Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = transparent supercapacitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 2226 KB  
Article
Sustainable Component-Level Prioritization of PV Panels, Batteries, and Converters for Solar Technologies in Hybrid Renewable Energy Systems Using Objective-Weighted MCDM Models
by Swapandeep Kaur, Raman Kumar and Kanwardeep Singh
Energies 2025, 18(20), 5410; https://doi.org/10.3390/en18205410 - 14 Oct 2025
Cited by 4 | Viewed by 827
Abstract
Data-driven prioritization of photovoltaic (PV), battery, and converter technologies is crucial for achieving sustainability, efficiency, and cost-effectiveness in the increasingly complex domain of hybrid renewable energy systems (HRES). Conducting an in-depth and systematic ranking of these components for solar-based HRESs necessitates a comprehensive [...] Read more.
Data-driven prioritization of photovoltaic (PV), battery, and converter technologies is crucial for achieving sustainability, efficiency, and cost-effectiveness in the increasingly complex domain of hybrid renewable energy systems (HRES). Conducting an in-depth and systematic ranking of these components for solar-based HRESs necessitates a comprehensive multi-criteria decision-making (MCDM) framework. This study develops as the most recent and integrated approach available in the literature. To ensure balanced and objective weighting, five quantitative weighting techniques, Entropy, Standard Deviation, CRITIC, MEREC, and CILOS, were aggregated through the Bonferroni operator, thereby minimizing subjective bias while preserving robustness. The final ranking was executed using the measurement of alternatives and ranking according to compromise solution method (MARCOS). Subsequently, comparative validation was conducted across eight additional MCDM methods, supplemented by correlation and sensitivity analysis to evaluate the consistency and reliability of the obtained results. The results revealed that thin-film PV modules (0.7108), hybrid supercapacitor batteries (0.6990), and modular converters (1.1812) emerged as the top-performing technologies, reflecting optimal trade-offs among technical, economic, and environmental performance criteria. Correlation analysis (ρ > 0.9 across nine MCDM methods) confirmed the stability of the rankings. The results establish a reproducible decision-support framework for designing sustainable hybrid systems. These technologies demonstrated superior thermal stability, cycling endurance, and system scalability, respectively, thus laying a foundation for more sustainable and resilient hybrid energy system deployments. The proposed framework provides a reproducible, transparent, and resilient decision-support tool designed to assist engineers, researchers, and policy-makers in developing reliable low-carbon components for the realization of future carbon-neutral energy infrastructures. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

12 pages, 3331 KB  
Article
Porous Carbon-Modified Silk-Derived Carbon Mesh for High-Performance Transparent All-Solid Supercapacitors
by Delong Ma, Xinyu Niu, Yang Chen, Enpeng Hou and Ruili Zhang
Processes 2025, 13(10), 3056; https://doi.org/10.3390/pr13103056 - 25 Sep 2025
Viewed by 650
Abstract
The practical application of transparent supercapacitors (TSCs) is limited by the inherent trade-off between transparency and conductivity, as well as the environmental and economic drawbacks of electrode materials. This study presents a novel and scalable method for fabricating porous carbon-modified silk-derived carbon fiber [...] Read more.
The practical application of transparent supercapacitors (TSCs) is limited by the inherent trade-off between transparency and conductivity, as well as the environmental and economic drawbacks of electrode materials. This study presents a novel and scalable method for fabricating porous carbon-modified silk-derived carbon fiber meshes as electrode materials for transparent supercapacitors. The process involves the in situ growth of a cobalt organic complex on a silk mesh, followed by carbonization to produce a flexible, transparent carbon fiber mesh with a hierarchical porous structure (specific surface area: 570 m2/g). The resulting material exhibits good mechanical properties and electrical conductivity due to the nanographene-like structure formed during the cobalt-catalyzed carbonization process. This TSC achieves an optical transparency of up to 65% and an aerial capacitance of 9.65 mF/cm2 at a scan rate of 0.01 V/s, surpassing many existing transparent electrodes. Additionally, the device demonstrates outstanding electrochemical stability, retaining 89% of its initial capacitance after 2000 cycles at a scan rate of 0.5 V/s, showcasing superior durability. This study presents a pioneering method for developing TSCs by utilizing sustainable silk-derived carbon materials and a cost-effective fabrication process. Full article
Show Figures

