Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = transition of ENSO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 15276 KB  
Article
The Dynamics of Shannon Entropy in Analyzing Climate Variability for Modeling Temperature and Precipitation Uncertainty in Poland
by Bernard Twaróg
Entropy 2025, 27(4), 398; https://doi.org/10.3390/e27040398 - 8 Apr 2025
Viewed by 1450
Abstract
The aim of this study is to quantitatively analyze the long-term climate variability in Poland during the period 1901–2010, using Shannon entropy as a measure of uncertainty and complexity within the atmospheric system. The analysis is based on the premise that variations in [...] Read more.
The aim of this study is to quantitatively analyze the long-term climate variability in Poland during the period 1901–2010, using Shannon entropy as a measure of uncertainty and complexity within the atmospheric system. The analysis is based on the premise that variations in temperature and precipitation reflect the dynamic nature of the climate, understood as a nonlinear system sensitive to fluctuations. This study focuses on monthly distributions of temperature and precipitation, modeled using the bivariate Clayton copula function. A normal marginal distribution was adopted for temperature and a gamma distribution for precipitation, both validated using the Anderson–Darling test. To improve estimation accuracy, a bootstrap resampling technique and numerical integration were applied to calculate Shannon entropy at each of the 396 grid points, with a spatial resolution of 0.25° × 0.25°. The results indicate a significant increase in Shannon entropy during the summer months, particularly in July (+0.203 bits) and January (+0.221 bits), compared to the baseline period (1901–1971), suggesting a growing unpredictability of the climate. The most pronounced trend changes were identified in the years 1985–1996 (as indicated by the Pettitt test), while seasonal trends were confirmed using the Mann–Kendall test. A spatial analysis of entropy at the levels of administrative regions and catchments revealed notable regional disparities—entropy peaked in January in the West Pomeranian Voivodeship (4.919 bits) and reached its minimum in April in Greater Poland (3.753 bits). Additionally, this study examined the relationship between Shannon entropy and global climatic indicators, including the Land–Ocean Temperature Index (NASA GISTEMP) and the ENSO index (NINO3.4). Statistically significant positive correlations were observed between entropy and global temperature anomalies during both winter (ρ = 0.826) and summer (ρ = 0.650), indicating potential linkages between local climate variability and global warming trends. To explore the direction of this relationship, a Granger causality test was conducted, which did not reveal statistically significant causality between NINO3.4 and Shannon entropy (p > 0.05 for all lags tested), suggesting that the observed relationships are likely co-varying rather than causal in the Granger sense. Further phase–space analysis (with a delay of τ = 3 months) allowed for the identification of attractors characteristic of chaotic systems. The entropy trajectories revealed transitions from equilibrium states (average entropy: 4.124–4.138 bits) to highly unstable states (up to 4.768 bits), confirming an increase in the complexity of the climate system. Shannon entropy thus proves to be a valuable tool for monitoring local climatic instability and may contribute to improved risk modeling of droughts and floods in the context of climate change in Poland. Full article
(This article belongs to the Special Issue 25 Years of Sample Entropy)
Show Figures

