Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (369)

Search Parameters:
Keywords = transport microenvironment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1146 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

31 pages, 3657 KiB  
Review
Lipid Metabolism Reprogramming in Cancer: Insights into Tumor Cells and Immune Cells Within the Tumor Microenvironment
by Rundong Liu, Chendong Wang, Zhen Tao and Guangyuan Hu
Biomedicines 2025, 13(8), 1895; https://doi.org/10.3390/biomedicines13081895 - 4 Aug 2025
Abstract
This review delves into the characteristics of lipid metabolism reprogramming in cancer cells and immune cells within the tumor microenvironment (TME), discussing its role in tumorigenesis and development and analyzing the value of lipid metabolism-related molecules in tumor diagnosis and prognosis. Cancer cells [...] Read more.
This review delves into the characteristics of lipid metabolism reprogramming in cancer cells and immune cells within the tumor microenvironment (TME), discussing its role in tumorigenesis and development and analyzing the value of lipid metabolism-related molecules in tumor diagnosis and prognosis. Cancer cells support their rapid growth through aerobic glycolysis and lipid metabolism reprogramming. Lipid metabolism plays distinct roles in cancer and immune cells, including energy supply, cell proliferation, angiogenesis, immune suppression, and tumor metastasis. This review focused on shared lipid metabolic enzymes and transporters, lipid metabolism-related oncogenes and non-coding RNAs (ncRNAs) involved in cancer cells, and the influence of lipid metabolism on T cells, dendritic cells (DCs), B cells, tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), and natural killer cells (NKs) within TME. Additionally, the role of lipid metabolism in tumor diagnosis and prognosis was explored, and lipid metabolism-based anti-tumor treatment strategies were summarized, aiming to provide new perspectives for achieving precision medicine. Full article
(This article belongs to the Special Issue Advanced Cancer Diagnosis and Treatment: Third Edition)
Show Figures

Graphical abstract

14 pages, 589 KiB  
Review
Biofilm Formation and the Role of Efflux Pumps in ESKAPE Pathogens
by Trent R. Sorenson, Kira M. Zack and Suresh G. Joshi
Microorganisms 2025, 13(8), 1816; https://doi.org/10.3390/microorganisms13081816 - 4 Aug 2025
Abstract
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led [...] Read more.
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led to an increase in the effective costs in health care and a higher risk of mortality in hospitalized patients. These pathogens utilize antimicrobial efflux pump mechanisms and bacterial biofilm-forming capabilities to escape the bactericidal action of antimicrobials. ESKAPE bacteria forming colonies demonstrate increased expression of efflux pump-encoding genes. Efflux pumps not only expel antimicrobial agents but also contribute to biofilm formation by bacteria through (1) transport of molecules and transcription factors involved in biofilm quorum sensing, (2) bacterial fimbriae structure transport for biofilm adhesion to surfaces, and (3) regulation of a transmembrane gradient to survive the difficult conditions of biofilm microenvironments. The synergistic role of these mechanisms complicates treatment outcomes. Given the mechanistic link between biofilms and efflux pumps, therapeutic strategies should focus on targeting anti-biofilm mechanisms alongside efflux pump inactivation with efflux pump inhibitors. This review explores the molecular interplay between efflux pumps and biofilm formation, emphasizing potential therapeutic strategies such as efflux pump inhibitors (EPIs) and biofilm-targeting agents. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

52 pages, 4770 KiB  
Review
Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine
by Qi-Xiang Wu, Natalia De Isla and Lei Zhang
Int. J. Mol. Sci. 2025, 26(15), 7384; https://doi.org/10.3390/ijms26157384 - 30 Jul 2025
Viewed by 438
Abstract
Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like [...] Read more.
Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like donor cell dependency and immune rejection. The key to success relies on biomaterial-engineered delivery platforms that ensure tissue-specific targeting and efficient intracellular transport. Viral vectors and non-viral carriers are strategically modified to enhance nucleic acid stability and cellular uptake, and integrate them into injectable or 3D-printed scaffolds. These scaffolds not only control nucleic acid release but also mimic native extracellular microenvironments to support stem cell recruitment and tissue regeneration. This review explores three key aspects: the mechanisms of gene editing in tissue repair; advancements in viral and non-viral vector engineering; and innovations in biomaterial scaffolds, including stimuli-responsive hydrogels and 3D-printed matrices. We evaluate scaffold fabrication methodologies, nucleic acid loading–release kinetics, and their biological impacts. Despite progress in spatiotemporal gene delivery control, challenges remain in balancing vector biocompatibility, manufacturing scalability, and long-term safety. Future research should focus on multifunctional “smart” scaffolds with CRISPR-based editing tools, multi-stimuli responsiveness, and patient-specific designs. This work systematically integrates the latest methodological advances, outlines actionable strategies for future investigations and advances clinical translation perspectives beyond the existing literature. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