Figure 1

32 pages, 6117 KB  
Review
Toward Intelligent Materials with the Promise of Self-Healing Hydrogels in Flexible Devices
by Han-Seop Song, Md. Mahamudul Hasan Rumon, Mohammad Mizanur Rahman Khan and Jae-Ho Jeong
Polymers 2025, 17(4), 542; https://doi.org/10.3390/polym17040542 - 19 Feb 2025
Cited by 11 | Viewed by 3698
Abstract
Flexible sensors are revolutionizing wearable and implantable devices, with conductive hydrogels emerging as key materials due to their biomimetic structure, biocompatibility, tunable transparency, and stimuli-responsive electrical properties. However, their fragility and limited durability pose significant challenges for broader applications. Drawing inspiration from the [...] Read more.
Flexible sensors are revolutionizing wearable and implantable devices, with conductive hydrogels emerging as key materials due to their biomimetic structure, biocompatibility, tunable transparency, and stimuli-responsive electrical properties. However, their fragility and limited durability pose significant challenges for broader applications. Drawing inspiration from the self-healing capabilities of natural organisms like mussels, researchers are embedding self-repair mechanisms into hydrogels to improve their reliability and lifespan. This review highlights recent advances in self-healing (SH) conductive hydrogels, focusing on synthesis methods, healing mechanisms, and strategies to enhance multifunctionality. It also explores their wide-ranging applications, including in vivo signal monitoring, wearable biochemical sensors, supercapacitors, flexible displays, triboelectric nanogenerators, and implantable bioelectronics. While progress has been made, challenges remain in balancing self-healing efficiency, mechanical strength, and sensing performance. This review offers insights into overcoming these obstacles and discusses future research directions for advancing SH hydrogel-based bioelectronics, aiming to pave the way for durable, high-performance devices in next-generation wearable and implantable technologies. Full article
(This article belongs to the Special Issue Advanced Polymer Composites for Supercapacitors and Sensors)
Show Figures

Figure 1

24 pages, 5381 KB  
Article
A Design Tool for Battery/Supercapacitor Hybrid Energy Storage Systems Based on the Physical–Electrochemical Degradation Battery Model BaSiS
by Weiwei Shan, Michael Schwalm and Martin Shan
Energies 2024, 17(14), 3481; https://doi.org/10.3390/en17143481 - 15 Jul 2024
Cited by 5 | Viewed by 3250
Abstract
A design toolbox has been developed for hybrid energy storage systems (HESSs) that employ both batteries and supercapacitors, primarily focusing on optimizing the system sizing/cost and mitigating battery aging. The toolbox incorporates the BaSiS model, a non-empirical physical–electrochemical degradation model for lithium-ion batteries [...] Read more.
A design toolbox has been developed for hybrid energy storage systems (HESSs) that employ both batteries and supercapacitors, primarily focusing on optimizing the system sizing/cost and mitigating battery aging. The toolbox incorporates the BaSiS model, a non-empirical physical–electrochemical degradation model for lithium-ion batteries that enables accurate simulations of battery performance and degradation under realistic operating conditions. The paper presents a detailed description of the parameterization, and validation process for the battery model, emphasizing the high accuracy and strong reliability of the battery aging prediction. The HESS design toolbox can be used to investigate the impact of various battery/supercapacitor configurations and energy management algorithms on the design, battery degradation, and system investment cost of the hybrid storage system. To illustrate the effectiveness of the design toolbox, a case study on Dynamic Moderation frequency support in the UK grid was conducted. For this use case, the application of hybrid storage energy systems is well suited due to the highly dynamic power regulation requirements in island grids with low inertia. By utilizing the fast response of supercapacitors, the stress on the battery caused by short-term high-power peaks can be significantly alleviated. In this way, the hybrid storage system effectively reduces either the battery size or the battery aging rate. In summary, this research highlights the crucial role of a comprehensive analysis in the design of hybrid energy storage systems, addressing both battery aging and overall system costs. The design toolbox can provide transparency regarding the design space and assist in determining the most suitable HESS configuration for a given application. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

