Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (257)

Search Parameters:
Keywords = transmission radius

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2575 KiB  
Article
Simulation of Propagation Characteristics and Field Distribution in Cylindrical Photonic Crystals Composed of Near-Zero Materials and Metal
by Zhihao Xu, Dan Zhang, Rongkang Xuan, Shenxiang Yang and Na Wang
J. Low Power Electron. Appl. 2025, 15(3), 44; https://doi.org/10.3390/jlpea15030044 - 31 Jul 2025
Viewed by 111
Abstract
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of [...] Read more.
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of the volume fraction of the metal cylinders and exhibits a stop-band profile within the measured frequency range. This unique behavior is attributed to the scattering of long-wavelength light when the wavelength approaches the effective wavelength range of the ENZ material. Taking advantage of this feature, the study selectively filters specific wavelength ranges from the mid-frequency band by varying the ratio of cylinder radius to lattice constant (R/a). Decreasing the R/a ratio enables the design of waveguide devices that operate over a broader guided wavelength range within the intermediate-frequency band. The findings emphasize the importance of the interaction between light and ENZ materials in shaping the transmission characteristics of photonic crystal structures. Full article
Show Figures

Figure 1

25 pages, 3861 KiB  
Article
Research on Acoustic and Parametric Coupling of Single-Layer Porous Plate–Lightweight Glass Wool Composite Structure Doors for Pure Electric Vehicles
by Jintao Su, Xue Li, Haibiao Yang and Ti Wu
World Electr. Veh. J. 2025, 16(7), 393; https://doi.org/10.3390/wevj16070393 - 14 Jul 2025
Viewed by 284
Abstract
Due to the absence of engine noise in new energy vehicles, road noise and wind noise become particularly noticeable. Therefore, studying the noise transmission through car doors is essential to effectively reduce the impact of these noises on the passenger compartment. To address [...] Read more.
Due to the absence of engine noise in new energy vehicles, road noise and wind noise become particularly noticeable. Therefore, studying the noise transmission through car doors is essential to effectively reduce the impact of these noises on the passenger compartment. To address the optimization of the sound absorption performance of single-layer porous plates combined with lightweight glass wool used in the doors of electric vehicles, this study established a microscopic acoustic performance analysis model based on the transfer matrix method and sound transmission loss theory. The effects of medium type, perforation rate, perforation radius, material thickness, and porosity on the sound absorption coefficient, impedance characteristics, and reflection coefficient were systematically investigated. Results indicate that in the high-frequency range (above 1200 Hz), the sound absorption coefficients of both rigid and flexible media can reach up to 0.9. When the perforation rate increases from 0.01 to 0.2, the peak sound absorption coefficient in the high-frequency band (1400–2000 Hz) rises from 0.45 to 0.85. Increasing the perforation radius to 0.03 m improves acoustic impedance matching. This research provides theoretical support and a parameter optimization basis for the design of acoustic packaging materials for electric vehicles, contributing significantly to enhancing the interior acoustic environment. Full article
Show Figures

