | 38.8463 | 0 | 6.59968 | 2 | 3.125814 | 0.126469 | 0.126469 | 909.005 | 860.9192 | 32.5 | 1787 |
Monica | 73 | 18 | 31.9298 | 0 | 4.280384 | 27.1312 | 7.371878 | 0.122772 | 0.146305 | 1616.004 | 1182.351 | 44.5 | 3030 |
Morin | 10 | 12 | 40.086 | 1 | 2 | 13 | 1 | 0.19849 | 0.19849 | 2222.005 | 1801.944 | 30.76923 | 2252 |
Mosela | 15 | 19 | 30.6371 | 1 | 12 | 39 | 3.19945 | 0.184881 | 0.184881 | 3136.055 | 1187.063 | 27.30769 | 6204 |
Nogueira 2 | 62 | 15 | 28.5845 | 0 | 18 | 60 | 3 | 0.135463 | 0.135463 | 2751.053 | 1550.452 | 25.0678 | 2724 |
Nogueira 3 | 80 | 17 | 39.8185 | 0 | 11.64352 | 34.24 | 8.56 | 0.125504 | 0 | 2499.754 | 1691.451 | 25 | 1702.683 |
Nossa Senhora da Glória | 20 | 11 | 41.1445 | 1 | 6 | 36 | 1 | 0.086393 | 0.086393 | 2256.558 | 1558.573 | 29.58333 | 4086 |
Oswaldo Cruz | 40 | 11 | 22.2467 | 0 | 3.208 | 12.36 | 3.589778 | 0.195223 | 0.129286 | 2866.851 | 848.8395 | 21.66667 | 3347 |
Pedras Brancas | 95 | 29 | 34.4525 | 0 | 6.623936 | 18 | 3.144694 | 0.130506 | 0.175313 | 2727.005 | 993.899 | 17 | 613 |
Pedro do Rio | 131 | 31 | 37.2285 | 0 | 4 | 41 | 5.869286 | 0.128674 | 0.128674 | 1936.248 | 1085.408 | 26.21951 | 3777 |
Posse | 9.667 | 4 | 40.6471 | 12 | 8 | 99 | 6.543457 | 0.105248 | 0.105248 | 1768.869 | 1069.387 | 40.59794 | 6822 |
Praça Catulo | 41 | 12 | 16.2948 | 0 | 2.024 | 6.56 | 2.424196 | 0.195223 | 0.227188 | 2866.851 | 916.5748 | 27 | 1677 |
Praça Pasteur | 43 | 12 | 27.7915 | 0 | 1.9488 | 5.312 | 2.015079 | 0.195223 | 0.199915 | 2866.851 | 1983.857 | 12 | 3319.2 |
Quarteirão Brasileiro | 63 | 17 | 39.1323 | 0 | 1 | 17 | 3 | 0.104544 | 0.104544 | 2196.755 | 1868.587 | 27.8125 | 5414 |
Quarteirão Ingelheim | 57 | 17 | 32.231 | 0 | 9.984 | 1 | 3.06527 | 0.181863 | 0.181863 | 909.005 | 1265.888 | 113 | 2051 |
Quissamã | 8.6 | 6 | 24.3728 | 5 | 7 | 25 | 1.076032 | 0.184961 | 0.184961 | 2525.005 | 1851.929 | 18.44 | 2806 |
Quitandinha | 13 | 16 | 27.8167 | 1 | 22 | 63 | 6 | 0.162832 | 0.162832 | 2778.948 | 1390.403 | 29.69841 | 8997 |
Retiro 1 | 70 | 15 | 52.1232 | 0 | 5 | 40 | 2.4992 | 0.111415 | 0.111415 | 2058.851 | 2002.696 | 32.5641 | 3662 |
Retiro 2 | 44 | 11 | 35.1492 | 0 | 5.552 | 33.632 | 2.75168 | 0.160272 | 0.119384 | 2242.204 | 1641.933 | 62.04 | 759 |
Retiro das Pedras | 175 | 43 | 36.7284 | 0 | 3.2336 | 4 | 5.423944 | 0.069892 | 0.069892 | 1212.004 | 1126.645 | 71.25 | 186 |
Ribeirão Grande | 79 | 18 | 42.203 | 0 | 3.19232 | 19.7312 | 5.593307 | 0.132939 | 0.140019 | 2195.326 | 820.8577 | 43.33333 | 807 |
Rio Bonito | 90 | 21 | 34.5456 | 0 | 5.20832 | 2 | 6.412149 | 0.112245 | 0.112245 | 3939.005 | 1177.471 | 37.5 | 882 |
Rio de Janeiro | 90 | 22 | 29.8642 | 0 | 16.68928 | 14 | 3.747818 | 0.070861 | 0.070861 | 4671.255 | 950.7338 | 76.53846 | 1510 |
Rocinha | 313 | 86 | 45.7419 | 0 | 2.79872 | 18.384 | 5.16025 | 0.096602 | 0.066176 | 2392.262 | 1283.348 | 57 | 204.6 |
Roseiral | 36 | 8 | 28.5619 | 1 | 3 | 21 | 3.258714 | 0.145068 | 0.145068 | 3553.369 | 1082.899 | 25.42857 | 2585 |
Samabaia | 20 | 11 | 36.3093 | 1 | 10 | 37 | 2.745016 | 0.135904 | 0.129848 | 2679.163 | 1115.444 | 16.27778 | 3481 |
Santa Rosa | 328 | 133 | 27.1445 | 0 | 12.09792 | 13.24 | 3.15148 | 0.115266 | 0 | 3939.005 | 1173.525 | 56 | 1510.5 |
São Sebastião | 136 | 26 | 33.6133 | 0 | 3 | 10 | 2 | 0.147687 | 0.147687 | 2561.732 | 870.8476 | 32.7 | 5857 |
Sargento Boening | 67 | 23 | 30.2773 | 0 | 2 | 3 | 2.018095 | 0.103796 | 0.103796 | 2929.005 | 1301.44 | 20 | 4268 |
Secretário | 208 | 61 | 35.7458 | 0 | 2 | 26 | 5.301275 | 0.116552 | 0.116552 | 2424.005 | 1114.79 | 42.69231 | 1450 |
Simeria | 5 | 26 | 37.3164 | 1 | 5.29632 | 8 | 1.999647 | 0.157637 | 0.157637 | 1986.338 | 975.7402 | 50 | 3064 |
Taquara | 10 | 22 | 26.6866 | 1 | 10.91718 | 3 | 3.03141 | 0.13181 | 0.13181 | 1212.004 | 1346.809 | 30 | 569 |
Taquaril 4 | 87 | 19 | 48.6334 | 0 | 4.9136 | 41.456 | 6.690549 | 0.118142 | 0 | 2903.755 | 1529.767 | 34.5 | 2734 |
Taquaril 5 | 71 | 17 | 50.7774 | 0 | 5.20832 | 43.5712 | 6.588658 | 0.118142 | 0 | 2903.755 | 1187.703 | 34.5 | 2734 |
Vale das Carangolas 1 | 94 | 33 | 42.7556 | 0 | 3.816 | 41.992 | 2.81408 | 0.07491 | 0.08386 | 2281.973 | 1187.703 | 51.66667 | 1686 |
Vale das Carangolas 2 | 70 | 24 | 37.0414 | 0 | 10.4 | 77.56 | 5.44 | 0.136096 | 0.123623 | 2392.262 | 974.8539 | 51.66667 | 1686 |
Vale das Videiras | 471 | 165 | 44.1818 | 0 | 1 | 12 | 3.855691 | 0.083573 | 0.083573 | 2095.754 | 1854.183 | 53.33333 | 347 |
Vale do Cuiabá | 6.667 | 36 | 41.3201 | 3 | 6 | 71 | 6 | 0.117402 | 0.117402 | 2639.892 | 1029.359 | 30.21429 | 1678 |
Valparaíso | 41 | 12 | 20.7831 | 0 | 3 | 13 | 2.632051 | 0.195223 | 0.195223 | 2866.851 | 1160.648 | 23.84615 | 6029 |
Vicenzo Rivetti | 51 | 13 | 36.3556 | 0 | 4.0592 | 3 | 3.565056 | 0.128114 | 0.128114 | 2828.003 | 2023.932 | 51.66667 | 1686 |
Vila Felipe | 59 | 20 | 36.3166 | 0 | 2.9088 | 12.568 | 1.982819 | 0.103796 | 0.154332 | 1666.505 | 970.2847 | 48 | 2014 |
Vila Militar | 57 | 17 | 26.2147 | 0 | 1 | 3 | 3.05262 | 0.191814 | 0.191814 | 1919.005 | 1076.989 | 21.66667 | 3347 |
Vila Rica | 90 | 19 | 44.3433 | 0 | 5 | 51 | 2 | 0.132939 | 0.132939 | 2195.326 | 2308.103 | 23.11765 | 1858 |
Vila São Luiz | 443 | 239 | 44.1342 | 0 | 1.8288 | 1 | 2.114698 | 0.168926 | 0 | 2424.005 | 890.7018 | 35 | 1677 |
Vinte e Quatro de Maio | 15 | 8 | 33.7815 | 1 | 1 | 1 | 2.967855 | 0.121114 | 0.121114 | 3939.005 | 915.0804 | 10 | 2766 |
Vista Alegre | 373 | 124 | 45.5237 | 0 | 3.791795 | 7 | 3.59478 | 0.080414 | 0.080414 | 2856.862 | 947.4873 | 19.57143 | 2027 |
Neighborhoods | IB-1 Pedestrian Accessibility | IB-2 Bicycle Accessibility | IB-3 Active Transport × Accessibility | IB-4 Active Transport × Mobility | IB-5 Active Transport | IB-6 Mobility Indicator | IB-7 Fossil Fuel Dependency | IB-8 Social Limiters | IB-10 Socioeconomic Factor | IB-9 Transport Indicator | IB-11 Urban Resilience | IB-11 Urban Resilience (Normalized) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADRIANO TEIXEIRA BASTOS (CHAFARIZ) | 0.07907801692 | 0.2110418963 | 0.1450599566 | 0.00386543564 | 0.1097613264 | 0.1559453914 | 0.1423635106 | 0.1916826856 | 0.1601527923 | 0.1294578887 | 0.1345747291 | 0.2691494582 |