14 pages, 7832 KB  
Article
MnO2 Nanoparticles Decorated PEDOT:PSS for High Performance Stretchable and Transparent Supercapacitors
by Guiming Liu, Zhao Huang, Jiujie Xu, Tiesong Lin, Bowen Zhang and Peng He
Nanomaterials 2024, 14(13), 1080; https://doi.org/10.3390/nano14131080 - 24 Jun 2024
Cited by 8 | Viewed by 2750
Abstract
With the swift advancement of wearable electronics and artificial intelligence, the integration of electronic devices with the human body has advanced significantly, leading to enhanced real-time health monitoring and remote disease diagnosis. Despite progress in developing stretchable materials with skin-like mechanical properties, there [...] Read more.
With the swift advancement of wearable electronics and artificial intelligence, the integration of electronic devices with the human body has advanced significantly, leading to enhanced real-time health monitoring and remote disease diagnosis. Despite progress in developing stretchable materials with skin-like mechanical properties, there remains a need for materials that also exhibit high optical transparency. Supercapacitors, as promising energy storage devices, offer advantages such as portability, long cycle life, and rapid charge/discharge rates, but achieving high capacity, stretchability, and transparency simultaneously remains challenging. This study combines the stretchable, transparent polymer PEDOT:PSS with MnO2 nanoparticles to develop high-performance, stretchable, and transparent supercapacitors. PEDOT:PSS films were deposited on a PDMS substrate using a spin-coating method, followed by electrochemical deposition of MnO2 nanoparticles. This method ensured that the nanosized MnO2 particles were uniformly distributed, maintaining the transparency and stretchability of PEDOT:PSS. The resulting PEDOT:PSS/MnO2 nanoparticle electrodes were gathered into a symmetric device using a LiCl/PVA gel electrolyte, achieving an areal capacitance of 1.14 mF cm−2 at 71.2% transparency and maintaining 89.92% capacitance after 5000 cycles of 20% strain. This work presents a scalable and economical technique to manufacturing supercapacitors that combine high capacity, transparency, and mechanical stretchability, suggesting potential applications in wearable electronics. Full article
(This article belongs to the Special Issue High-Capacity Supercapacitors: Nanotechnologies and Nanomaterials)
Show Figures

Figure 1

17 pages, 3797 KB  
Article
Simple and Efficient Synthesis of Ruthenium(III) PEDOT:PSS Complexes for High-Performance Stretchable and Transparent Supercapacitors
by Guiming Liu, Zhao Huang, Jiujie Xu, Bowen Zhang, Tiesong Lin and Peng He
Nanomaterials 2024, 14(10), 866; https://doi.org/10.3390/nano14100866 - 16 May 2024
Viewed by 1713
Abstract
In the evolving landscape of portable electronics, there is a critical demand for components that meld stretchability with optical transparency, especially in supercapacitors. Traditional materials fall short in harmonizing conductivity, stretchability, transparency, and capacity. Although poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) stands out as an exemplary [...] Read more.
In the evolving landscape of portable electronics, there is a critical demand for components that meld stretchability with optical transparency, especially in supercapacitors. Traditional materials fall short in harmonizing conductivity, stretchability, transparency, and capacity. Although poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) stands out as an exemplary candidate, further performance enhancements are necessary to meet the demands of practical applications. This study presents an innovative and effective method for enhancing electrochemical properties by homogeneously incorporating Ru(III) into PEDOT:PSS. These Ru(III) PEDOT:PSS complexes are readily synthesized by dipping PEDOT:PSS films in RuCl3 solution for no longer than one minute, leveraging the high specific capacitance of Ru(III) while minimizing interference with transmittance. The supercapacitor made with this Ru(III) PEDOT:PSS complex demonstrated an areal capacitance of 1.62 mF cm−2 at a transmittance of 73.5%, which was 155% higher than that of the supercapacitor made with PEDOT:PSS under comparable transparency. Notably, the supercapacitor retained 87.8% of its initial capacitance even under 20% tensile strain across 20,000 cycles. This work presents a blueprint for developing stretchable and transparent supercapacitors, marking a significant stride toward next-generation wearable electronics. Full article
(This article belongs to the Special Issue High-Capacity Supercapacitors: Nanotechnologies and Nanomaterials)
Show Figures