15 pages, 1274 KiB  
Review
Engineered Bifidobacterium Strains Colonization at Tumor Sites: A Novel Approach to the Delivery of Cancer Treatments
by Rhea Amonkar, Ashley Ann Uy, Pablo Ramirez, Harina Patel, Jae Jin Jeong, Nicole Oyinade Shoyele, Vidhi Vaghela and Ashakumary Lakshmikuttyamma
Cancers 2025, 17(15), 2487; https://doi.org/10.3390/cancers17152487 - 28 Jul 2025
Viewed by 324
Abstract
Bacteria-mediated cancer therapy represents a novel and promising strategy for targeted drug delivery to solid tumors. Multiple studies have demonstrated that various Bifidobacterium species can selectively colonize the hypoxic microenvironments characteristic of solid tumors. Leveraging this property, Bifidobacterium has been explored as a [...] Read more.
Bacteria-mediated cancer therapy represents a novel and promising strategy for targeted drug delivery to solid tumors. Multiple studies have demonstrated that various Bifidobacterium species can selectively colonize the hypoxic microenvironments characteristic of solid tumors. Leveraging this property, Bifidobacterium has been explored as a delivery vector for a range of anti-cancer approaches such as immunotherapy, nanoformulated chemotherapeutics, and gene therapy. Notably, anti-angiogenic genes such as endostatin and tumstatin have been successfully delivered to colorectal tumors using Bifidobacterium infantis and Bifidobacterium longum, respectively. Additionally, Bifidobacterium bifidum has been employed to transport doxorubicin and paclitaxel nanoparticles to breast and lung tumor sites. Furthermore, both Bifidobacterium longum and Bifidobacterium bifidum have been utilized to deliver nanoparticles that act as synergistic agents for high-intensity focused ultrasound (HIFU) therapy, significantly enhancing tumor ablation, particularly in triple-negative breast cancer (TNBC) models. While these pre-clinical findings are highly encouraging, further clinical research is essential. Specifically, studies are needed to investigate the colonization dynamics of different Bifidobacterium species across various tumor types and to evaluate their potential in delivering diverse cancer therapies in human patients. Full article
(This article belongs to the Special Issue Advances in Drug Delivery for Cancer Therapy)
Show Figures

Figure 1

72 pages, 6279 KiB  
Review
Beyond the Walls of Troy: A Scoping Review on Pharmacological Strategies to Enhance Drug Delivery Across the Blood–Brain Barrier and Blood–Tumor Barrier
by Miłosz Pinkiewicz, Artur Zaczyński, Jerzy Walecki and Michał Zawadzki
Int. J. Mol. Sci. 2025, 26(15), 7050; https://doi.org/10.3390/ijms26157050 - 22 Jul 2025
Viewed by 310
Abstract
The blood–brain barrier (BBB) is a highly selective interface between the bloodstream and the brain that prevents systemically administered therapeutics from effectively reaching tumor cells. As tumors progress, this barrier undergoes structural and functional alterations, giving rise to the blood–tumor barrier (BTB)—a pathologically [...] Read more.
The blood–brain barrier (BBB) is a highly selective interface between the bloodstream and the brain that prevents systemically administered therapeutics from effectively reaching tumor cells. As tumors progress, this barrier undergoes structural and functional alterations, giving rise to the blood–tumor barrier (BTB)—a pathologically modified structure that, despite increased permeability, often exhibits heterogeneous and clinically insufficient drug transport. Although a new generation of therapies is promising, their therapeutic potential cannot be realized unless the challenges posed by these barriers are effectively addressed. Various pharmacological strategies were explored to enhance brain tumor drug delivery. These include receptor-mediated disruption, inhibition of efflux transporters, and the engineering of delivery platforms that leverage endogenous transport pathways—such as carrier-mediated, adsorptive-mediated, and receptor-mediated mechanisms—as well as cell-mediated drug delivery. This review synthesizes (1) the BBB and BTB’s structural characteristics; (2) the influence of the tumor microenvironment (TME) on drug delivery; (3) pharmacological strategies to enhance drug accumulation within brain tumors; (4) the integration of pharmacological methods with neurosurgical techniques to enhance drug delivery. As efforts to improve drug delivery across the BBB and BTB accelerate, this review aims to map the current landscape of pharmacological approaches for enhancing drug penetration into brain tumors. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