Águas Lindas 2 | 0.5624790833 | 0.4682039746 | 0.515341529 | 0.03462938485 | 0.3951634929 | 0.1450455928 | 0.2375344885 | 0.3057912684 | 0.1791442034 | 0.2932267668 | 0.2742092035 | 0.5484184069 |
Águas Lindas 2 | 0.5624790833 | 0.4682039746 | 0.515341529 | 0.01653305319 | 0.39063941 | 0.1450455928 | 0.2375344885 | 0.2230171935 | 0.204110036 | 0.2909647253 | 0.2764860486 | 0.5529720972 |
Alcobaça | 0.5587886862 | 0.561453828 | 0.5601212571 | 0.01735325123 | 0.4244292557 | 0.06511585921 | 0.2375344885 | 0.1101991032 | 0.137757166 | 0.2878772147 | 0.2628522026 | 0.5257044052 |
Alto da Serra | 0.5474867719 | 0.5502187145 | 0.5488527432 | 0.01238601174 | 0.4147360603 | 0.1770867122 | 0.2375344885 | 0.03433687463 | 0.1627229985 | 0.3110233303 | 0.286301665 | 0.57260333 |
Alto do Pegado | 0.1516571666 | 0.3409534715 | 0.2463053191 | 0.002277363484 | 0.1852983302 | 0.1899818568 | 0.2825579296 | 0.1916826856 | 0.08411803925 | 0.2107841117 | 0.1896688774 | 0.3793377548 |
Amazonas | 0.1531382084 | 0.5758071866 | 0.3644726975 | 0.02982795419 | 0.2808115117 | 0.06995010814 | 0.2302267683 | 0.4351369738 | 0.265849538 | 0.2154499749 | 0.2238515821 | 0.4477031642 |
Araras 1 | 0.5869838989 | 0.38871795 | 0.4878509245 | 0.03419342407 | 0.3744365494 | 0.5331476314 | 0.1348363085 | 0.2468916219 | 0.112847095 | 0.3542142597 | 0.3139783533 | 0.6279567066 |
Araras 2 | 0.1724912423 | 0.2475921294 | 0.2100416858 | 0.001249838503 | 0.157843724 | 0.1460384754 | 0.1142282194 | 0.4759202359 | 0.4519646806 | 0.1439885357 | 0.1953281591 | 0.3906563181 |
Araras 3 | 0.1287125234 | 0.237915394 | 0.1833139587 | 0.003322489731 | 0.1383160915 | 0.1672004979 | 0.355031277 | 0.3153617633 | 0.1484000841 | 0.1997159894 | 0.191161628 | 0.3823232561 |
Atílio Marotti | 0.3691034822 | 0.4846314443 | 0.4268674632 | 0.0003884496859 | 0.3202477098 | 0.01191841461 | 0.07309191974 | 0.3505936604 | 0.2380202157 | 0.1813764385 | 0.1908189562 | 0.3816379123 |
Barão do Rio Branco | 0.4683223091 | 0.4919413343 | 0.4801318217 | 0.002204629878 | 0.3606500237 | 0.01079982274 | 0.2400330673 | 0.04305794733 | 0.1647386129 | 0.2430332344 | 0.229981521 | 0.4599630419 |
Barra Mansa | 0.5682021976 | 0.4547492951 | 0.5114757464 | 0.008608928094 | 0.3857590418 | 0.06969312325 | 0.1081610277 | 0.3001415601 | 0.2106090299 | 0.2373430586 | 0.232886496 | 0.4657729921 |
Bataillard | 0.4133252036 | 0.4583664639 | 0.4358458338 | 0.002579377359 | 0.3275292197 | 0.02028255472 | 0.2410763241 | 0.4979880012 | 0.06471196294 | 0.2291043295 | 0.201700122 | 0.4034002441 |
Bela Vista 1 | 0.5623542751 | 0.5609458959 | 0.5616500855 | 0.03793353537 | 0.430720948 | 0.1200582786 | 0.1220764712 | 0.02893055854 | 0.245700694 | 0.2758941615 | 0.2708609104 | 0.5417218209 |
Bela Vista 2 | 0.5511361751 | 0.555996031 | 0.5535661031 | 0.01565336745 | 0.4190879192 | 0.12271763 | 0.09381543674 | 0.02857979502 | 0.3852757074 | 0.2636772263 | 0.2839476931 | 0.5678953862 |
Benfica | 0.544209432 | 0.5687129188 | 0.5564611754 | 0.008810595021 | 0.4195485303 | 0.06696834935 | 0.2885549141 | 0.3574030639 | 0.08487696458 | 0.298655081 | 0.263018269 | 0.526036538 |
Bingen | 0.5956164911 | 0.5596070662 | 0.5776117786 | 0.1560439934 | 0.4722198323 | 0.5750478132 | 0.30633418 | 0.05651146094 | 0.1446325713 | 0.4564554145 | 0.4044745465 | 0.808949093 |
Boa Vista | 0.539988418 | 0.5426333903 | 0.5413109041 | 0.01408557713 | 0.4095045724 | 0.007207483326 | 0.233477714 | 0.06250672912 | 0.2189091719 | 0.2649235855 | 0.2572529828 | 0.5145059655 |
Bonfim | 0.5603399308 | 0.5200549595 | 0.5401974452 | 0.001109053017 | 0.4054253471 | 0.1894948967 | 0.4598998098 | 0.3269893287 | 0.08569795028 | 0.3650613502 | 0.3184914714 | 0.6369829429 |
Bonsucesso 2 | 0.4572503468 | 0.52214122 | 0.4896957834 | 0 | 0.3672718376 | 0.1004212532 | 0.2226765645 | 0.1620973999 | 0.1392003914 | 0.2644103732 | 0.2435378692 | 0.4870757385 |
Bonsucesso 3 | 0.5347817324 | 0.5449110528 | 0.5398463926 | 0.02059712714 | 0.4100340763 | 0.1919658779 | 0.2779191155 | 0.1620973999 | 0.1731425096 | 0.3224882865 | 0.2975923455 | 0.595184691 |
Caititu | 0.5594806155 | 0.5595796085 | 0.559530112 | 0.0007206033308 | 0.4198277348 | 0.3444246483 | 0.2192318825 | 0.1205434778 | 0.0949271684 | 0.3508280001 | 0.3081693315 | 0.6163386629 |
Calembe | 0.2563452833 | 0.3916833665 | 0.3240143249 | 0.04346128957 | 0.2538760661 | 0.06662672133 | 0.2650041948 | 0.3640899914 | 0.0949271684 | 0.2098457621 | 0.1906888325 | 0.381377665 |
Calembe 3 | 0.3223861282 | 0.4397732662 | 0.3810796972 | 0.02970157403 | 0.2932351664 | 0.2022768759 | 0.1748633547 | 0.3198615957 | 0.06629332961 | 0.2409026409 | 0.2117952687 | 0.4235905374 |
Campo do Serrano | 0.4939018589 | 0.5260930541 | 0.5099974565 | 0.02022934165 | 0.3875554278 | 0.2029504189 | 0.1676734782 | 0.007850630019 | 0.1821032075 | 0.2864336882 | 0.269041797 | 0.5380835941 |
Capela | 0.5673421569 | 0.5678544113 | 0.5675982841 | 0.03718516827 | 0.4349950051 | 0.0161992219 | 0.26615013 | 0.09060393424 | 0.1848546918 | 0.2880848405 | 0.2708763748 | 0.5417527495 |
Carangola 1 | 0.4715698599 | 0.5137728524 | 0.4926713562 | 0.0003884496859 | 0.3696006296 | 0.1409149165 | 0.1014754445 | 0.5866301155 | 0.06083200776 | 0.245397905 | 0.21463077 | 0.4292615399 |
Carangola 2 | 0.4988992376 | 0.5411848214 | 0.5200420295 | 0.001663299844 | 0.3904473471 | 0.1155408778 | 0.1516222169 | 0.2017519468 | 0.2021417595 | 0.2620144472 | 0.2520336702 | 0.5040673404 |
Cascatinha | 0.5657235885 | 0.5606348917 | 0.5631792401 | 0.03438881138 | 0.4309816329 | 0.4959262574 | 0.1721744911 | 0.05746216684 | 0.3592205014 | 0.3825160036 | 0.3786326434 | 0.7572652868 |
Castelanea | 0.5720909915 | 0.5359646984 | 0.554027845 | 0.01180798507 | 0.41847288 | 0.0135072286 | 0.06042146943 | 0.06497626182 | 0.1068975641 | 0.2277186145 | 0.2075777454 | 0.4151554908 |
Castelo São Manuel | 0.5552445031 | 0.5434339928 | 0.549339248 | 0.009740920897 | 0.4144396662 | 0.1295203829 | 0.4813902947 | 0.2222850629 | 0.2706887236 | 0.3599475025 | 0.345068064 | 0.6901361281 |