Figure 1

23 pages, 9665 KB  
Article
Effect of the Nature of the Electrolyte on the Behavior of Supercapacitors Based on Transparent ZnMn2O4 Thin Films
by Juan José Peinado-Pérez, Maria Cruz López-Escalante and Francisco Martín
Nanomaterials 2023, 13(23), 3017; https://doi.org/10.3390/nano13233017 - 24 Nov 2023
Cited by 12 | Viewed by 2410
Abstract
Transparent ZnMn2O4 thin films on indium tin oxide (ITO) were prepared through spray pyrolysis and implemented as electrodes in symmetric supercapacitors (SSCs). A specific capacitance value of 752 F g−1 at 0.5 A g−1 and a 70% retention [...] Read more.
Transparent ZnMn2O4 thin films on indium tin oxide (ITO) were prepared through spray pyrolysis and implemented as electrodes in symmetric supercapacitors (SSCs). A specific capacitance value of 752 F g−1 at 0.5 A g−1 and a 70% retention over 3000 galvanostatic charge–discharge (GCD) cycles were reached with a 1.0 M Na2SO4 electrolyte in a three-electrode electrochemical cell. Analysis of the cycled electrodes with 1.0 M Na2SO4 revealed a local loss of electrode material; this loss increases when electrodes are used in SCCs. To avoid this drawback, solid polyvinylpyrrolidone-LiClO4 (PVP-LiClO4) and quasi-solid polyvinylpyrrolidone-ionic liquid (PVP-ionic liquid) electrolytes were tested in SSCs as substitutes for aqueous Na2SO4. An improvement in capacitance retention without a loss of electrode material was observed for the PVP-ionic liquid and PVP-LiClO4 electrolytes. With these non-aqueous electrolytes, the tetragonal structure of the ZnMn2O4 spinel was maintained throughout the cyclic voltammetry (CV) cycles, although changes occurred in the stoichiometry from ZnMn2O4 to Mn-rich Zn1−xMn3−xO4. In the case of the electrolyte 1.0 M Na2SO4, the loss of Zn2+ led to the formation of MnO2 via Zn1-xM3-xO4. The location of the three SCCs in the Ragone plot shows supercapacitor behavior. The electrochemical results prove that the pseudocapacitance is the major contributor to the electrode capacitance, and the SCCs can therefore be considered as pseudocapacitors. Full article
(This article belongs to the Special Issue Nanomaterials for Supercapacitors)
Show Figures

Figure 1

20 pages, 24989 KB  
Article
Electrochemical Studies of Inkjet Printed Semi-Transparent NiCo2O4/ITO Supercapacitor Electrodes
by Angeliki Banti, Michalis Charalampakis, Paris Pardalis, Charikleia Prochaska, Sotirios Sotiropoulos and Vassilios Binas
Catalysts 2023, 13(7), 1110; https://doi.org/10.3390/catal13071110 - 16 Jul 2023
Cited by 9 | Viewed by 2342
Abstract
Transparent supercapacitors find a large number of applications as components of many electronic devices and circuits. Mixed Ni–Co oxides (NCOs) are among the most promising supercapacitor electrode materials exhibiting high pseudo-capacitance and good electronic conductivity, while inkjet printing is a low cost and [...] Read more.
Transparent supercapacitors find a large number of applications as components of many electronic devices and circuits. Mixed Ni–Co oxides (NCOs) are among the most promising supercapacitor electrode materials exhibiting high pseudo-capacitance and good electronic conductivity, while inkjet printing is a low cost and versatile technique for electrode printing. Surprisingly, although there have been many studies of NCO supercapacitor films on ITO glass substrates, these have not been prepared by the inkjet technique, and their optical properties were not fully characterized. Hereby, we report the fabrication and characterization of thin (295 and 477 nm thick; 0.017 and 0.035 mg cm−2 NCO loading) semi-transparent NiCo2O4/ITO supercapacitor electrodes, showing transparency to visible light (60–30%, from the thinner to the thicker electrode layers tested), typical mass specific capacitance for NCO-based supercapacitor electrodes (1294–829 Fg−1 at 1 mA cm−2 discharge current density) and high volumetric capacitance (746–608 F cm−3 at 1 mA cm−2). The NCO nanoparticles were prepared by hydrothermal synthesis followed by thermal treatment and ball milling (ZrO2 balls, 0.5 mm diameter), resulting in a cubic nickel–cobalt oxide structure and particle size in the 30–150 nm range, whereas the electrode layers were printed from water-propylene glycol solutions using a Dimatix DMP-2850 drop-on-demand (DoD) inkjet printer. Constant current charge–discharge experiments of the supercapacitor electrode (at ca 0.5 mA cm−2) for 1000 cycles confirmed stability of performance. Full article
(This article belongs to the Special Issue Advanced Catalysts for Electrochemical Energy Storage and Conversion)
Show Figures