73 pages, 19750 KiB  
Article
Transcriptomic Profiling of the Immune Response in Orthotopic Pancreatic Tumours Exposed to Combined Boiling Histotripsy and Oncolytic Reovirus Treatment
by Petros Mouratidis, Ricardo C. Ferreira, Selvakumar Anbalagan, Ritika Chauhan, Ian Rivens and Gail ter Haar
Pharmaceutics 2025, 17(8), 949; https://doi.org/10.3390/pharmaceutics17080949 - 22 Jul 2025
Viewed by 303
Abstract
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune [...] Read more.
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune transcriptome of these tumours were characterised. Methods: Orthotopic syngeneic murine pancreatic KPC tumours grown in immune-competent subjects, were allocated to control, reovirus, BH and combined BH and reovirus treatment groups. Acoustic cavitation was monitored using a passive broadband cavitation sensor. Treatment effects were assessed histologically with hematoxylin and eosin staining. Single-cell multi-omics combining whole-transcriptome analysis with the expression of surface-expressed immune proteins was used to assess the effects of treatments on tumoural leukocytes. Results: Acoustic cavitation was detected in all subjects exposed to BH, causing cellular disruption in tumours 6 h after treatment. Distinct cell clusters were identified in the pancreatic tumours 24 h post-treatment. These included neutrophils and cytotoxic T cells overexpressing genes associated with an N2-like and an exhaustion phenotype, respectively. Reovirus decreased macrophages, and BH decreased regulatory T cells compared to controls. The combined treatments increased neutrophils and the ratio of various immune cells to Treg. All treatments overexpressed genes associated with an innate immune response, while ultrasound treatments downregulated genes associated with the transporter associated with antigen processing (TAP) complex. Conclusions: Our results show that the combined BH and reovirus treatments maximise the overexpression of genes associated with the innate immune response compared to that seen with each individual treatment, and illustrate the anti-immune phenotype of key immune cells in the pancreatic tumour microenvironment. Full article
Show Figures

Figure 1

25 pages, 5946 KiB  
Article
Targeting Sodium Transport Reveals CHP1 Downregulation as a Novel Molecular Feature of Malignant Progression in Clear Cell Renal Cell Carcinoma: Insights from Integrated Multi-Omics Analyses
by Yun Wu, Ri-Ting Zhu, Jia-Ru Chen, Xiao-Min Liu, Guo-Liang Huang, Jin-Cheng Zeng, Hong-Bing Yu, Xin Liu and Cui-Fang Han
Biomolecules 2025, 15(7), 1019; https://doi.org/10.3390/biom15071019 - 15 Jul 2025
Viewed by 415
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common RCC subtype, displays significant intratumoral heterogeneity driven by metabolic reprogramming, which complicates our understanding of disease progression and limits treatment efficacy. This study aimed to construct a comprehensive cellular and transcriptional landscape of ccRCC, [...] Read more.
Clear cell renal cell carcinoma (ccRCC), the most common RCC subtype, displays significant intratumoral heterogeneity driven by metabolic reprogramming, which complicates our understanding of disease progression and limits treatment efficacy. This study aimed to construct a comprehensive cellular and transcriptional landscape of ccRCC, with emphasis on gene expression dynamics during malignant progression. An integrated analysis of 90 scRNA-seq samples comprising 534,227 cells revealed a progressive downregulation of sodium ion transport-related genes, particularly CHP1 (calcineurin B homologous protein isoform 1), which is predominantly expressed in epithelial cells. Reduced CHP1 expression was confirmed at both mRNA and protein levels using bulk RNA-seq, CPTAC proteomics, immunohistochemistry, and ccRCC cell lines. Survival analysis showed that high CHP1 expression correlated with improved prognosis. Functional analyses, including pseudotime trajectory, Mfuzz clustering, and cell–cell communication modeling, indicated that CHP1+ epithelial cells engage in immune interaction via PPIA–BSG signaling. Transcriptomic profiling and molecular docking suggested that CHP1 modulates amino acid transport through SLC38A1. ZNF460 was identified as a potential transcription factor of CHP1. Virtual screening identified arbutin and imatinib mesylate as candidate CHP1-targeting compounds. These findings establish CHP1 downregulation as a novel molecular feature of ccRCC progression and support its utility as a prognostic biomarker. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