Castrioto | 0.4980129689 | 0.5317609848 | 0.5148869769 | 0.0003884496859 | 0.3862623451 | 0.02931725791 | 0.1545758622 | 0.2023518556 | 0.07053217415 | 0.2391044526 | 0.2110034538 | 0.4220069075 |
Caxambu | 0.5517698936 | 0.5517371887 | 0.5517535412 | 0.05457500995 | 0.4274589084 | 0.004203978836 | 0.2428832707 | 0.05416139825 | 0.3230348821 | 0.2755012666 | 0.2834251203 | 0.5668502405 |
Centenário | 0.5484479618 | 0.5447574095 | 0.5466026856 | 0.02812348092 | 0.4169828845 | 0.20428353 | 0.2398571818 | 0.09060393424 | 0.1045379808 | 0.3195266202 | 0.283688014 | 0.567376028 |
Centro | 0.5774065183 | 0.5787541523 | 0.5780803353 | 0.625 | 0.5898102515 | 0.6133557593 | 0.06923968987 | 0.03531918877 | 0.09841680002 | 0.465553988 | 0.4043522188 | 0.8087044376 |
Chácara Flora | 0.5331765658 | 0.5601434067 | 0.5466599863 | 0.0009896159375 | 0.4102423937 | 0.02182098167 | 0.2441928043 | 0.3909951645 | 0.260506245 | 0.2716246433 | 0.2697712063 | 0.5395424127 |
Coronel Veiga | 0.515226567 | 0.5489745828 | 0.5321005749 | 0 | 0.3990754312 | 0.01338450822 | 0.4476787276 | 0.05727408097 | 0.2676595944 | 0.3148035245 | 0.3069446314 | 0.6138892628 |
Correas | 0.5694910955 | 0.5644880235 | 0.5669895595 | 0.4040300158 | 0.5262496736 | 0.6249933805 | 0.152593903 | 0.09383443317 | 0.4441786829 | 0.4575216577 | 0.4552973838 | 0.9105947675 |
Corrego Grande | 0.530930549 | 0.5610990971 | 0.546014823 | 0.005692069984 | 0.4109341348 | 0.2196937829 | 0.212011974 | 0.3647501731 | 0.1080085148 | 0.3133935066 | 0.2791558285 | 0.558311657 |
Dr. Thouzet | 0.4259044587 | 0.4810783853 | 0.453491422 | 0.008362797568 | 0.3422092659 | 0.01442685908 | 0.466543163 | 0.3069545132 | 0.2437938242 | 0.2913471385 | 0.283420001 | 0.566840002 |
Duarte da Silveira | 0.5071602887 | 0.5312063477 | 0.5191833182 | 0.00341038148 | 0.390240084 | 0.08627694906 | 0.1405757225 | 0.104645845 | 0.1845522056 | 0.2518332099 | 0.2406174665 | 0.481234933 |
Duchas | 0.5398809596 | 0.5494478762 | 0.5446644179 | 0 | 0.4084983134 | 0.02297738427 | 0.02371319029 | 0.03346228048 | 0.3229099556 | 0.2159218003 | 0.2337567258 | 0.4675134516 |
Duques | 0.1146415524 | 0.4304932594 | 0.2725674059 | 0.03151230245 | 0.2123036301 | 0.01666418753 | 0.2387387558 | 0.2731299376 | 0.2913479489 | 0.1700025509 | 0.1902308287 | 0.3804616574 |
Esperaça | 0.5535802235 | 0.5317784843 | 0.5426793539 | 0.01295890832 | 0.4102492425 | 0.0008372475116 | 0.2564640572 | 0.03283783093 | 0.04192452863 | 0.2694499474 | 0.2315214601 | 0.4630429202 |
Espírito Santo | 0.3725199154 | 0.487411579 | 0.4299657472 | 0.04880991801 | 0.3346767899 | 0.1289867623 | 0.1733437858 | 0.6242332952 | 0.315146428 | 0.242921032 | 0.2549610055 | 0.509922011 |
Estrada da Saudade 1 | 0.5471780691 | 0.4994111865 | 0.5232946278 | 0.01189719675 | 0.3954452701 | 0.1331269899 | 0.2453939888 | 0.2667855431 | 0.1467615892 | 0.2923528797 | 0.2680828116 | 0.5361656231 |
Estrada da Saudade 2 | 0.5498515725 | 0.5531555989 | 0.5515035857 | 0.01758628171 | 0.4180242597 | 0.2180132326 | 0.3044261421 | 0.06250672912 | 0.3616804868 | 0.3396219735 | 0.3432991277 | 0.6865982554 |
Fagundes | 0.01620079279 | 0.04050985424 | 0.02835532352 | 0.002833612408 | 0.02197489574 | 0.08392630294 | 0.2052288842 | 0.3045559556 | 0.3593405903 | 0.08327624465 | 0.1292961711 | 0.2585923421 |
Fazenda Inglesa 1 | 0.2238530945 | 0.2381428275 | 0.230997961 | 0.01066587853 | 0.1759149404 | 0.03782670373 | 0.357587196 | 0.596859399 | 0.2732110047 | 0.1868109451 | 0.2012138351 | 0.4024276701 |
Fazenda Inglesa 2 | 0.1121641679 | 0.144847999 | 0.1285060835 | 0.005528087614 | 0.09776158449 | 0.034005965 | 0.134671682 | 0.5862922477 | 0.1652729011 | 0.091050204 | 0.1034231276 | 0.2068462552 |
Floresta | 0.5533786466 | 0.5623942821 | 0.5578864644 | 0 | 0.4184148483 | 0.001658144865 | 0.1378068693 | 0.3453868868 | 0.3456999036 | 0.2440736777 | 0.2610147695 | 0.522029539 |
Frias | 0.4951211145 | 0.5065764318 | 0.5008487731 | 0.04522521714 | 0.3869428841 | 0.459766456 | 0.09049959711 | 0.1720769414 | 0.3229215278 | 0.3310379553 | 0.3296849469 | 0.6593698937 |
Gentio | 0.5657808158 | 0.5245065803 | 0.5451436981 | 0.0120863744 | 0.4118793671 | 0.06285681568 | 0.2407618334 | 0.318967744 | 0.2222572826 | 0.2818443458 | 0.2719111824 | 0.5438223648 |
Gulf | 0.5493987114 | 0.5725394861 | 0.5609690987 | 0.0004868854659 | 0.4208485454 | 0.01011784104 | 0.3614128966 | 0.04750976389 | 0.2639260505 | 0.3033069571 | 0.29674216 | 0.59348432 |
Humberto Rovigatti | 0.4985476053 | 0.523379609 | 0.5109636072 | 0.006509143848 | 0.3848499913 | 0.006548504104 | 0.1537683533 | 0.1468105162 | 0.1973403433 | 0.23250421 | 0.2266423934 | 0.4532847869 |
Independência | 0.1427910045 | 0.434431557 | 0.2886112808 | 0.009020317566 | 0.21871354 | 0.05774911046 | 0.2103786404 | 0.5585618788 | 0.1031263562 | 0.1763887077 | 0.1641758737 | 0.3283517474 |
Itaipava 2 | 0.5624109151 | 0.05437718805 | 0.3083940516 | 0.6249295936 | 0.3875279371 | 0.6249960467 | 0.2511542319 | 0.1739655786 | 0.1070882462 | 0.4128015382 | 0.3618391324 | 0.7236782649 |
Itaipava 3 | 0.5215641122 | 0.5372487149 | 0.5294064136 | 0.008281245351 | 0.3991251215 | 0.1079656267 | 0.08166847934 | 0.3813755427 | 0.4856643237 | 0.2469710873 | 0.2867612498 | 0.5735224996 |
Itamarati 1 | 0.6114247466 | 0.6074138112 | 0.6094192789 | 0.5922824701 | 0.6051350767 | 0.4277061296 | 0.4507510884 | 0.03532051887 | 0.08955236655 | 0.5221818428 | 0.4500625091 | 0.9001250183 |
Itamarati 2 | 0.5612776104 | 0.5615058675 | 0.561391739 | 0.01629199478 | 0.4251168029 | 0.1299607914 | 0.1922358783 | 0.03532051887 | 0.1932573486 | 0.2931075689 | 0.2764625372 | 0.5529250743 |
Jardim Salvador | 0.5425885451 | 0.5561302767 | 0.5493594109 | 0.0003884496859 | 0.4121166706 | 0.02356984145 | 0.4316938631 | 0.2017519468 | 0.03778168341 | 0.3198742615 | 0.2728494287 | 0.5456988574 |
Laginha | 0.5254493935 | 0.5578867334 | 0.5416680635 | 0.0003884496859 | 0.40634816 | 0.07457064428 | 0.270224757 | 0.2264389759 | 0.03778168341 | 0.2893729303 | 0.2474326695 | 0.4948653389 |
Lopes Trovão | 0.4208352605 | 0.4011602368 | 0.4109977487 | 0.0008938218167 | 0.308471767 | 0.02432333788 | 0.03698578985 | 0.3909951645 | 0.1895651035 | 0.1695631654 | 0.1728974885 | 0.345794977 |