Figure 1

33 pages, 24073 KiB  
Article
Concentration Dependence of Optical Properties of Double-Doped LiTaO3:Cr3+:Nd3+ Crystals
by Nikolay V. Sidorov, Lyubov A. Bobreva, Alexander Yu. Pyatyshev, Mikhail N. Palatnikov, Olga V. Palatnikova, Alexander V. Skrabatun, Andrei A. Teslenko and Mikhail K. Tarabrin
Materials 2025, 18(14), 3218; https://doi.org/10.3390/ma18143218 - 8 Jul 2025
Viewed by 330
Abstract
LiTaO3 crystals doped with Cr3+ and Nd3+ ions are promising for developing active nonlinear laser media. In this work, the defect structure of LiTaO3 crystals, including those doped with Cr3+ and Nd3+, is examined. X-ray patterns [...] Read more.
LiTaO3 crystals doped with Cr3+ and Nd3+ ions are promising for developing active nonlinear laser media. In this work, the defect structure of LiTaO3 crystals, including those doped with Cr3+ and Nd3+, is examined. X-ray patterns of all six investigated LiTaO3:Cr:Nd crystals are identical and correspond to a highly perfect structure. Using optical microscopy, the presence of defects of various shapes, microinhomogeneities, and lacunae was revealed. The optical absorption and Raman scattering spectra of a series of nonlinear, optical, double-doped LiTaO3:Cr3+:Nd3+ (0.06 ≤ [Cr3+] ≤ 0.2; 0.2 ≤ [Nd3+] ≤ 0.45 wt%) crystals showed that at concentrations of doping Cr3+ ions less than 0.09 wt% and Nd3+ ions less than 0.25 wt%, the crystal structure is characterized by a low level of defects, and the optical transmission spectra characterized by narrow lines corresponding to electron transitions in Nd3+ ions. In this case, for the radiative transition in the cation sublattice, the existence of three nonequivalent neodymium centers is observed, and for the radiative transition, two nonequivalent centers are observed. IR absorption spectroscopy in the OH-stretching vibration range revealed two main spectral regions: 3463–3465 cm−1, associated with stoichiometry changes, and 3486–3490 cm−1, linked to complex defects such as (V-Li)-OH and (Ta4+Li)-OH. A distinct low-intensity line at ~3504 cm−1 was observed only in doped crystals, attributed to (Nd2+Li)-OH defects that significantly distort the oxygen-octahedral clusters due to the larger ionic radius of Nd3+ compared to Ta5+. In contrast, Cr-related defects cause only minor distortions. The Klauer method indicated that the highest concentration of OH-groups occurs in the LiTaO3:Cr3+ (0.09 wt%):Nd3+ (0.25 wt%) crystal, where multiple complex defects are present. Full article
(This article belongs to the Special Issue Advanced Materials in Photoelectrics and Photonics)
Show Figures

Figure 1

18 pages, 3602 KiB  
Article
Modeling and Analysis of Torsional Stiffness in Rehabilitation Robot Joints Using Fractal Theory
by Shuaidong Zou, Wenjie Yan, Guanghui Xie, Renqiang Yang, Huachao Xu and Fanwei Sun
Materials 2025, 18(12), 2866; https://doi.org/10.3390/ma18122866 - 17 Jun 2025
Viewed by 309
Abstract
The torsional stiffness of rehabilitation robot joints is a critical performance determinant, significantly affecting motion accuracy, stability, and user comfort. This paper introduces an innovative traction drive mechanism that transmits torque through friction forces, overcoming mechanical impact issues of traditional gear transmissions, though [...] Read more.
The torsional stiffness of rehabilitation robot joints is a critical performance determinant, significantly affecting motion accuracy, stability, and user comfort. This paper introduces an innovative traction drive mechanism that transmits torque through friction forces, overcoming mechanical impact issues of traditional gear transmissions, though accurately modeling surface roughness effects remains challenging. Based on fractal theory, this study presents a comprehensive torsional stiffness analysis for advanced traction drive joints. Surface topography is characterized using the Weierstrass–Mandelbrot function, and a contact mechanics model accounting for elastic–plastic deformation of micro-asperities is developed to derive the tangential stiffness of individual contact pairs. Static force analysis determines load distribution, and overall joint torsional stiffness is calculated through the integration of individual contact contributions. Parametric analyses reveal that contact stiffness increases with normal load, contact length, and radius, while decreasing with the tangential load and roughness parameter. Stiffness exhibits a non-monotonic relationship with fractal dimension, reaching a maximum at intermediate values. Overall system stiffness demonstrates similar parameter dependencies, with a slight decrease under increasing output load when sufficient preload is applied. This fractal-based model enables more accurate stiffness prediction and offers valuable theoretical guidance for design optimization and performance improvement in rehabilitation robot joints. Full article
Show Figures