41 pages, 1524 KiB  
Review
Metabolic Adaptations in Cancer Progression: Optimization Strategies and Therapeutic Targets
by Agnieszka Dominiak, Beata Chełstowska and Grażyna Nowicka
Cancers 2025, 17(14), 2341; https://doi.org/10.3390/cancers17142341 - 15 Jul 2025
Viewed by 765
Abstract
As tumor research has deepened, the deregulation of cellular metabolism has emerged as yet another recognized hallmark of cancer. Tumor cells adapt different biochemical pathways to support their rapid growth, proliferation, and invasion, resulting in distinct anabolic and catabolic activities compared with healthy [...] Read more.
As tumor research has deepened, the deregulation of cellular metabolism has emerged as yet another recognized hallmark of cancer. Tumor cells adapt different biochemical pathways to support their rapid growth, proliferation, and invasion, resulting in distinct anabolic and catabolic activities compared with healthy tissues. Certain metabolic shifts, such as altered glucose and glutamine utilization and increased de novo fatty acid synthesis, are critical early on, while others may become essential only during metastasis. These metabolic adaptations are closely shaped by, and in turn remodel, the tumor microenvironment, creating favorable conditions for their spread. Anticancer metabolic strategies should integrate pharmacological approaches aimed at inhibiting specific biochemical pathways with well-defined dietary interventions as adjunctive therapies, considering also the role of gut microbiota in modulating diet and treatment responses. Given the established link between the consumption of foods rich in saturated fatty acids and sugars and an increased cancer risk, the effects of diet cannot be ignored. However, current evidence from controlled and multicenter clinical trials remains insufficient to provide definitive clinical recommendations. Further research using modern omics methods, such as metabolomics, proteomics, and lipidomics, is necessary to understand the changes in the metabolic profiles of various cancers at different stages of their development and to determine the potential for modifying these profiles through pharmacological agents and dietary modifications. Therefore, clinical trials should combine standard treatments with novel approaches targeting metabolic reprogramming, such as inhibition of specific enzymes and transporters or binding proteins, alongside the implementation of dietary restrictions that limit nutrient availability for tumor growth. However, to optimize therapeutic efficacy, a precision medicine approach should be adopted that balances the destruction of cancer cells with the protection of healthy ones. This approach, among others, should be based on cell type-specific metabolic profiling, which is crucial for personalizing oncology treatment. Full article
(This article belongs to the Special Issue Cancer Cells Fostered Microenvironment in Metastasis)
Show Figures