Loteamento Boa Vista | 0.3227162815 | 0.4401034195 | 0.3814098505 | 0.002833612408 | 0.286765791 | 0.1835575921 | 0.06984095952 | 0.1714766979 | 0.226102552 | 0.2067325334 | 0.2099615155 | 0.419923031 |
Lusitano | 0.514650607 | 0.5403802906 | 0.5275154488 | 0.01486404519 | 0.3993525979 | 0.02947594314 | 0.03352695259 | 0.05416139825 | 0.2504350335 | 0.2154270229 | 0.2212628582 | 0.4425257165 |
Madame Machado | 0.5599947439 | 0.4943460054 | 0.5271703746 | 0.007991668829 | 0.3973756982 | 0.3100244424 | 0.0922561913 | 0.5581917297 | 0.08573834896 | 0.2992580075 | 0.2636642804 | 0.5273285609 |
Malta | 0.000323341985 | 0.0006838064844 | 0.0005035742347 | 0.003036782798 | 0.001136876376 | 0.04791004555 | 0.04546680265 | 0.5862922477 | 0.09841680002 | 0.02391265024 | 0.03633249201 | 0.07266498401 |
Manga Larga | 0.5507587916 | 0.4109196859 | 0.4808392388 | 0.003265328867 | 0.3614457613 | 0.04940499544 | 0.2889404792 | 0.550868509 | 0.3584098683 | 0.2653092493 | 0.2808291225 | 0.561658245 |
Mauá | 0.1930315656 | 0.4992534065 | 0.346142486 | 0.02343353534 | 0.2654652484 | 0.07744911654 | 0.2454552831 | 0.1542030726 | 0.3487732455 | 0.2134587241 | 0.2360156548 | 0.4720313096 |
Meio da Serra | 0.2800153119 | 0.2220868343 | 0.2510510731 | 0.0007851732845 | 0.1884845982 | 0.002735515426 | 0.06183757094 | 0.5070796852 | 0.2824919857 | 0.1103855707 | 0.1390757101 | 0.2781514201 |
Moinho Preto | 0.3690805602 | 0.4589700149 | 0.4140252876 | 0.01109825261 | 0.3132935288 | 0.01654077689 | 0.1865468062 | 0.1890020648 | 0.07980998039 | 0.2074186602 | 0.1861462933 | 0.3722925865 |
Monica | 0.4246172316 | 0.5072185049 | 0.4659178683 | 0.004055555241 | 0.35045229 | 0.1626351671 | 0.2066874776 | 0.2264389759 | 0.3553046729 | 0.2675568062 | 0.2821843756 | 0.5643687511 |
Morin | 0.5617455794 | 0.5374400633 | 0.5495928213 | 0.001109053017 | 0.4124718793 | 0.02378820907 | 0.1104722088 | 0.02911196143 | 0.1378313589 | 0.2398010441 | 0.2228026976 | 0.4456053952 |
Mosela | 0.5691934627 | 0.502673514 | 0.5359334884 | 0.03382687873 | 0.4104068359 | 0.2151447695 | 0.1138732209 | 0.05653976722 | 0.226102552 | 0.2874579156 | 0.2772299765 | 0.5544599529 |
Nogueira 2 | 0.472474469 | 0.5373653422 | 0.5049199056 | 0.05218736201 | 0.3917367697 | 0.3793188747 | 0.1278965937 | 0.1720769414 | 0.08246623509 | 0.3226722519 | 0.2826299089 | 0.5652598179 |
Nogueira 3 | 0.3914794877 | 0.5071534397 | 0.4493164637 | 0.03165779428 | 0.3449017963 | 0.2198901142 | 0.252747554 | 0.2314736525 | 0.2612888847 | 0.2906103152 | 0.2857224328 | 0.5714448655 |
Nossa Senhora da Glória | 0.5538359535 | 0.5420254432 | 0.5479306984 | 0.009740920897 | 0.413383254 | 0.173023894 | 0.3540916901 | 0.5408272648 | 0.1810842602 | 0.338470523 | 0.312234233 | 0.624468466 |
Oswaldo Cruz | 0.5647060509 | 0.5880029468 | 0.5763544988 | 0.00187112371 | 0.4327336551 | 0.04404620822 | 0.2749567491 | 0.04750976389 | 0.1549932177 | 0.2961175669 | 0.2725921379 | 0.5451842757 |
Pedras Brancas | 0.3376655923 | 0.4044952532 | 0.3710804227 | 0.01118542305 | 0.2811066728 | 0.06334652521 | 0.2123277293 | 0.2023518556 | 0.4396125141 | 0.2094719 | 0.2478363404 | 0.4956726808 |
Pedro do Rio | 0.2051268914 | 0.3818380973 | 0.2934824944 | 0.00341038148 | 0.2209644661 | 0.2642756504 | 0.2146355256 | 0.1916826856 | 0.154712813 | 0.2302100271 | 0.2176246415 | 0.435249283 |
Posse | 0.5617767253 | 0.5618675801 | 0.5618221527 | 0.1112659814 | 0.4491831099 | 0.5855616816 | 0.2568718155 | 0.380935793 | 0.1045379808 | 0.4351999292 | 0.3800785824 | 0.7601571648 |
Praça Catulo | 0.5785132036 | 0.5994200056 | 0.5889666046 | 0.0004072574096 | 0.4418267678 | 0.01315928725 | 0.2866812464 | 0.04750976389 | 0.2498864598 | 0.2958735173 | 0.2882074748 | 0.5764149497 |
Praça Pasteur | 0.5315220342 | 0.5573472633 | 0.5444346487 | 0.0003497994127 | 0.4084134364 | 0.007311689907 | 0.3424767266 | 0.04750976389 | 0.4309670431 | 0.2916538223 | 0.3148773362 | 0.6297546724 |
Quarteirão Brasileiro | 0.4524756651 | 0.5073322252 | 0.4799039452 | 0 | 0.3599279589 | 0.05632663723 | 0.1544018916 | 0.3999615133 | 0.06179892518 | 0.2326461116 | 0.2041658857 | 0.4083317713 |
Quarteirão Ingelheim | 0.4785448649 | 0.5138641758 | 0.4962045204 | 0.02471324076 | 0.3783317005 | 0.01557854468 | 0.2499378937 | 0.007850630019 | 0.1531559302 | 0.2555449598 | 0.2384767086 | 0.4769534172 |
Quissamã | 0.597734236 | 0.5943104725 | 0.5960223543 | 0.03030588223 | 0.4545932362 | 0.08930945236 | 0.1690046884 | 0.0422620394 | 0.4171346969 | 0.2918751533 | 0.3127559192 | 0.6255118385 |
Quitandinha | 0.5799637336 | 0.5337855312 | 0.5568746324 | 0.05922293011 | 0.4324617068 | 0.4358659742 | 0.007789278846 | 0.07241670928 | 0.06083200776 | 0.3271446667 | 0.2827503464 | 0.5655006929 |
Retiro 1 | 0.4274889569 | 0.519952486 | 0.4737207214 | 0.00593371584 | 0.35677397 | 0.2148891866 | 0.260864179 | 0.3346951567 | 0.1209679814 | 0.2973253264 | 0.267926557 | 0.535853114 |
Retiro 2 | 0.5116448246 | 0.5447768282 | 0.5282108264 | 0.007574294171 | 0.3980516933 | 0.1654972419 | 0.3427860131 | 0.06250672912 | 0.2854244706 | 0.3260966604 | 0.3193166064 | 0.6386332128 |
Retiro das Pedras | 0.09094428479 | 0.2590693755 | 0.1750068302 | 0.001914088519 | 0.1317336448 | 0.04724526746 | 0.2091492092 | 0.5643639465 | 0.3154234928 | 0.1299654415 | 0.1608812987 | 0.3217625973 |
Ribeirão Grande | 0.3948510668 | 0.4995317268 | 0.4471913968 | 0.001845037492 | 0.335854807 | 0.1035750193 | 0.08539965147 | 0.1714766979 | 0.03727495525 | 0.2151710712 | 0.1855157886 | 0.3710315773 |
Rio Bonito | 0.3567007593 | 0.4792356236 | 0.4179681914 | 0.006533559192 | 0.3151095334 | 0.05394220097 | 0.02410002896 | 0.3647501731 | 0.2821819732 | 0.1770653242 | 0.1945882696 | 0.3891765391 |
Rio de Janeiro | 0.3661302177 | 0.4801118933 | 0.4231210555 | 0.04902952252 | 0.3295981723 | 0.05268952141 | 0.08892258286 | 0.6242332952 | 0.09279608017 | 0.2002021122 | 0.1822975267 | 0.3645950533 |
Rocinha | 0.001412699153 | 0.02112200527 | 0.01126735221 | 0.001248079448 | 0.008762534022 | 0.0917367481 | 0.09410880094 | 0.4733672885 | 0.1912082491 | 0.05084265427 | 0.07424159892 | 0.1484831978 |