Figure 1

22 pages, 6192 KiB  
Article
Advanced DFE, MLD, and RDE Equalization Techniques for Enhanced 5G mm-Wave A-RoF Performance at 60 GHz
by Umar Farooq and Amalia Miliou
Photonics 2025, 12(5), 496; https://doi.org/10.3390/photonics12050496 - 16 May 2025
Viewed by 714
Abstract
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality [...] Read more.
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality in several communication systems, including WiFi networks, cable modems, and long-term evolution (LTE) systems. Its capacity to mitigate inter-symbol interference (ISI) and rapidly adjust to channel variations renders it a flexible option for high-speed data transfer and wireless communications. Conversely, MLD is utilized in applications that require great precision and dependability, including multi-input–multi-output (MIMO) systems, satellite communications, and radar technology. The ability of MLD to optimize the probability of accurate symbol detection in complex, high-dimensional environments renders it crucial for systems where signal integrity and precision are critical. Lastly, RDE is implemented as an alternative algorithm to the CMA-based equalizer, utilizing the idea of adjusting the amplitude of the received distorted symbol so that its modulus is closer to the ideal value for that symbol. The algorithms are tested using a converged 5G mm-wave analog radio-over-fiber (A-RoF) system at 60 GHz. Their performance is measured regarding error vector magnitude (EVM) values before and after equalization for different optical fiber lengths and modulation formats (QPSK, 16-QAM, 64-QAM, and 128-QAM) and shows a clear performance improvement of the output signal. Moreover, the performance of the proposed algorithms is compared to three commonly used algorithms: the simple least mean square (LMS) algorithm, the constant modulus algorithm (CMA), and the adaptive median filtering (AMF), demonstrating superior results in both QPSK and 16-QAM and extending the transmission distance up to 120 km. DFE has a significant advantage over LMS and AMF in reducing the inter-symbol interference (ISI) in a dispersive channel by using previous decision feedback, resulting in quicker convergence and more precise equalization. MLD, on the other hand, is highly effective in improving detection accuracy by taking into account the probability of various symbol sequences achieving lower error rates and enhancing performance in advanced modulation schemes. RDE performs best for QPSK and 16-QAM constellations among all the other algorithms. Furthermore, DFE and MLD are particularly suitable for higher-order modulation formats like 64-QAM and 128-QAM, where accurate equalization and error detection are of utmost importance. The enhanced functionalities of DFE, RDE, and MLD in managing greater modulation orders and expanding transmission range highlight their efficacy in improving the performance and dependability of our system. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

11 pages, 2501 KiB  
Article
Effect of Micro-Dimple Texture on the Lubrication Characteristics of Elliptical Sliding Pairs Between a Flex Spline and a Novel Forced Wave Generator
by Zixiang Yi and Hongbing Xin
Lubricants 2025, 13(5), 192; https://doi.org/10.3390/lubricants13050192 - 23 Apr 2025
Viewed by 575
Abstract
The novel forced wave generator (NFWG) is a critical component of the harmonic drive (HD) without a flexible bearing. Tribological design is required to increase the load-carrying capacity and reduce the frictional resistance in the elliptical sliding pairs (ESPs) between the flex spline [...] Read more.
The novel forced wave generator (NFWG) is a critical component of the harmonic drive (HD) without a flexible bearing. Tribological design is required to increase the load-carrying capacity and reduce the frictional resistance in the elliptical sliding pairs (ESPs) between the flex spline (FS) and the NFWG. As the thin-walled FS operates under cyclic deformation with large displacement in the HD, this paper investigates the effects of the distribution region, depth, shape, and density of micro-dimple textures on the outer contour surface of the NFWG on the load-carrying capacity and the frictional resistance of the ESPs using the CFD method. The analysis reveals that the load capacity and lubrication performances of the ESPs are significantly enhanced when the micro-dimple textures are fully distributed on the outer contour surface of the NFWG, with a depth of 0.1 mm, a radius of 6 mm, and a distribution density of 3.9%. The results provide a reference for the practical design of ESPs in the HD under extreme mechanical transmission conditions. Full article
Show Figures