Figure 1

32 pages, 22462 KB  
Article
Spatiotemporal Dynamics of Marine Heatwaves and Ocean Acidification Affecting Coral Environments in the Philippines
by Rose Angeli Tabanao Macagga and Po-Chun Hsu
Remote Sens. 2025, 17(6), 1048; https://doi.org/10.3390/rs17061048 - 17 Mar 2025
Cited by 1 | Viewed by 2961
Abstract
The coral reefs in the Philippines are facing an unprecedented crisis. This study, based on a comprehensive analysis of marine heatwaves (MHWs), degree heating weeks (DHWs), and ocean acidification (OA) indices derived from satellite observations and reanalysis data, reveals how thermal stress and [...] Read more.
The coral reefs in the Philippines are facing an unprecedented crisis. This study, based on a comprehensive analysis of marine heatwaves (MHWs), degree heating weeks (DHWs), and ocean acidification (OA) indices derived from satellite observations and reanalysis data, reveals how thermal stress and OA have progressively eroded coral ecosystems from 1985 to 2022. This study analyzed 12 critical coral habitats adjacent to the Philippines. The monthly average sea surface temperature (SST) in the study area ranged from 26.6 °C to 29.3 °C. The coast of Lingayen Gulf was identified as the most vulnerable coral reef site in the Philippines, followed by Davao Oriental and Polillo Island. The coast of Lingayen Gulf recorded the highest total MHW days in 2022, amounting to 293 days. The coast of Lingayen Gulf also reached the highest DHW values in July and August 2022, with 8.94 °C weeks, while Davao Oriental experienced the most extended average duration of MHWs in 2020, lasting 90.5 days per event. Large-scale climate features such as the El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) significantly influenced the study area’s SST anomalies and MHW events. High-risk coral bleaching periods, such as 1988–1989, 1998–1999, 2007–2008, and 2009–2010, were characterized by transitions from El Niño and positive PDO phases, to La Niña and negative PDO phases. However, since 2015, global warming has led to high cumulative heat stress without specific climate background patterns. We propose a Coral Marine Environmental Vulnerability Index (CoralVI) to integrate the spatiotemporal dynamics of warming and acidification and their impacts on coral habitats. The data show a rapid increase in the marine environmental vulnerability of coral habitats in the Philippines in recent years, extending to almost the entire coastline, posing significant threats to coral survival. Full article
Show Figures

Figure 1

17 pages, 3817 KB  
Article
A Reconstruction of May–June Mean Temperature since 1775 for Conchos River Basin, Chihuahua, Mexico, Using Tree-Ring Width
by Aldo Rafael Martínez-Sifuentes, José Villanueva-Díaz, Ramón Trucíos-Caciano, Nuria Aide López-Hernández, Juan Estrada-Ávalos and Víctor Manuel Rodríguez-Moreno
Atmosphere 2024, 15(7), 808; https://doi.org/10.3390/atmos15070808 - 5 Jul 2024
Viewed by 1409
Abstract
Currently there are several precipitation reconstructions for northern Mexico; however, there is a lack of temperature reconstructions to understand past climate change, the impact on ecosystems and societies, etc. The central region of Chihuahua is located in a transition zone between the Sierra [...] Read more.
Currently there are several precipitation reconstructions for northern Mexico; however, there is a lack of temperature reconstructions to understand past climate change, the impact on ecosystems and societies, etc. The central region of Chihuahua is located in a transition zone between the Sierra Madre Occidental and the Great Northern Plain, characterized by extreme temperatures and marked seasonal variability. The objectives of this study were (1) to generate a climatic association between variables from reanalysis models and the earlywood series for the center of Chihuahua, (2) to generate a reconstruction of mean temperature, (3) to determine extreme events, and (4) to identify the influence of ocean–atmosphere phenomena. Chronologies were downloaded from the International Tree-Ring Data Bank and climate information from the NLDAS-2 and ClimateNA reanalysis models. The response function was performed using climate models and regional dendrochronological series. A reconstruction of mean temperature was generated, and extreme periods were identified. The representativeness of the reconstruction was evaluated through spatial correlation, and low-frequency events were determined through multitaper spectral analysis and wavelet analysis. The influence of ocean–atmosphere phenomena on temperature reconstruction was analyzed using Pearson correlation, and the influence of ENSO was examined through wavelet coherence analysis. Highly significant correlations were found for maximum, minimum, and mean temperature, as well as for precipitation and relative humidity, before and after the growth year. However, the seasonal period with the highest correlation was found from May to June for mean temperature, which was used to generate the reconstruction from 1775 to 2022. The most extreme periods were 1775, 1801, 1805, 1860, 1892–1894, 1951, 1953–1954, and 2011–2012. Spectral analysis showed significant frequencies of 56.53 and 2.09 years, and wavelet analysis from 0 to 2 years from 1970 to 1980, from 8 to 11 years from 1890 to 1910, and from 30 to 70 years from 1860 to 2022. A significant association was found with the Multivariate ENSO Index phenomenon (r = 0.40; p = 0.009) and Pacific Decadal Oscillation (r = −0.38; p = 0.000). Regarding the ENSO phenomenon, an antiphase association of r = −0.34; p = 0.000 was found, with significant periods of 1 to 4 years from 1770 to 1800, 1845 to 1850, and 1860 to 1900, with periods of 6 to 10 years from 1875 to 1920, and from 6 to 8 years from 1990 to 2000. This study allowed a reconstruction of mean temperature through reanalysis data, as well as a historical characterization of temperature for central Chihuahua beyond the observed records. Full article
(This article belongs to the Special Issue Paleoclimate Reconstruction (2nd Edition))
Show Figures