Roseiral | 0.5448491065 | 0.5706497766 | 0.5577494416 | 0.002259976259 | 0.4188770753 | 0.08176542164 | 0.02650239102 | 0.1382811043 | 0.3426308027 | 0.2365054908 | 0.2541965803 | 0.5083931606 |
Samabaia | 0.5556079776 | 0.5437974673 | 0.5497027225 | 0.02550157147 | 0.4186524347 | 0.1928018437 | 0.05190133722 | 0.1677048465 | 0.2366900668 | 0.2705020126 | 0.2648655612 | 0.5297311224 |
Santa Rosa | 0.02383959966 | 0.02327647853 | 0.02355803909 | 0.03350015106 | 0.02604356708 | 0.04143895306 | 0.2022253197 | 0.3383885039 | 0.1560853254 | 0.07393785172 | 0.08763183559 | 0.1752636712 |
São Sebastião | 0.1925815097 | 0.4351661076 | 0.3138738087 | 0.001539372928 | 0.2357901997 | 0.01757004686 | 0.3256693636 | 0.1086557242 | 0.2222173004 | 0.2037049525 | 0.2067909609 | 0.4135819218 |
Sargento Boening | 0.4499930591 | 0.4700776056 | 0.4600353323 | 0.0003884496859 | 0.3451236117 | 0.004880833091 | 0.02775271477 | 0.4264466764 | 0.1997299895 | 0.1807201928 | 0.1838891259 | 0.3677782518 |
Secretário | 0.0434079284 | 0.1138487454 | 0.07862833689 | 0.0003884496859 | 0.05906836509 | 0.1406693816 | 0.1094391374 | 0.3010768282 | 0.2813784298 | 0.09206131229 | 0.1236204758 | 0.2472409516 |
Simeria | 0.5639508471 | 0.43171163 | 0.4978312386 | 0.007514694691 | 0.3752521026 | 0.01227027961 | 0.2077601364 | 0.06069329368 | 0.390685099 | 0.2426336553 | 0.267313831 | 0.5346276619 |
Taquara | 0.5862909826 | 0.4920158739 | 0.5391534283 | 0.02936883283 | 0.4117072794 | 0.01581377406 | 0.1101800709 | 0.1542030726 | 0.1785070647 | 0.2373521009 | 0.2275426334 | 0.4550852668 |
Taquaril 4 | 0.3644354662 | 0.4917168124 | 0.4280761393 | 0.005692069984 | 0.322480122 | 0.2736955474 | 0.02263490055 | 0.3001415601 | 0.1451963745 | 0.235322673 | 0.220298619 | 0.440597238 |
Taquaril 5 | 0.4239229883 | 0.5065772714 | 0.4652501299 | 0.006533559192 | 0.3505709872 | 0.2907961267 | 0.1302468325 | 0.3001415601 | 0.07980998039 | 0.2805462334 | 0.2470835 | 0.494167 |
Vale das Carangolas 1 | 0.3378210606 | 0.3598139236 | 0.3488174921 | 0.003014822838 | 0.2623668248 | 0.2351672855 | 0.2240776833 | 0.5866301155 | 0.245700694 | 0.2459946546 | 0.2459456514 | 0.4918913027 |
Vale das Carangolas 2 | 0.4291257387 | 0.450685079 | 0.4399054089 | 0.02647265582 | 0.3365472206 | 0.5115016812 | 0.2326279729 | 0.15859069 | 0.245700694 | 0.3543060239 | 0.3362015154 | 0.6724030307 |
Vale das Videiras | 0.00008736177829 | 0.00008915349023 | 0.00008825763426 | 0 | 0.0000661932257 | 0.04643048437 | 0.1307562061 | 0.5509673808 | 0.3317823696 | 0.04432976923 | 0.09224811772 | 0.1844962354 |
Vale do Cuiabá | 0.5625603403 | 0.3287560783 | 0.4456582093 | 0.01547261347 | 0.3381118104 | 0.4840685101 | 0.268923404 | 0.2999192969 | 0.1177626569 | 0.3573038837 | 0.3173723612 | 0.6347447224 |
Valparaíso | 0.568719002 | 0.589625804 | 0.579172403 | 0.001539372928 | 0.4347641455 | 0.03403320962 | 0.03363771253 | 0.04750976389 | 0.2759644405 | 0.2342998033 | 0.2412452983 | 0.4824905966 |
Vicenzo Rivetti | 0.4914878131 | 0.5337733969 | 0.512630605 | 0.003542380445 | 0.3853585488 | 0.02301241017 | 0.3625978878 | 0.2211697624 | 0.1880506374 | 0.2890818489 | 0.272239946 | 0.5444798919 |
Vila Felipe | 0.4669882435 | 0.4858661691 | 0.4764272063 | 0.001403735891 | 0.3576713387 | 0.02606870435 | 0.1918110441 | 0.3909951645 | 0.2539440018 | 0.2333056065 | 0.236746027 | 0.4734920539 |
Vila Militar | 0.498438192 | 0.5337575029 | 0.5160978475 | 0 | 0.3870733856 | 0.01608872149 | 0.02467876844 | 0.0214066727 | 0.1490521931 | 0.2037285653 | 0.194614014 | 0.3892280281 |
Vila Rica | 0.3530491096 | 0.4917882068 | 0.4224186582 | 0.00593371584 | 0.3182974226 | 0.3009046806 | 0.03439963582 | 0.1714766979 | 0.2504350335 | 0.2429747904 | 0.2442184129 | 0.4884368259 |
Vila São Luiz | 0.00009172048835 | 0.00008872512907 | 0.00009022280871 | 0.0002670900796 | 0.0001344396264 | 0.005007791619 | 0.2006567823 | 0.05307909376 | 0.1416612674 | 0.05148336328 | 0.0665160199 | 0.1330320398 |
Vinte e Quatro de Maio | 0.562929788 | 0.5578557638 | 0.5603927759 | 0.0007206033308 | 0.4204747328 | 0.0143229514 | 0.3313193326 | 0.2895609917 | 0.1326044523 | 0.2966479374 | 0.2693018884 | 0.5386037768 |
Vista Alegre | 0.0001510841085 | 0.0005969654281 | 0.0003740247683 | 0.002964461872 | 0.001021634044 | 0.02879330555 | 0.08617805519 | 0.5862922477 | 0.06458359011 | 0.02925365721 | 0.03514315702 | 0.07028631404 |
Statistic | BI-1 | BI-2 | BI-3 | BI-4 | BI-5 | BI-6 | BI-7 | BI-8 | BI-10 | BI-9 | BI-11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.429 | 0.457 | 0.443 | 0.033 | 0.341 | 0.141 | 0.196 | 0.241 | 0.204 | 0.255 | 0.246 |
Standard Error | 0.016 | 0.014 | 0.014 | 0.010 | 0.011 | 0.015 | 0.010 | 0.017 | 0.010 | 0.008 | 0.007 |
Median | 0.507 | 0.514 | 0.511 | 0.008 | 0.387 | 0.082 | 0.207 | 0.202 | 0.188 | 0.262 | 0.254 |
Mode | 0.562 | 0.468 | 0.515 | 0.000 | N/A | 0.145 | 0.238 | 0.048 | 0.246 | N/A | N/A |
Standard Deviation | 0.175 | 0.153 | 0.156 | 0.104 | 0.123 | 0.159 | 0.110 | 0.179 | 0.107 | 0.089 | 0.075 |
Sample Variance | 0.031 | 0.023 | 0.024 | 0.011 | 0.015 | 0.025 | 0.012 | 0.032 | 0.011 | 0.008 | 0.006 |
Kurtosis | 0.326 | 2.726 | 1.726 | 25.541 | 1.635 | 1.933 | −0.130 | −0.725 | −0.430 | 1.132 | 1.233 |
Skewness | −1.249 | −1.895 | −1.606 | 5.062 | −1.344 | 1.612 | 0.408 | 0.593 | 0.531 | −0.170 | −0.241 |
Range | 0.611 | 0.607 | 0.609 | 0.625 | 0.605 | 0.624 | 0.474 | 0.616 | 0.448 | 0.498 | 0.420 |
Minimum | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.008 | 0.008 | 0.037 | 0.024 | 0.035 |
Maximum | 0.611 | 0.607 | 0.609 | 0.625 | 0.605 | 0.625 | 0.481 | 0.624 | 0.486 | 0.522 | 0.455 |
Sum | 50.190 | 53.482 | 51.836 | 3.893 | 39.850 | 16.521 | 22.956 | 28.195 | 23.822 | 29.794 | 28.799 |
Count | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 |
Confidence Level (95%) | 0.032 | 0.028 | 0.029 | 0.019 | 0.022 | 0.029 | 0.020 | 0.033 | 0.020 | 0.016 | 0.014 |
References
- Filonchyk, M.; Peterson, M.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- Energy Institute. Statistical Review of World Energy 2024; Energy Institute: London, UK, 2024; Available online: https://www.energyinst.org/statistical-review (accessed on 12 May 2025).