Figure 1

23 pages, 4731 KiB  
Article
Identification of Potential Inhibitors Targeting Non-Structural Proteins NS3 and NS5 of Dengue Virus Using Docking and Deep Learning Approaches
by Alomgir Hossain, Faria Tasnin Joti, Md. Shohag Hossain, Abdullah Al-Noman, Chomong Thowing, Mehjabin Mursona, Md. Robiul Islam, Md. Ekhtiar Rahman, Mohammad Nurul Matin and Md Azizul Haque
Pharmaceuticals 2025, 18(4), 566; https://doi.org/10.3390/ph18040566 - 13 Apr 2025
Viewed by 1770
Abstract
Background: Dengue virus (DENV) is the fatal pathogenic arthropod-borne virus (arboviruses) that belongs to the Flaviviridae family, which transmits to humans through mosquito bites from infected Aedes aegypti and Aedes albopictus mosquitoes or maternal-fetal transmission. Despite antigenic differences, the four serotypes of [...] Read more.
Background: Dengue virus (DENV) is the fatal pathogenic arthropod-borne virus (arboviruses) that belongs to the Flaviviridae family, which transmits to humans through mosquito bites from infected Aedes aegypti and Aedes albopictus mosquitoes or maternal-fetal transmission. Despite antigenic differences, the four serotypes of DENV (DENV-1 to DENV-4) share 65–78% of their genome. Non-structural (NS) proteins amongst serotypes show analogous functions. Among NS proteins, NS3 and NS5 are frequently used as targets for antiviral drugs due to their multifunctional roles. Methods: To identify potential inhibitors of DENV, we created a phytochemical library of 898 compounds derived from 17 medicinal plants recognized for their medicinal and antiviral properties. The phytochemicals library has been docked against the target proteins. Phytochemicals with a docking score greater than −8.0 kcal/mol were selected for further evaluation using a machine learning approach. Further, molecular dynamics (MD) simulations were conducted to evaluate the root mean square deviation, root mean square fluctuation, solvent-accessible surface area, radius of gyration, and hydrogen bond count of the compounds. Results: From the docking results, Silibinin, Rubiadin, and Ellagic acid showed binding affinities of −8.5, −8.3, and −8.2 kcal/mol, respectively, for NS3, and NSC 640467, Bisandrographolide A, and Andrographidin A showed binding affinities of −9.3, −10.1, and −9.3 kcal/mol, respectively, for NS5 target proteins. These compounds exhibited strong interactions with target proteins. MD simulation results confirmed the stable formation of protein–ligand complexes. Further, absorption, distribution, metabolism, excretion, and toxicity (ADMET) and bioactivity predictions confirmed their pharmacological safety. Conclusions: Despite global public health concerns, DENV still lacks specific drug treatments. Our identified new drug candidates might help for developing effective antiviral inhibitors against the DENV. However, further confirmation is needed through in vivo and in vitro research. Full article
(This article belongs to the Special Issue Small-Molecule Inhibitors for Novel Therapeutics)
Show Figures

Figure 1

13 pages, 3845 KiB  
Article
Ultra-Compact Multimode Micro-Racetrack Resonator Based on Cubic Spline Curves
by Zhen Li, Chuang Cheng, Xin Fu and Lin Yang
Photonics 2025, 12(4), 326; https://doi.org/10.3390/photonics12040326 - 31 Mar 2025
Viewed by 488
Abstract
Micro-racetrack resonators have become one of the key components for realizing signal processing, generation, and integration in microwave photonics, owing to their high Q factor, compact footprint, and tunability. However, most of the reported micro-racetrack resonators are confined to the single-mode regime. In [...] Read more.
Micro-racetrack resonators have become one of the key components for realizing signal processing, generation, and integration in microwave photonics, owing to their high Q factor, compact footprint, and tunability. However, most of the reported micro-racetrack resonators are confined to the single-mode regime. In this paper, we designed an ultra-compact multimode micro-racetrack resonator (MMRR) based on shape-optimized multimode waveguide bends (MWBs). Cubic spline curves were used to represent the MWB boundary and adjoint methods were utilized for inverse optimization, achieving an effective radius of 8 μm. Asymmetric directional couplers (ADCs) were designed to independently couple three modes into a multimode micro-racetrack, according to phase-matching conditions and transmission analysis. The MMRR was successfully fabricated on a commercial platform using a 193 nm dry lithography process. The device exhibited high loaded Q factors of 2.3 × 105, 4.1 × 104, and 2.9 × 104, and large free spectral ranges (FSRs) of 5.4, 4.7, and 4.2 nm for TE0, TE1, and TE2 modes, with about a 19 × 55 μm2 footprint. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