Figure 1

21 pages, 6613 KB  
Article
Influence of Spring Precipitation over Maritime Continent and Western North Pacific on the Evolution and Prediction of El Niño–Southern Oscillation
by Yifan Ma, Fei Huang and Ruihuang Xie
Atmosphere 2024, 15(5), 584; https://doi.org/10.3390/atmos15050584 - 10 May 2024
Viewed by 1431
Abstract
Previous studies suggested that spring precipitation over the tropical western Pacific Ocean can influence the development of El Niño–Southern Oscillation (ENSO). To identify crucial precipitation patterns for post-spring ENSO evolution, a singular value decomposition (SVD) method was applied to spring precipitation and sea [...] Read more.
Previous studies suggested that spring precipitation over the tropical western Pacific Ocean can influence the development of El Niño–Southern Oscillation (ENSO). To identify crucial precipitation patterns for post-spring ENSO evolution, a singular value decomposition (SVD) method was applied to spring precipitation and sea surface temperature (SST) anomalies, and three precipitation and ENSO types were obtained with each highlighting precipitation over the Maritime Continent (MC) or western north Pacific (WNP). High MC spring precipitation corresponds to the slow decay of a multi-year La Niña event. Low MC spring precipitation is associated with a rapid El Niño-to-La Niña transition. High WNP spring precipitation is related to positive north Pacific meridional mode and induces the El Niño initiation. Among the three ENSO types, ocean current and heat content behave differently. Based on these spring precipitation and oceanic factors, a statistical model was established aimed at predicting winter ENSO state. Compared to a full dynamical model, this model exhibits higher prediction skills in the winter ENSO phase and amplitude for the period of 1980–2022. The explained total variance of the winter Niño-3.4 index increases from 43% to 75%, while the root-mean-squared error decreases from 0.82 °C to 0.53 °C. The practical utility and limitations of this model are also discussed. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 3633 KB  
Article
A Composite Tool for Forecasting El Niño: The Case of the 2023–2024 Event
by Costas Varotsos, Nicholas V. Sarlis, Yuri Mazei, Damir Saldaev and Maria Efstathiou
Forecasting 2024, 6(1), 187-203; https://doi.org/10.3390/forecast6010011 - 7 Mar 2024
Cited by 13 | Viewed by 5689
Abstract
Remotely sensed data play a crucial role in monitoring the El Niño/La Niña Southern Oscillation (ENSO), which is an oceanic-atmospheric phenomenon occurring quasi-periodically with several impacts worldwide, such as specific biological and global climate responses. Since 1980, Earth has witnessed three strong ENSO [...] Read more.
Remotely sensed data play a crucial role in monitoring the El Niño/La Niña Southern Oscillation (ENSO), which is an oceanic-atmospheric phenomenon occurring quasi-periodically with several impacts worldwide, such as specific biological and global climate responses. Since 1980, Earth has witnessed three strong ENSO events (1982–1983, 1997–1998, 2015–2016). In September 2022, La Niña entered its third year and was unlikely to continue through 2024. Instead, since 2022, forecasts have pointed to a transition from La Niña to a Neutral phase in the summer or late 2023. The onset of El Niño occurred around April 2023, and it is anticipated by sophisticated models to be a strong event through the Northern Hemisphere winter (December 2023–February 2024). The aim of this study is to demonstrate the ability of the combination of two new methods to improve the accuracy of the above claim because El Niño apart from climate anomalies, significantly impacts Earth’s ecosystems and human societies, regulating the spread of diseases by insects (e.g., malaria and dengue fever), and influencing nutrients, phytoplankton biomass, and primary productivity. This is done by exploring first the previous major El Niño events in the period January 1876–July 2023. Our calculations show that the ongoing 2023–2024 El Niño will not be the strongest. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2024)
Show Figures