Graphical abstract

19 pages, 5784 KiB  
Article
Identification of Exosome-Associated Biomarkers in Diabetic Foot Ulcers: A Bioinformatics Analysis and Experimental Validation
by Tianbo Li, Lei Gao and Jiangning Wang
Biomedicines 2025, 13(7), 1687; https://doi.org/10.3390/biomedicines13071687 - 10 Jul 2025
Viewed by 431
Abstract
Background: Diabetic foot ulcers (DFUs) are a severe complication of diabetes and are characterized by impaired wound healing and a high amputation risk. Exosomes—which are nanovesicles carrying proteins, RNAs, and lipids—mediate intercellular communication in wound microenvironments, yet their biomarker potential in DFUs remains [...] Read more.
Background: Diabetic foot ulcers (DFUs) are a severe complication of diabetes and are characterized by impaired wound healing and a high amputation risk. Exosomes—which are nanovesicles carrying proteins, RNAs, and lipids—mediate intercellular communication in wound microenvironments, yet their biomarker potential in DFUs remains underexplored. Methods: We analyzed transcriptomic data from GSE134431 (13 DFU vs. 8 controls) as a training set and validated findings in GSE80178 (6 DFU vs. 3 controls). A sum of 7901 differentially expressed genes (DEGs) of DFUs were detected and intersected with 125 literature-curated exosome-related genes (ERGs) to yield 51 candidates. This was followed by GO/KEGG analyses and a PPI network construction. Support vector machine–recursive feature elimination (SVM-RFE) and the Boruta random forest algorithm distilled five biomarkers (DIS3L, EXOSC7, SDC1, STX11, SYT17). Expression trends were confirmed in both datasets. Analyses included nomogram construction, functional and correlation analyses, immune infiltration, GSEA, gene co-expression and regulatory network construction, drug prediction, molecular docking, and RT-qPCR validation in clinical samples. Results: A nomogram combining these markers achieved an acceptable calibration (Hosmer–Lemeshow p = 0.0718, MAE = 0.044). Immune cell infiltration (CIBERSORT) revealed associations between biomarker levels and NK cell and neutrophil subsets. Gene set enrichment analysis (GSEA) implicated IL-17 signaling, proteasome function, and microbial infection pathways. A GeneMANIA network highlighted RNA processing and vesicle trafficking. Transcription factor and miRNA predictions uncovered regulatory circuits, and DGIdb-driven drug repurposing followed by molecular docking identified Indatuximab ravtansine and heparin as high-affinity SDC1 binders. Finally, RT-qPCR validation in clinical DFU tissues (n = 5) recapitulated the bioinformatic expression patterns. Conclusions: We present five exosome-associated genes as novel DFU biomarkers with diagnostic potential and mechanistic links to immune modulation and vesicular transport. These findings lay the groundwork for exosome-based diagnostics and therapeutic targeting in DFU management. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

15 pages, 5017 KiB  
Article
Constructing Hydrazone-Linked Chiral Covalent Organic Frameworks with Different Pore Sizes for Asymmetric Catalysis
by Haichen Huang, Kai Zhang, Yuexin Zheng, Hong Chen, Dexuan Cai, Shengrun Zheng, Jun Fan and Songliang Cai
Catalysts 2025, 15(7), 640; https://doi.org/10.3390/catal15070640 - 30 Jun 2025
Viewed by 332
Abstract
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived [...] Read more.
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived dihydrazide chiral monomer (L-DBP-Boc), which was subjected to Schiff-base reactions with two aromatic aldehydes of different lengths, 1,3,5-triformyl phloroglucinol (BTA) and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (TZ), to construct two hydrazone-linked chiral COFs with distinct pore sizes (L-DBP-BTA COF and L-DBP-TZ COF). Interestingly, the Boc protecting groups were removed in situ during COF synthesis. We systematically investigated the catalytic performance of these two chiral COFs in asymmetric aldol reactions and found that their pore sizes significantly influenced both catalytic activity and enantioselectivity. The large-pore L-DBP-TZ COF (pore size: 3.5 nm) exhibited superior catalytic performance under aqueous conditions at room temperature, achieving a yield of 98% and an enantiomeric excess (ee) value of 78%. In contrast, the small-pore L-DBP-BTA COF (pore size: 2.0 nm) showed poor catalytic performance. Compared to L-DBP-BTA COF, L-DBP-TZ COF demonstrated a 1.69-fold increase in yield and a 1.56-fold enhancement in enantioselectivity, possibly attributed to the facilitated diffusion and transport of substrates and products within the larger pore, thus improving the accessibility of active sites. This study presents a facile synthesis of pyrrolidine-functionalized chiral COFs and establishes the possible structure–activity relationship in their asymmetric catalysis, offering new insights for the design of efficient chiral COF catalysts. Full article
(This article belongs to the Special Issue Asymmetric Catalysis: Recent Progress and Future Perspective)
Show Figures