22 pages, 4834 KiB  
Article
Synthesis and Evaluation of a Chitosan-Based Cationic Hydrogel with Strong Antifungal and Antibiofilm Activities Against Clinical Isolates of Candida auris
by Muhammad Kamran, Maryam Aftab, Afreenish Amir, Fatima Javed, Amtul Quddos Latif, Kausar Abbas Saldera, Abdul Ahad, Yousef A. Bin Jardan, Louise Ann Walker, Kiran Nisa, Faheem Ullah and Naseer Ali Shah
Pharmaceuticals 2025, 18(4), 506; https://doi.org/10.3390/ph18040506 - 31 Mar 2025
Viewed by 1101
Abstract
Background: Candida auris is a significant global health concern, due to its rapid transmission, high mortality rate, and resistance to commonly available antifungal drugs. Methodology: During the current study, a cationic polymeric hydrogel was developed using chitosan (CS), polyethylene glycol (PEG), and methacrylic [...] Read more.
Background: Candida auris is a significant global health concern, due to its rapid transmission, high mortality rate, and resistance to commonly available antifungal drugs. Methodology: During the current study, a cationic polymeric hydrogel was developed using chitosan (CS), polyethylene glycol (PEG), and methacrylic acid (MAA). The respective solutions were mixed in a volumetric ratio of 2:1:1. After characterization, the hydrogel was assessed using antifungal, antibiofilm, and hemocompatibility assays. Results: The hydrodynamic radius of 554.7 ± 90.1 nm and zeta potential of 15.6 ± 1.09 mV indicate the ideal size and charge for topical applications and in vivo studies, respectively. The formulation exhibited improved thermal stability, enhanced swelling, and a drug release profile for non-Fickian diffusion. The hydrogel effectively inhibited fungal growth in agar plates (42 ± 7.31 mm zone of inhibition), with a mean IC50 of 15.17 ± 4.01 μg/mL and MIC of 29.30 ± 11.72 μg/mL. Calcofluor white (CFW) staining showed diffuse irregular yeast cells, suggesting increased membrane permeability, eventually leading to cell death. The hemocompatibility assay revealed no visible agglutination or hemolysis at the MIC value. The formulation exhibited significantly reduced biofilm formation compared to the growth control (p < 0.05). Additionally, in silico analysis revealed that MAA showed superior oral bioavailability, no inhibitory activity on cytochrome P450 enzymes, and low potential for toxicity through nuclear receptor signaling pathways. Conclusions: Cationic hydrogels show promise as potential antifungal treatments. The development of cost-effective and improved therapeutic methods is crucial to combat this deadly pathogen and to improve patient outcomes. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