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The threat to climate change mitigation posed by the abundance of fossil fuels. Clim. Policy 2018, 19, 258–274. [Google Scholar] [CrossRef]
- Holechek, J.; Geli, H.; Sawalhah, M.; Valdez, R. A global assessment: Can renewable energy replace fossil fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Kartal, M. The Role of Consumption of Energy, Fossil Sources, Nuclear Energy, and Renewable Energy on Environmental Degradation in Top-Five Carbon Producing Countries. Renew. Energy 2021, 184, 871–880. [Google Scholar] [CrossRef]
- Sullivan, J.L.; Novak, D.C.; Aultman-Hall, L.; Scott, D.M. Identifying Critical Road Segments and Measuring System-Wide Robustness in Transportation Networks with Isolating Links: A Link-Based Capacity-Reduction Approach. Transp. Res. Part A Policy Pract. 2010, 44, 323–336. [Google Scholar] [CrossRef]
- Fernandes, V.A.; Rothfuss, R.; Hochschild, V.; Vieira da Silva, M.A.; Ribeiro da Silva, W.; Steiniger, S.; Floriano dos Santos, T. Urban Resilience in The Face of Fossil Fuel Dependency: The Case of Rio de Janeiro’s Urban Mobility. Urbe Rev. Bras. Gest. Urbana 2018, 10, 431–443. [Google Scholar] [CrossRef]
- Lindbergh, S.; He, Y.; Radke, J. Beyond Carbon: Unveiling Vulnerabilities of the Transportation Fuel System for Climate Resilience. Energy Res. Soc. Sci. 2024, 114, 103585. [Google Scholar] [CrossRef]
- Schwanen, T. Rethinking Resilience As Capacity to Endure: Automobility and the City. City 2016, 20, 152–160. [Google Scholar] [CrossRef]
- Mayer, A. Fossil Fuel Dependence and Energy Insecurity. Energy Sustain. Soc. 2022, 12, 27. [Google Scholar] [CrossRef]
- Sharifi, A. A Critical Review of Selected Tools for Assessing Community Resilience. Ecol. Indic. 2016, 69, 629–647. [Google Scholar] [CrossRef]
- Sotto, D.; Ribeiro, D.G.; Abiko, A.K.; Sampaio, C.A.C.; Navias, C.A.; Marins, K.R.C.; Sobral, M.C.M.; Philippi, A., Jr.; Buckeridge, M.S. Sustentabilidade Urbana: Dimensões Conceituais E Instrumentos Legais De Implementação. Estud. Av. 2019, 33, 61–88. [Google Scholar] [CrossRef]
- Lara, J. Contradicciones Y Paradojas Del Modelo De Gestión Urbana En El Área Metropolitana De Guadalajara, Jalisco, México. Cid. Comunid. Territ. 2020, 22, 47–69. [Google Scholar] [CrossRef]
- Martello, M.V.; Whittle, A.J.; Keenan, J.M.; Salvucci, F.P. Evaluation of Climate Change Resilience for Boston’s Rail Rapid Transit Network. Transp. Res. Part D Transp. Environ. 2021, 97, 102908. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Song, D.; Huang, Z.; Lu, L. A study on a framework for identifying critical roads in urban road traffic networks based on the resilience perspective against the background of sustainable development. Appl. Sci. 2025, 15, 3581. [Google Scholar] [CrossRef]
- SEEG. Sistema de Estimativas de Emissões de Gases de Efeito Estufa. 2023. Available online: https://seeg.eco.br (accessed on 12 May 2025).
- Makaremi, S. A Multi-output Deep Learning Model for Energy Demand and Port Availability Forecasting in EV Charging Infrastructure. Energy 2025, 317, 134582. [Google Scholar] [CrossRef]
- Chen, Z.; Qiao, R.; Li, S.; Zhou, S.; Zhang, X.; Wu, Z.; Wu, T. Heat and Mobility: Machine Learning Perspectives on Bike-Sharing Resilience in Shanghai. Transp. Res. Part D Transp. Environ. 2025, 142, 104692. [Google Scholar] [CrossRef]
- Dan, Z.; Zhou, B.; Zhou, Y. Optimal Infrastructures and Integrative Energy Networks for Sustainable and Energy-Resilient City Renaissance. Appl. Energy 2025, 387, 125612. [Google Scholar] [CrossRef]
- Amghar, R.; Jaber, S.; Ameli, M. Resilience as a Service for Transportation Networks: Definition and Basic Concepts. Transp. Res. Rec. J. Transp. Res. Board 2023, 2678. [Google Scholar] [CrossRef]
- Guo, F.; Zheng, R.; Zhao, J.; Zhang, H.; Dong, J. Framework of Street Grid-Based Urban Heat Vulnerability Assessment: Integrating Entropy Weight Method and BPNN Model. Urban Clim. 2024, 50, 102067. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Gao, C.; Wu, Y. Mapping Urban Socio-Economic Vulnerability Related to Heat Risk: A Grid-Based Assessment Framework by Combining Geo-Spatial Big Data. Urban Clim. 2022, 42, 101169. [Google Scholar] [CrossRef]
- Song, W.; Li, Y.; Cheng, J.; Chen, R.; Wu, J.; Jia, N. Enhancing Social Vulnerability Assessment With Energy Resilience: A Comprehensive Study of the Netherlands. Sustain. Cities Soc. 2024, 102, 105251. [Google Scholar] [CrossRef]
- Ahmad, L.; Bhat, M.; Singh, V. Assessment of Energy Vulnerability in Urban Crowded Space of Indian Himalaya. Environ. Sci. Pollut. Res. 2021, 28, 68657–68669. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Sarachaga, J.; Jato-Espino, D. Analysis of Vulnerability Assessment Frameworks and Methodologies in Urban Areas. Nat. Hazards 2019, 100, 437–457. [Google Scholar] [CrossRef]
- Fernandes, V.M.; Ribeiro, H.M.; Pereira, R.H.M. Assessing Urban Mobility Resilience to Fossil Fuel Dependency: A Case Study in Rio de Janeiro. Transp. Policy 2018, 63, 29–39. [Google Scholar]
- Brazilian Institute of Geography and Statistics. 2010 Population Census: Universe Results. IBGE: Rio de Janeiro, Brazil, 2010. Available online: https://www.ibge.gov.br/en/statistics/social/labor/18391-2010-population-census.html?=&t=o-que-e (accessed on 12 May 2025).
- City Hall of Rio de Janeiro. Master Plan for Sustainable Urban Development of Rio de Janeiro. City Hall of Rio de Janeiro: Rio de Janeiro, Brazil, 2014. Available online: https://planodiretor-pcrj.hub.arcgis.com (accessed on 12 May 2025).
- City Hall of Rio de Janeiro. Urban Mobility Plans of Rio de Janeiro. City Hall of Rio de Janeiro: Rio de Janeiro, Brazil, 2014. Available online: https://latinno.net/en/case/3270/ (accessed on 12 May 2025).