Graphical abstract

27 pages, 6816 KB  
Review
Nb2CTx-Based MXenes Most Recent Developments: From Principles to New Applications
by Tholkappiyan Ramachandran, Abdel-Hamid Ismail Mourad and Mostafa S. A. ElSayed
Energies 2023, 16(8), 3520; https://doi.org/10.3390/en16083520 - 18 Apr 2023
Cited by 64 | Viewed by 6240
Abstract
MXenes are progressively evolving two-dimensional (2D) materials with an expanding wide range of applications in the field of energy storage. They rank among the best electrode materials for cutting-edge energy storage systems. Energy storage device performance is greatly enhanced by MXenes and their [...] Read more.
MXenes are progressively evolving two-dimensional (2D) materials with an expanding wide range of applications in the field of energy storage. They rank among the best electrode materials for cutting-edge energy storage systems. Energy storage device performance is greatly enhanced by MXenes and their composite materials. As technology has improved over the last several decades, the demand for high-capacity energy storage devices that are versatile, sturdy, and have cheap production costs has increased. MXene, which is based on Nb2CTx, is the most current material to emerge for energy storage applications. Nb2CTx MXene is now the most sought-after material in the 2D family due to its flexibility, high conductivity, superior electrochemical nature, superior hydrophilicity, tunable surface functional groups, great mechanical properties, and 2D layered structure. Examples include gas and biosensors, water splitting, water purification, antimicrobial coatings, electromagnetic interference shielding, and transparent electrical conductors. Because of the distinctive properties of Nb2CTx MXene, scientists are working on further theoretical and experimental enhancements. The objective of this work is to deliver an outline of current breakthroughs in Nb2CTx MXene for the construction of robust, flexible, and highly effective electrochemical energy storage devices powered by supercapacitors. Deep research has been conducted on the structure of Nb2CTx MXene, as well as on different synthesis techniques and their distinctive properties. The emphasis has also been placed on how various aspects, such as electrode architecture design, electrolyte composition, and so on, influence the charge storage device and electrochemical efficiency of Nb2CTx MXene-based supercapacitors. This article also discusses the most recent advancements in Nb2CTx MXene composite-based supercapacitors. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

14 pages, 4194 KB  
Article
A Self-Healing PVA-Linked Phytic Acid Hydrogel-Based Electrolyte for High-Performance Flexible Supercapacitors
by Jing Zhao, Yuanqi Lu, Yuhua Liu, Lanxin Liu, Jinling Yin, Baozhi Sun, Guiling Wang and Yongquan Zhang
Nanomaterials 2023, 13(3), 380; https://doi.org/10.3390/nano13030380 - 17 Jan 2023
Cited by 11 | Viewed by 4455
Abstract
Flexible supercapacitors can be ideal flexible power sources for wearable electronics due to their ultra-high power density and high cycle life. In daily applications, wearable devices will inevitably cause damage or short circuit during bending, stretching, and compression. Therefore, it is necessary to [...] Read more.
Flexible supercapacitors can be ideal flexible power sources for wearable electronics due to their ultra-high power density and high cycle life. In daily applications, wearable devices will inevitably cause damage or short circuit during bending, stretching, and compression. Therefore, it is necessary to develop proper energy storage devices to meet the requirements of various wearable electronic devices. Herein, Poly(vinyl alcohol) linked various content of phytic acid (PVA-PAx) hydrogels are synthesized with high transparency and high toughness by a one-step freeze-thaw method. The effects of different raw material ratios and agents on the ionic conductivity and mechanical properties of the hydrogel electrolyte are investigated. The PVA-PA21% with 2 M H2SO4 solution (PVA-PA21%-2 M H2SO4) shows a high ionic conductivity of 62.75 mS cm−1. Based on this, flexible supercapacitors fabricated with PVA-PA21%-2 M H2SO4 hydrogel present a high specific capacitance at 1 A g−1 after bending at 90° (64.8 F g−1) and for 30 times (67.3 F g−1), respectively. Moreover, the device shows energy densities of 13.5 Wh kg−1 and 14.0 Wh kg−1 at a power density of 300 W kg−1 after bending at 90° and for 30 times during 10,000 cycles. It provides inspiration for the design and development of electrolytes for related energy electrochemical devices. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