Graphical abstract

16 pages, 1490 KiB  
Article
Mir-16 Decreases the Expression of VTI1B and SMPD1, Genes Involved in Membrane-Protein Trafficking in Melanoma
by Adi Layani, Tal Meningher, Yechezkel Sidi, Dror Avni and Raya Leibowitz
Cancers 2025, 17(13), 2197; https://doi.org/10.3390/cancers17132197 - 29 Jun 2025
Viewed by 420
Abstract
Introduction: The interface between T cells and the tumor microenvironment, termed the ‘immunological synapse’, consists of multiple checkpoint protein pairs co-expressed on both sides of the synapse. mir-16, a microRNA from a widely known tumor-suppressor family of miRNAs, was previously shown by us [...] Read more.
Introduction: The interface between T cells and the tumor microenvironment, termed the ‘immunological synapse’, consists of multiple checkpoint protein pairs co-expressed on both sides of the synapse. mir-16, a microRNA from a widely known tumor-suppressor family of miRNAs, was previously shown by us to be downregulated in melanoma. As other miRNAs from this family have been shown to directly target checkpoint proteins, here we investigated whether miR-16 influences the expression patterns of checkpoint proteins in melanoma. Methods: Single-cell gene expression data from the melanoma microenvironment were retrieved from a public database. Melanoma cell lines were established from metastatic lesions and transiently transfected with an hsa-miR-16-5p-mimic RNA or a mir-16-expressing plasmid. The mRNA expression profiles were analyzed using an Affymetrix microarray. Direct targets of miR-16 were identified by luciferase reporter assays. Protein levels were assessed by Western blotting. Results: Bioinformatic analysis revealed that the expression levels of eight checkpoint mRNAs, known to be present on the melanoma side of the immunological synapse, were highly correlated. Four of these mRNAs contained putative binding sites for the miR-15/16 family. miR-16 expression was significantly reduced in melanoma cells, compared to normal melanocytes. Luciferase reporter assays demonstrated that miR-16 directly targets the 3′ untranslated regions (3′UTRs) of CD40, CD80. The mRNAs downregulated following miR-16 overexpression were highly enriched for genes involved in autophagy, vesicle-mediated transport, and the regulation of protein membrane localization. Among these, VTI1B and SMPD1 were confirmed to be direct targets of miR-16. Transient overexpression of miR-16 resulted in a significant reduction in SMPD1 and VTI1B levels in melanoma cell lines. Conclusions: Our findings suggest that miR-16 potentially modulates melanoma tumorigenesis, metastasis and immunogenicity by altering the composition of checkpoint proteins at the immunological synapse and by regulating cellular pathways associated with intracellular trafficking and transmembrane protein presentation. Full article
Show Figures

Figure 1

14 pages, 1243 KiB  
Review
Tertiary Amine Oxide-Containing Zwitterionic Polymers: From Material Design to Biomedical Applications
by Jian Shen, Tao Sun and Yunke Bi
Pharmaceutics 2025, 17(7), 846; https://doi.org/10.3390/pharmaceutics17070846 - 27 Jun 2025
Viewed by 352
Abstract
Tertiary amine oxide (TAO)-containing zwitterionic polymers are a class of zwitterionic materials formed by the oxidation of tertiary amine groups. In recent years, polymers such as poly(2-(N-oxide-N,N-diethylamino)ethyl methacrylate) (OPDEA) have gained significant attention due to their unique antifouling properties, dynamic cell membrane affinity, [...] Read more.
Tertiary amine oxide (TAO)-containing zwitterionic polymers are a class of zwitterionic materials formed by the oxidation of tertiary amine groups. In recent years, polymers such as poly(2-(N-oxide-N,N-diethylamino)ethyl methacrylate) (OPDEA) have gained significant attention due to their unique antifouling properties, dynamic cell membrane affinity, and responsiveness to microenvironments. These characteristics have made them promising candidates in drug delivery, antibiofouling, and precision therapy. Compared to traditional polyethylene glycol (PEG), these polymers not only exhibit long-circulation properties but can also overcome biological barriers through active transport mechanisms, making them a research hotspot in the field of next-generation biomaterials. This review comprehensively summarizes the recent advancements in this field, covering aspects such as the synthesis, properties, applications, and mechanisms of TAO-containing zwitterionic polymers. Full article
Show Figures