14 pages, 4727 KiB  
Article
Ultrathin Gold Nanowires
by Shuo Liu, Chunmeng Liu, Ye Wang, Jiaqi Zhang, Shaobo Cheng and Chongxin Shan
Nanomaterials 2025, 15(6), 428; https://doi.org/10.3390/nano15060428 - 11 Mar 2025
Cited by 1 | Viewed by 770
Abstract
Nanowires (NWs), particularly Au NWs, have garnered significant attention for their exceptional properties and applications as nanoscale interconnects in micro-nano electronics. Nevertheless, the stable structure of sub-2nm Au NWs continues to be ambiguous due to the significant challenges in both the fabrication processes [...] Read more.
Nanowires (NWs), particularly Au NWs, have garnered significant attention for their exceptional properties and applications as nanoscale interconnects in micro-nano electronics. Nevertheless, the stable structure of sub-2nm Au NWs continues to be ambiguous due to the significant challenges in both the fabrication processes and direct atomic-scale structural characterization. This study employs in situ transmission electron microscopy (TEM) techniques combined with the Perdew–Burke–Ernzerhof (PBE) functional within density functional theory (DFT) to systematically investigate the intrinsic relationship between the atomic structure and stability of oriented Au NWs. Our results indicate that the structural stability of Au NWs is influenced by both their structural symmetry and the proportion of (111) surfaces. Additionally, the Young’s modulus of Au NWs is related to their cross-sectional symmetry, with an inverse correlation observed when the equivalent radius is below 6 Å. Finally, the number of conductive channels in Au NWs increases with cross-sectional size, with higher symmetry exhibiting more conducting channels. The experimental results offer significant insights into the key determinants influencing the structural integrity of ultrathin gold nanowires, which serves as a crucial basis for their implementation in next-generation nanoscale device technologies. Full article
Show Figures

Graphical abstract

11 pages, 2089 KiB  
Article
An Experimental Study of Radiated Energy from an Optical Fiber and the Potential for an Optical MIMO System
by Hasan Farahneh, Jamal S. Rahhal, Dia I. Abualnadi, Ibrahim Mansour, Ahmad K. Atieh and Xavier Fernando
Appl. Sci. 2025, 15(6), 2916; https://doi.org/10.3390/app15062916 - 7 Mar 2025
Viewed by 2028
Abstract
Leaky feeders provide seamless and uniform signal coverage in confined spaces like tunnels, mines, and buildings. Their easy scalability and integration with modern systems, like Multiple Input Multiple Output (MIMO), make them ideal for environments requiring reliable and consistent connectivity. However, using optical [...] Read more.
Leaky feeders provide seamless and uniform signal coverage in confined spaces like tunnels, mines, and buildings. Their easy scalability and integration with modern systems, like Multiple Input Multiple Output (MIMO), make them ideal for environments requiring reliable and consistent connectivity. However, using optical fiber as a radiating cable has never been investigated before. This may seem infeasible at first sight. However, our experimental study shows otherwise. We measured light leaking from a bent optical fiber transmitter. We also derived closed-form formulas to describe the amount of leakage energy and found that this energy exponentially varies with the square of the curvature radius. This allows us to design an Optical Leaky Feeder (OLF) transmission system for the first time. Then, we analytically show that a slotted optical fiber can be used as a MIMO receiver. The proposed system can ensure reliable, high-quality signal distribution even in challenging environments like tunnels, industrial settings, and dense urban areas. Full article
(This article belongs to the Special Issue Signal Processing and Communication for Wireless Sensor Network)
Show Figures