10 pages, 2888 KB  
Article
Optically Controlled TiO2-Embedded Supercapacitors: The Effects of Colloidal Size, Light Wavelength, and Intensity on the Cells’ Performance
by Haim Grebel and Tazima Chowdhury
Nanomaterials 2022, 12(11), 1835; https://doi.org/10.3390/nano12111835 - 27 May 2022
Cited by 2 | Viewed by 2097
Abstract
Optically controlled supercapacitors (S-C) could be of interest to the sensor community, as well as set the stage for novel optoelectronic charging devices. Here, structures constructed of two parallel transparent current collectors (indium-tin-oxide, ITO films on glass substrates) were considered. Active-carbon (A-C) films [...] Read more.
Optically controlled supercapacitors (S-C) could be of interest to the sensor community, as well as set the stage for novel optoelectronic charging devices. Here, structures constructed of two parallel transparent current collectors (indium-tin-oxide, ITO films on glass substrates) were considered. Active-carbon (A-C) films were used as electrodes. Two sets of electrodes were used: as-is electrodes that were used as the reference and electrodes that were embedded with submicron- or micron-sized titanium oxide (TiO2) colloids. While immersed in a 1 M Na2SO4, the electrodes exhibited minimal thermal effects (<3 °C) throughout the course of experiments). The optically induced capacitance increase for TiO2-embedded S-C was large of the order of 30%, whereas S-C without the TiO2 colloids exhibited minimal optically related effects (<3%). Spectrally, the blue spectral band had a relatively larger impact on the light-induced effects. A lingering polarization effect that increased the cell capacitance in the dark after prolonged light exposure is noted; that effect occurred without an indication of a chemical reaction. Full article
Show Figures

Graphical abstract

18 pages, 2014 KB  
Review
Graphene Synthesis and Its Recent Advances in Applications—A Review
by Anuluxan Santhiran, Poobalasuntharam Iyngaran, Poobalasingam Abiman and Navaratnarajah Kuganathan
C 2021, 7(4), 76; https://doi.org/10.3390/c7040076 - 10 Nov 2021
Cited by 44 | Viewed by 17143
Abstract
Owing to the remarkable chemical and physical properties, graphene has been widely investigated by researchers over the last 15 years. This review summarizes major synthetic methods such as mechanical exfoliation, liquid phase exfoliation, unzipping of carbon nanotube, oxidation-reduction, arc discharge, chemical vapor deposition, [...] Read more.
Owing to the remarkable chemical and physical properties, graphene has been widely investigated by researchers over the last 15 years. This review summarizes major synthetic methods such as mechanical exfoliation, liquid phase exfoliation, unzipping of carbon nanotube, oxidation-reduction, arc discharge, chemical vapor deposition, and epitaxial growth of graphene in silicon carbide. Recent advances in the application of graphene in graphene-based lithium ion batteries, supercapacitors, electrochemical sensors, transparent electrodes and environmental based remedies are discussed. Full article
Show Figures

Graphical abstract

13 pages, 3220 KB  
Article
Flexible, Transparent and Highly Conductive Polymer Film Electrodes for All-Solid-State Transparent Supercapacitor Applications
by Xin Guan, Lujun Pan and Zeng Fan
Membranes 2021, 11(10), 788; https://doi.org/10.3390/membranes11100788 - 16 Oct 2021
Cited by 29 | Viewed by 5904
Abstract
Lightweight energy storage devices with high mechanical flexibility, superior electrochemical properties and good optical transparency are highly desired for next-generation smart wearable electronics. The development of high-performance flexible and transparent electrodes for supercapacitor applications is thus attracting great attention. In this work, we [...] Read more.
Lightweight energy storage devices with high mechanical flexibility, superior electrochemical properties and good optical transparency are highly desired for next-generation smart wearable electronics. The development of high-performance flexible and transparent electrodes for supercapacitor applications is thus attracting great attention. In this work, we successfully developed flexible, transparent and highly conductive film electrodes based on a conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The PEDOT:PSS film electrodes were prepared via a simple spin-coating approach followed by a post-treatment with a salt solution. After treatment, the film electrodes achieved a high areal specific capacitance (3.92 mF/cm2 at 1 mA/cm2) and long cycling lifetime (capacitance retention >90% after 3000 cycles) with high transmittance (>60% at 550 nm). Owing to their good optoelectronic and electrochemical properties, the as-assembled all-solid-state device for which the PEDOT:PSS film electrodes were utilized as both the active electrode materials and current collectors also exhibited superior energy storage performance over other PEDOT-based flexible and transparent symmetric supercapacitors in the literature. This work provides an effective approach for producing high-performance, flexible and transparent polymer electrodes for supercapacitor applications. The as-obtained polymer film electrodes can also be highly promising for future flexible transparent portable electronics. Full article
(This article belongs to the Topic Electromaterials for Environment & Energy)
Show Figures