Figure 1

11 pages, 2248 KiB  
Review
Cancer Metastasis Through the Lymphatics: Invasion and Dissemination
by Chien-An A. Hu, Christina Baum and Yahui Xie
Lymphatics 2025, 3(3), 17; https://doi.org/10.3390/lymphatics3030017 - 24 Jun 2025
Viewed by 485
Abstract
Cancer metastasis often accounts for the primary cause of cancer-related mortality, with the lymphatic system playing a pivotal role in the dissemination of malignant cells. While hematogenous vessel spread is commonly associated with distant organ metastasis, the lymphatic system serves as an early [...] Read more.
Cancer metastasis often accounts for the primary cause of cancer-related mortality, with the lymphatic system playing a pivotal role in the dissemination of malignant cells. While hematogenous vessel spread is commonly associated with distant organ metastasis, the lymphatic system serves as an early conduit for tumor cell invasion and dissemination. The process of lymphatic metastasis is a highly coordinated sequence of events that involves cancer cell invasion, intravasation into lymphatic vessels, survival, transport, and colonization of regional lymph nodes (LNs). Cancerous cells then establish micro-metastases at the colonized sites and expand in the new microenvironment, ultimately resulting in the generation of secondary tumors. Tumor-secreted factors, such as vascular endothelial growth factors (VEGF-C and VEGF-D), contribute to metastasis through lymphangiogenesis, the formation of new lymphatic vessels. In addition, cancer cells utilize pre-existing chemokine signaling pathways by expressing chemokine receptors, such as CCR7, which bind to chemokine ligands, such as CCL19 and CCL21, to facilitate targeted migration into the lymphatic vessels. LNs are often the initial sites for metastasis and therefore are indicators of distant organ involvement. It is well established that the location and extent of LN involvement provides significant prognostic information, although the optimal treatment approach for LN metastases remains a subject of debate. Understanding the mechanisms of lymphatic metastasis offers potential therapeutic targets to mitigate cancer progression. Full article
Show Figures

Figure 1

29 pages, 5545 KiB  
Article
Elacridar Inhibits BCRP Protein Activity in 2D and 3D Cell Culture Models of Ovarian Cancer and Re-Sensitizes Cells to Cytotoxic Drugs
by Piotr Stasiak, Justyna Sopel, Artur Płóciennik, Oliwia Musielak, Julia Maria Lipowicz, Agnieszka Anna Rawłuszko-Wieczorek, Karolina Sterzyńska, Jan Korbecki and Radosław Januchowski
Int. J. Mol. Sci. 2025, 26(12), 5800; https://doi.org/10.3390/ijms26125800 - 17 Jun 2025
Viewed by 2262
Abstract
Chemotherapy resistance is a major obstacle in the treatment of ovarian cancer, often resulting in disease recurrence and poor prognosis for patients. A key contributor to this resistance is the overexpression of ATP-binding cassette (ABC) transporters, including breast cancer resistance protein (BCRP/ABCG2), which [...] Read more.
Chemotherapy resistance is a major obstacle in the treatment of ovarian cancer, often resulting in disease recurrence and poor prognosis for patients. A key contributor to this resistance is the overexpression of ATP-binding cassette (ABC) transporters, including breast cancer resistance protein (BCRP/ABCG2), which actively effluxes chemotherapeutic agents such as topotecan (TOP) or mitoxantrone (MIT), limiting their intracellular accumulation and efficacy. This study investigated the potential of elacridar (GG918), a potent dual P-gp and BCRP inhibitor, to overcome drug resistance in ovarian cancer cell lines. Both TOP-sensitive and TOP-resistant ovarian cancer cells were grown in two-dimensional (2D) monolayers and three-dimensional (3D) spheroid models to better mimic the tumor microenvironment. The expression of the ABCG2 gene was quantified via qPCR and BCRP protein levels were assessed by western blotting and immunofluorescence. Drug response was evaluated using MTT viability assays, while BCRP transporter activity was examined using flow cytometry and microscopic assessment of the intracellular retention of BCRP fluorescent substrates (Hoechst 33342 and MIT). In both 2D and 3D cultures, elacridar effectively inhibited BCRP function and significantly enhanced sensitivity to TOP. These findings suggest that elacridar can inhibit BCRP-mediated drug resistance in ovarian cancer cell models. Full article
(This article belongs to the Special Issue New Insights into Chemotherapeutic Agents in Cancer Treatment)
Show Figures

Figure 1

Back to TopTop