Figure 1

19 pages, 2810 KiB  
Article
Effect of Optical Aberrations on Laser Transmission Performance in Maritime Atmosphere Turbulence
by Jiabao Peng, Yaqian Li, Zhangjun Wang, Chao Chen and Tao Zhu
Photonics 2025, 12(2), 140; https://doi.org/10.3390/photonics12020140 - 10 Feb 2025
Viewed by 990
Abstract
Focusing on the three critical factors influencing laser communication systems operating in marine environments: atmospheric turbulence disturbances, atmospheric attenuation, and optical aberration effects, in this paper, we employ numerical simulation methods to systematically investigate the influence of four typical Zernike aberrations (defocus, y-coma, [...] Read more.
Focusing on the three critical factors influencing laser communication systems operating in marine environments: atmospheric turbulence disturbances, atmospheric attenuation, and optical aberration effects, in this paper, we employ numerical simulation methods to systematically investigate the influence of four typical Zernike aberrations (defocus, y-coma, spherical aberration, and y-secondary quadrupole) on laser atmospheric transmission characteristics and system bit error rates. A comparison of their atmospheric transmission performance with that of the aberration-free state is also presented. The results show that reducing turbulence strength or increasing receiver aperture radius can effectively mitigate the scintillation effect of intensity fluctuations. Among the four typical aberrations, the fluctuation range of the relative change rate of the scintillation index for y-coma aberration relative to the aberration-free state is the largest. In weak turbulence and short-distance laser transmission over the sea, the beam drift caused by these four aberrations is not significant, and stronger turbulence strength or higher weight coefficients lead to more severe beam expansion. The on-axis logarithmic intensity probability density distribution of laser beams with different aberrations approximately follows a log-normal distribution. The skewness (S) and kurtosis (K) of the logarithmic intensity distribution are negatively correlated and always satisfy S < 0 and K > 0. Additionally, we found that as turbulence strength increases, turbulence effects significantly raise the required signal-to-noise ratio (SNR) values to achieve a bit error rate of 10−9. When turbulence strength reaches a certain level, the impact weights of different aberrations on system performance may undergo changes. These results can provide theoretical references for the design and optimization of laser system parameters in marine laser communication. Full article
(This article belongs to the Special Issue Optical Light Propagation and Communication Through Turbulent Medium)
Show Figures

Figure 1

26 pages, 20364 KiB  
Article
Seasonal Mathematical Model of Salmonellosis Transmission and the Role of Contaminated Environments and Food Products
by Mohammed H. Alharbi, Fawaz K. Alalhareth and Mahmoud A. Ibrahim
Mathematics 2025, 13(2), 322; https://doi.org/10.3390/math13020322 - 20 Jan 2025
Viewed by 1205
Abstract
Salmonellosis continues to be a global public health priority in which humans, livestock, and the contaminated environment interact with food to create complex interactions. Here, a new non-autonomous model is proposed to capture seasonal dynamics of Salmonella typhimurium transmission with key compartments that [...] Read more.
Salmonellosis continues to be a global public health priority in which humans, livestock, and the contaminated environment interact with food to create complex interactions. Here, a new non-autonomous model is proposed to capture seasonal dynamics of Salmonella typhimurium transmission with key compartments that include humans, cattle, and bacteria in environmental and food sources. The model explores how bacterial growth, shedding, and ingestion rates, along with contamination pathways, determine disease dynamics. Some analytical derivations of the basic reproduction number (R0) and threshold conditions for disease persistence or extinction are derived by using the spectral radius of a linear operator associated with the monodromy matrix. Parameter estimation for the model was accomplished with the aid of Latin hypercube sampling and least squares methods on Salmonella outbreak data from Saudi Arabia ranging from 2018 to 2021. The model was able to conduct an analysis based on the estimated 0.606 value of R0, and this meant that the model was able to fit reasonably well for both the cumulative and the new individual case data, which in turn, suggests the disease is curable. Predictions indicate a gradual decline in the number of new cases, with stabilization anticipated at approximately 40,000 cumulative cases. Further simulations examined the dynamics of disease extinction and persistence based on R0. When R0 is less than 1, the disease-free equilibrium is stable, resulting in the extinction of the disease. Conversely, when R0 exceeds 1, the disease persists, exhibiting endemic characteristics with recurrent outbreaks. Sensitivity analysis identified several parameters as having a significant impact on the model’s outcomes, specifically mortality and infection rates, along with decay rates. These findings highlight the critical importance of precise parameter estimation in understanding and controlling the transmission dynamics of Salmonella. Sensitivity indices and contour plots were employed to assess the impact of various parameters on the basic reproduction number and provide insights into the factors most influencing disease transmission. Full article
(This article belongs to the Special Issue Dynamics and Differential Equations in Mathematical Biology)
Show Figures