- Sun, C.; Chen, X.; Zhang, H.M.; Huang, Z. An Evaluation Method of Urban Public Transport Facilities Resource Supply Based on Accessibility. J. Adv. Transp. 2018, 3754205. [Google Scholar] [CrossRef]
- van Soest, D.; Tight, M.R.; Rogers, C.D.F. Exploring the Distances People Walk to Access Public Transport. Transp. Rev. 2020, 40, 160–182.s. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Du, B.; Yan, X.; Peng, Q.; Shen, J. Resilience Assessment of Urban Rail Transit Stations Considering Disturbance and Time-Varying Passenger Flow. Comput.-Aided Civ. Infrastruct. Eng. 2025, 40, 1627–1651. [Google Scholar] [CrossRef]
- Jardim, B.; de Castro Neto, M.; Barriguinha, A. A Street-Point Method to Measure the Spatiotemporal Relationship between Walkability and Pedestrian Flow. Comput. Environ. Urban Syst. 2023, 104, 101993. [Google Scholar] [CrossRef]
- Giuffrida, N.; Mölter, A.; Pilla, F.; Carroll, P.; Ottomanelli, M. On the Equity of the X-Minute City from the Perspective of Walkability. Transp. Eng. 2024, 16, 100244. [Google Scholar] [CrossRef]
- Zhou, H.; Dorsman, J.L.; Mandjes, M.; Snelder, M. Sustainable Mobility Strategies and Their Impact: A Case Study Using a Multimodal Activity Based Model. Case Stud. Transp. Policy 2023, 11, 100945. [Google Scholar] [CrossRef]
- Martens, K. The bicycle as a feedering mode: Experiences from three European countries. Transp. Res. Part D Transp. Environ. 2004, 9, 281–294. [Google Scholar] [CrossRef]
- Hochmair, H.H. Assessment of Bicycle Service Areas around Transit Stations. Int. J. Sustain. Transp. 2015, 9, 15–29. [Google Scholar] [CrossRef]
- Cordovil, R.; Mercê, C.; Branco, M.; Lopes, F.; Catela, D.; Hasanen, E.; Laukkanen, A.; Tortella, P.; Fumagalli, G.; Sá, C.; et al. Learning to Cycle: A Cross-Cultural and Cross-Generational Comparison. Front. Public Health 2022, 10. [Google Scholar] [CrossRef] [PubMed]
- Delclòs-Alió, X.; den Hoed, W. Perceptions of Potential Cycling Infrastructure in a Low-Cycling Context: Evidence from a Medium-Sized Urban Area. Int. J. Sustain. Transp. 2024, 999–1011. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Hurtubia, R.; de Ortúzar, J.D. The Role of Habit and the Built Environment in the Willingness to Commute by Bicycle. Travel Behav. Soc. 2020, 20, 62–73. [Google Scholar] [CrossRef]
- Hayauchi, G.; Ariyoshi, R.; Morikawa, T.; Nakamura, F. Assessment of the Improvement of Public Transport in Hillside Cities Considering the Impact of Topography on Walking Choices. Sustainability 2023, 15, 9571. [Google Scholar] [CrossRef]
- Wibowo, S.; Olszewski, P. Modeling Walking Accessibility to Public Transport Terminals: Case Study of Singapore Mass Rapid Transit. J. East. Asia Soc. Transp. Stud. 2005, 6, 147–160. [Google Scholar]
- Nogueira, A.; Santos, B.; Gonçalves, J.; Kempa, J.; Chmielewski, J. Transportation Network Spatial Analysis to Measure Pedestrian Suitability. The Case Hilly Cities. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1203, 22107. [Google Scholar] [CrossRef]
- Mcbain, H.; Caulfield, B. Examining the role of the built environment on cycle commuting: A study of Dublin. Transp. Res. Part D Transp. Environ. 2018, 65, 282–290. [Google Scholar]
- Sousa, L.C.; Silva, C.A.; Sanches, S.P. Evaluation of bicycle infrastructure in hilly urban areas: A case study in Lisbon. Transp. Res. Part A Policy Pract. 2018, 114, 137–150. [Google Scholar]
- Matias, F.; Neto, A.; Tavares, J.P. Cycling uphill: How slope and design affect bicycle users’ comfort. Transp. Policy 2020, 92, 108–115. [Google Scholar]
- Furth, P.G.; Mekuria, M.C.; Nixon, H. Level of Traffic Stress: Conceptual Basis for Cycling Infrastructure Design. Transp. Res. Rec. 2023, 2677, 635–648. [Google Scholar]
- Jung, H.Y.; Jung, J. Influence of pedestrian environment and topography on route choice. Int. J. Sustain. Transp. 2023, 17, 457–470. [Google Scholar]
- Aravind, D.; Kiran, K.; Rao, P. Public Transport Accessibility and Spatial Equity in Metropolitan India. Transp. Res. Procedia 2024, 78, 235–243. [Google Scholar]
- Jin, J.G.; Teo, K.M.; Odoni, A.R. Optimizing bus bridging services in response to disruptions of urban transit rail networks. Transp. Sci. 2016, 50, 790–804. [Google Scholar] [CrossRef]
- Wang, N.; Wu, M.; Yuen, K.F. A Novel Method to Assess Urban Multimodal Transportation System Resilience Considering Passenger Demand and Infrastructure Supply. Reliab. Eng. Syst. Saf. 2023, 238, 109478. [Google Scholar] [CrossRef]
- Fernandes, A.D.; Oliveira, A.V.; Lima, S.D. Public Transport Vulnerability to Energy Crises in Brazil. Energy Policy 2019, 132, 991–1003. [Google Scholar]
- Liu, L.; Zhang, X.; Yu, H. How travel time to transit affects perceived resilience: A multi-city analysis. Transp. Policy 2024, 138, 103642. [Google Scholar]
- Wang, N.; Wu, M.; Yuen, K.F. How digitalization and supply chain resilience shape green logistics performance: An empirical study in China. Transp. Res. Part D Transp. Environ. 2023, 121, 103760. [Google Scholar]
- Sriprateep, K. Multi-Objective Optimization of Resilient, Sustainable, and Safe Urban Bus Routes for Tourism Promotion Using a Hybrid Reinforcement Learning Algorithm. Mathematics 2024, 12, 2283. [Google Scholar] [CrossRef]
- Wu, S.S.; Zhuang, Y.; Chen, J.; Wang, W.; Bai, Y.; Lo, S.M. Rethinking bus-to-metro accessibility in new town development: Case studies in Shanghai. Cities 2019, 94, 211–224. [Google Scholar] [CrossRef]
- Chuang, I.T.; Beattie, L.; Feng, L. Analysing the Relationship between Proximity to Transit Stations and Local Living Patterns: A Study of Human Mobility within a 15 Min Walking Distance through Mobile Location Data. Urban Sci. 2023, 7, 105. [Google Scholar] [CrossRef]
- Mageto, J.; Twinomurinzi, H.; Luke, R.; Mhlongo, S.; Bwalya, K.; Bvuma, S. Building resilience into smart mobility for urban cities: An emerging economy perspective. Int. J. Prod. Res. 2024, 62, 5556–5573. [Google Scholar] [CrossRef]
- Pereira, R.H.M.; Banister, D.; Schwanen, T.; Wessel, N. Distributional effects of transport policies on inequalities in access to opportunities in Rio de Janeiro. J. Transp. Land Use 2019, 12, 741–764. [Google Scholar] [CrossRef]
- Bokhari, A.; Sharifi, F. Simultaneous Inequity of Elderly Residents in Melbourne Metropolitan. Sustainability 2023, 15, 2189. [Google Scholar] [CrossRef]
- Cui, J.; Loo, B.P.Y.; Lin, D. Travel Behaviour and Mobility Needs of Older Adults in an Ageing and Car-Dependent Society. Int. J. Urban Sci. 2017, 21, 109–128. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Song, C.; Chen, J.; Shu, H.; Wu, M.; Guo, S.; Huang, Q.; Pei, T. Quantifying human mobility resilience to the COVID-19 pandemic: A case study of Beijing, China. Sustain. Cities Soc. 2023, 89, 104314. [Google Scholar] [CrossRef]
- Zhang, T.; Niu, C.; Nair, D.J.; Dixit, V.; Waller, S.T. Equity Analysis and Improvement in Transportation Resilience Optimisation at the Pre-Event Stage. Transp. Res. D Transp. Environ. 2023, 122, 103892. [Google Scholar] [CrossRef]
- Cinderby, S.; Haq, G.; Opiyo, R.; Muhoza, C.; Ngabirano, A.; Wasike, Y.; Mwamba, D.; Cambridge, H. Inclusive climate resilient transport challenges in Africa. Cities 2024, 146, 104740. [Google Scholar] [CrossRef]
- Shi, K.; Yang, Y.; De Vos, J.; Zhang, X.; Witlox, F. Income and commute satisfaction: On the mediating roles of transport poverty and health conditions. Travel Behav. Soc. 2022, 29, 297–307. [Google Scholar] [CrossRef]
- Aivinhenyo, I.; Zuidgeest, M. Transport equity in low-income societies: Affordability impact on destination accessibility measures. Meas. Transp. Equity 2019, 111–128. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Statistical yearbook of Brazil 2023. Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2023. Available online: https://anuario.ibge.gov.br/2023.html (accessed on 12 May 2025).