Figure 1

17 pages, 4854 KB  
Article
Polypyrrole and Graphene Nanoplatelets Inks as Electrodes for Flexible Solid-State Supercapacitor
by Antonella Arena, Caterina Branca, Carmine Ciofi, Giovanna D’Angelo, Valentino Romano and Graziella Scandurra
Nanomaterials 2021, 11(10), 2589; https://doi.org/10.3390/nano11102589 - 30 Sep 2021
Cited by 20 | Viewed by 3448
Abstract
Flexible energy storage devices and supercapacitors in particular have become very attractive due to the growing demand for wearable consumer devices. To obtain supercapacitors with improved performance, it is useful to resort to hybrid electrodes, usually nanocomposites, that combine the excellent charge transport [...] Read more.
Flexible energy storage devices and supercapacitors in particular have become very attractive due to the growing demand for wearable consumer devices. To obtain supercapacitors with improved performance, it is useful to resort to hybrid electrodes, usually nanocomposites, that combine the excellent charge transport properties and high surface area of nanostructured carbon with the electrochemical activity of suitable metal oxides or conjugated polymers. In this work, electrochemically active conducting inks are developed starting from commercially available polypyrrole and graphene nanoplatelets blended with dodecylbenzenesulfonic acid. Films prepared by applying the developed inks are characterized by means of Raman measurements, Fourier Transform Infrared (FTIR) analysis, and Atomic Force Microscopy (AFM) investigations. Planar supercapacitor prototypes with an active area below ten mm2 are then prepared by applying the inks onto transparency sheets, separated by an ion-permeable nafion layer impregnated with lithium hexafluorophospate, and characterized by means of electrical measurements. According to the experimental results, the devices show both pseudocapacitive and electric double layer behavior, resulting in areal capacitance that, when obtained from about 100 mF⋅cm−2 in the sample with polypyrrole-based electrodes, increases by a factor of about 3 when using electrodes deposited from inks containing polypyrrole and graphene nanoplateles. Full article
(This article belongs to the Special Issue Fabrication and Characterization of Nanostructured Carbon Electrodes)
Show Figures

Figure 1

25 pages, 6795 KB  
Review
Development of Graphene-Based Polymeric Nanocomposites: A Brief Overview
by Ana M. Díez-Pascual
Polymers 2021, 13(17), 2978; https://doi.org/10.3390/polym13172978 - 2 Sep 2021
Cited by 50 | Viewed by 5788
Abstract
Graphene (G) and its derivatives, such as graphene oxide (GO) and reduced GO (rGO), have outstanding electrical, mechanical, thermal, optical, and electrochemical properties, owed to their 2D structure and large specific surface area. Further, their combination with polymers leads to novel nanocomposites with [...] Read more.
Graphene (G) and its derivatives, such as graphene oxide (GO) and reduced GO (rGO), have outstanding electrical, mechanical, thermal, optical, and electrochemical properties, owed to their 2D structure and large specific surface area. Further, their combination with polymers leads to novel nanocomposites with enhanced structural and functional properties due to synergistic effects. Such nanocomposites are becoming increasingly useful in a wide variety of fields ranging from biomedicine to the electronics and energy storage applications. In this review, a brief introduction on the aforementioned G derivatives is presented, and different strategies to develop polymeric nanocomposites are described. Several functionalization methods including covalent and non-covalent approaches to increase their interaction with polymers are summarized, and selected examples are provided. Further, applications of this type of nanocomposites in the field of energy are discussed, including lithium-ion batteries, supercapacitors, transparent conductive electrodes, counter electrodes of dye-sensitized solar cells, and active layers of organic solar cells. Finally, the challenges and future outlook for G-based polymeric nanocomposites are discussed. Full article
(This article belongs to the Special Issue Carbon-Integrated Polymer Composites and Foams)
Show Figures

Figure 1

Back to TopTop