Figure 1

14 pages, 13519 KiB  
Article
Study on the Coarsening Behavior of Interphase Precipitates and Random Precipitates in Steel Under the High-Temperature Environment of Fire
by Jinghua Cong, Yongzhe Yang, Haibin Zhu, Xueliang Shang, Hongyu Wu, Zhendong Song, Xuemin Wang and Xiangyu Xu
Metals 2025, 15(1), 73; https://doi.org/10.3390/met15010073 - 16 Jan 2025
Viewed by 771
Abstract
In the domain of fire-resistant steels, the characteristics of precipitates significantly influence material properties. This study developed a novel heat treatment protocol to concurrently achieve both interphase precipitation and random precipitation. Samples were subjected to isothermal treatments at various temperatures and durations, while [...] Read more.
In the domain of fire-resistant steels, the characteristics of precipitates significantly influence material properties. This study developed a novel heat treatment protocol to concurrently achieve both interphase precipitation and random precipitation. Samples were subjected to isothermal treatments at various temperatures and durations, while techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to thoroughly analyze the coarsening behavior of the two types of precipitate and reveal their thermal stability differences. The results show that the growth and coarsening rates of interphase precipitates are substantially lower than random precipitates. Coarsening kinetics analysis reveals that the radius of random precipitates follows a 1/3 power law with time at 600 °C and 650 °C, whereas the radius of interphase precipitates adheres to a 1/6 power law at 600 °C and a 1/5 power law at 650 °C. Furthermore, interphase precipitation demonstrates excellent size uniformity, which hinders the formation of a concentration gradient, thereby reducing the coarsening rate and enhancing thermal stability. After prolonged tempering treatment, interphase precipitation maintains a higher strengthening contribution than random precipitation. This study provides novel insights and theoretical foundations for the design and development of fire-resistant steels. Full article
(This article belongs to the Special Issue Design, Preparation and Properties of High Performance Steels)
Show Figures

Figure 1

32 pages, 13777 KiB  
Article
Optimal Dimensional Synthesis of Ackermann Steering Mechanisms for Three-Axle, Six-Wheeled Vehicles
by Yaw-Hong Kang, Da-Chen Pang and Yi-Ching Zeng
Appl. Sci. 2025, 15(2), 800; https://doi.org/10.3390/app15020800 - 15 Jan 2025
Cited by 4 | Viewed by 1582
Abstract
This study employs four metaheuristic optimization methods to optimize the dimensional synthesis of Ackermann steering mechanisms for three-axle, six-wheeled vehicles with front-axle steering mode and reverse-phase steering mode. The employed optimization methods include Particle Swarm Optimization (PSO), Hybrid Particle Swarm Optimization (HPSO), Differential [...] Read more.
This study employs four metaheuristic optimization methods to optimize the dimensional synthesis of Ackermann steering mechanisms for three-axle, six-wheeled vehicles with front-axle steering mode and reverse-phase steering mode. The employed optimization methods include Particle Swarm Optimization (PSO), Hybrid Particle Swarm Optimization (HPSO), Differential Evolution with golden ratio (DE-gr), and Linearly Ensemble of Parameters and Mutation Strategies in Differential Evolution (L-EPSDE). With a front-wheel steering angle range of 70 degrees, two hundred optimization experiments were conducted for each method, and statistical analyses revealed that DE-gr and L-EPSDE methods outperformed PSO and HPSO methods in terms of standard deviation, mean value, and minimum error. These two methods exhibited superior convergence stability, faster convergence, and higher accuracy compared to PSO and HPSO. Reverse-phase (K = 1) steering mode outperformed front-axle steering mode, delivering reduced steering errors and turning radii. Considering the transmission ratio of front to rear axle (K) as a design variable in reverse-phase steering mode increased design flexibility and significantly lowered steering errors for the front and rear axle steering mechanisms. However, this comes with a slight increase in the turning radius of the vehicle’s front part compared to when K = 1. The optimized mechanism, designed using the DE-gr method, was validated through kinematic simulations and steering analyses using MSC-ADAMS v2015 software, further confirming the effectiveness and reliability of the proposed design. Full article
(This article belongs to the Special Issue Simulations and Experiments in Design of Transport Vehicles)
Show Figures

Figure 1

Back to TopTop