- Organisation for Economic Co-Operation and Development. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008. [Google Scholar] [CrossRef]
- Saisana, M.; Tarantola, S. State-of-the-Art Report on Current Methodologies and Practices for Composite Indicator Development (EUR 20408 EN). Eu-ropean Commission, Joint Research Centre: Ispra, Italy, 2002. Available online: https://composite-indicators.jrc.ec.europa.eu/uploads/SAISANA%20TARANTOLA%202002%20State-of-the-art%20Report.pdf (accessed on 12 May 2025).
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, 2nd ed.; RWS Publications: Pittsburgh, PA, USA, 1990. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Liu, C.; Tapani, A.; Kristoffersson, I.; Rydergren, C.; Jonsson, D. Appraisal of cycling infrastructure investments using a transport model with focus on cycling. Case Stud. Transp. Policy 2021, 9, 125–136. [Google Scholar] [CrossRef]
- Meng, L. Political economy and cycling infrastructure investment. Transp. Res. Interdiscip. Perspect. 2022, 14, 100618. [Google Scholar] [CrossRef]
- World Health Organization. Health Economic Assessment Tool (HEAT) for Walking and for Cycling; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2018; Available online: https://www.who.int/europe/tools-and-toolkits/health-economic-assessment-tool-for-walking-and-cycling (accessed on 12 May 2025).
- Prefeitura do Município de São Paulo. Plano de Mobilidade Urbana de São Paulo (PlanMob/SP) [Urban mobility plan of São Paulo]. Prefeitura do Município de São Paulo: São Paulo, Brazil, 2016. Available online: https://www.prefeitura.sp.gov.br/cidade/secretarias/upload/chamadas/planmobsp_v072__1455546429.pdf (accessed on 12 May 2025).
- Albatayneh, A.; Alzyadat, A.; Assaf, M.; Al Nsour, A.; Jaradat, M. Modelling the influence of key user perceptions on shared mobility acceptance in Jordan using SEM. Urban Sci. 2024, 8, 56. [Google Scholar] [CrossRef]
- Ros-McDonnell, L.; Marquet, O.; Miralles-Guasch, C. Measuring urban resilience through walkability: An index applied in seven Mediterranean cities. Urban Sci. 2024, 8, 9. [Google Scholar]
Variable | Data Source |
---|---|
Walking time to the terminal | Google Maps |
Bicycle travel time to the terminal | Google Maps |
Terrain slope (topography) | Obtained via GIS environment |
Pedestrian access | Field Survey Responses |
Predisposition to cycling | Field Survey Responses |
Bus access time to the terminal | Google Maps and Moovit |
Bus access | Field Survey Responses |
Access by other motorized modes | Field Survey Responses |
Population residing within a 5 min walking radius | 1 IBGE [67] and geospatial maps |
Percentage of elderly population | 1 IBGE [67] |
Average monthly income | 1 IBGE [67] |
Assigned Value | Judgment Interpretation |
---|---|
1 | Variables equally important |
3 | Moderate importance of one variable over another |
5 | Strong importance of one variable over another |
7 | Very strong (or demonstrated) importance |
9 | Absolute (extreme) importance |
2, 4, 6, 8 | Intermediate values used for intermediate judgments |
Block | Components/Sub-Variables | Importance (α-β) |
---|---|---|
IB-1 Pedestrian Access Ease | Walking Time to Terminal | 0.75 |
Slope | 0.25 | |
IB-2 Bicycle Access Ease | Bicycle Travel Time to Terminal | 0.75 |
Slope | 0.25 | |
IB-3 Active Transport × Accessibility | IB-1 Pedestrian Access Ease | 0.5 |
IB-2 Bicycle Access Ease | 0.5 | |
IB-4 Active Transport × Mobility | Pedestrian Access | 0.75 |
Predisposition to Cycling | 0.25 | |
IB-5 Active Transport Factor | IB-3 Active Transport × Accessibility | 0.75 |
IB-4 Active Transport × Mobility | 0.25 | |
IB-6 Mobility Indicator | Bus Access | 0.75 |
Access by Other Motorized Modes | 0.25 | |
IB-7 Fossil Fuel Dependency | IB-6 Mobility Indicator | 0.5 |
Bus Access Time to Terminal | 0.5 | |
IB-8 Social Mobility Constraints | Percentage of Elderly Population | 0.75 |
Average Monthly Income | 0.25 | |
IB-10 Socioeconomic Factor | IB-8 Social Mobility Constraints | 0.5 |
Population Residing (5 min walking radius) | 0.5 | |
IB-9 Transport Indicator | IB-5 Active Transport Factor | 0.5 |
IB-6 Mobility Indicator | 0.25 | |
IB-7 Fossil Fuel Dependency | 0.25 | |
IB-11 Urban Resilience | IB-9 Transport Indicator | 0.833 |
IB-10 Socioeconomic Factor | 0.167 |
Variable | CP1 | CP2 |
---|---|---|
Walking Time to Terminal | 0.449 | −0.147 |
Bicycle Travel Time to Terminal | 0.420 | −0.267 |
Slope | 0.250 | −0.093 |
Pedestrian Access | 0.264 | 0.462 |
Predisposition to Cycling | 0.289 | 0.444 |
Bus Access | 0.282 | 0.477 |
Access by Other Motorized Modes | −0.109 | 0.431 |
Percentage of Elderly Population | −0.390 | 0.134 |
Average Monthly Income | 0.071 | 0.042 |
Bus Access Time to Terminal | 0.279 | −0.211 |
Population Residing Within a 5-Minute Walking Radius | 0.281 | −0.101 |
Aspect | Petrópolis (IB-11) | [77] |
---|---|---|
Type of Data Main Technique | Public secondary and georeferenced data AHP + PCA + Gaussian normalization + spatial analysis | Primary data via a survey on ridesharing usage perception SEM (Structural Equation Modeling) with latent constructs |
Technical Requirements Dependence on Local Context | Spreadsheets and standard statistical software (Python 3.10.12 (Colab)), Excel Microsoft 365 (version 2405), R 4.3.3) Low: the model can be adapted to other cities with public data | Advanced knowledge in SEM, using AMOS or SmartPLS High: depends on social perception, habits, and local acceptability |
Methodological Transparency Replicability | High: formulas, weights, and conceptual structure detailed in the text High—easily applicable in other cities with minimal adjustments | High: well-structured SEM, but requires survey replication Moderate—requires redesign of the survey and statistical validation of the model for each location |
Criterion | Petrópolis (IB-11) | [78] |
---|---|---|
The type of mobility analyzed | Active (walking and cycling), motorized, and energy-related | Exclusive focus on pedestrian mobility |
Data collection method | Secondary and geospatial data | Direct in situ observation |
Index range | 0 to 1 (IB-11) | 61.22 to 77.92 (Iw) |
Slope treatment Critical results Statistical model applied Methodological transparency | Direct penalization in IB-1 and IB-2 blocks IB-11 < 0.25 in areas with steep slopes and low income PCA, collinearity analysis, quadrant, and sensitivity analysis High—complete detailing of formulas, weights, groupings, and hierarchies | Slope not explicitly evaluated as a variable Iw < 65 in zones with low pedestrian flow No statistical model was applied Low—absence of description of the Iw calculation formulas and internal index structure |
Spatial application Replicability potential | 100% of the municipality’s neighborhoods High—use of open data and normalized indices | 7 specific urban zones in compact cities Medium—requires field observation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Medeiros, A.S.; da Silva, M.A.V.; Cardoso, M.H.S.; Santos, T.F.; Toro, C.; Rojas, G.; Aprigliano, V. Evaluating Urban Mobility Resilience in Petrópolis Through a Multicriteria Approach. Urban Sci. 2025, 9, 269. https://doi.org/10.3390/urbansci9070269
de Medeiros AS, da Silva MAV, Cardoso MHS, Santos TF, Toro C, Rojas G, Aprigliano V. Evaluating Urban Mobility Resilience in Petrópolis Through a Multicriteria Approach. Urban Science. 2025; 9(7):269. https://doi.org/10.3390/urbansci9070269
Chicago/Turabian Stylede Medeiros, Alexandre Simas, Marcelino Aurélio Vieira da Silva, Marcus Hugo Sant’Anna Cardoso, Tálita Floriano Santos, Catalina Toro, Gonzalo Rojas, and Vicente Aprigliano. 2025. "Evaluating Urban Mobility Resilience in Petrópolis Through a Multicriteria Approach" Urban Science 9, no. 7: 269. https://doi.org/10.3390/urbansci9070269
APA Stylede Medeiros, A. S., da Silva, M. A. V., Cardoso, M. H. S., Santos, T. F., Toro, C., Rojas, G., & Aprigliano, V. (2025). Evaluating Urban Mobility Resilience in Petrópolis Through a Multicriteria Approach. Urban Science, 9(7), 269. https://doi.org/10.3390/urbansci9070269