Figure 1

37 pages, 6316 KB  
Review
Interaction between the Westerlies and Asian Monsoons in the Middle Latitudes of China: Review and Prospect
by Xiang-Jie Li and Bing-Qi Zhu
Atmosphere 2024, 15(3), 274; https://doi.org/10.3390/atmos15030274 - 25 Feb 2024
Cited by 9 | Viewed by 3364
Abstract
The westerly circulation and the monsoon circulation are the two major atmospheric circulation systems affecting the middle latitudes of the Northern Hemisphere (NH), which have significant impacts on climate and environmental changes in the middle latitudes. However, until now, people’s understanding of the [...] Read more.
The westerly circulation and the monsoon circulation are the two major atmospheric circulation systems affecting the middle latitudes of the Northern Hemisphere (NH), which have significant impacts on climate and environmental changes in the middle latitudes. However, until now, people’s understanding of the long-term paleoenvironmental changes in the westerly- and monsoon-controlled areas in China’s middle latitudes is not uniform, and the phase relationship between the two at different time scales is also controversial, especially the exception to the “dry gets drier, wet gets wetter” paradigm in global warming between the two. Based on the existing literature data published, integrated paleoenvironmental records, and comprehensive simulation results in recent years, this study systematically reviews the climate and environmental changes in the two major circulation regions in the mid-latitudes of China since the Middle Pleistocene, with a focus on exploring the phase relationship between the two systems at different time scales and its influencing mechanism. Through the reanalysis and comparative analysis of the existing data, we conclude that the interaction and relationship between the two circulation systems are relatively strong and close during the warm periods, but relatively weak during the cold periods. From the perspective of orbital, suborbital, and millennium time scales, the phase relationship between the westerly and Asian summer monsoon (ASM) circulations shows roughly in-phase, out-of-phase, and anti-phase transitions, respectively. There are significant differences between the impacts of the westerly and ASM circulations on the middle-latitude regions of northwest China, the Qinghai–Tibet Plateau, and eastern China. However, under the combined influence of varied environmental factors such as BHLSR (boreal high-latitude solar radiation), SST (sea surface temperature), AMOC (north Atlantic meridional overturning circulation), NHI (Northern Hemisphere ice volume), NAO (North Atlantic Oscillation), ITCZ (intertropical convergence zone), WPSH (western Pacific subtropical high), TIOA (tropical Indian Ocean anomaly), ENSO (El Niño/Southern Oscillation), CGT/SRP (global teleconnection/Silk Road pattern), etc., there is a complex and close coupling relationship between the two, and it is necessary to comprehensively consider their “multi-factor’s joint-action” mechanism and impact, while, in general, the dynamic mechanisms driving the changes of the westerly and ASM circulations are not the same at different time scales, such as orbital, suborbital, centennial to millennium, and decadal to interannual, which also leads to the formation of different types of phase relationships between the two at different time scales. Future studies need to focus on the impact of this “multi-factor linkage mechanism” and “multi-phase relationship” in distinguishing the interaction between the westerly and ASM circulation systems in terms of orbital, suborbital, millennium, and sub-millennium time scales. Full article
(This article belongs to the Special Issue Extreme Climate in Arid and Semi-arid Regions)
Show Figures

Figure 1

13 pages, 4527 KB  
Article
Wavelet Analysis of Ozone Driving Factors Based on ~20 Years of Ozonesonde Measurements in Beijing
by Yunshu Zeng, Jinqiang Zhang, Yajuan Li, Sichang Liu and Hongbin Chen
Atmosphere 2023, 14(12), 1733; https://doi.org/10.3390/atmos14121733 - 25 Nov 2023
Cited by 4 | Viewed by 1846
Abstract
A long-term vertical ozone observational dataset has been provided during 2001–2019 by ozonesonde measurements in Beijing on the North China Plain. Previous studies using this dataset primarily focused on the vertical characteristics of climatological ozone and its variation; however, the driving factors of [...] Read more.
A long-term vertical ozone observational dataset has been provided during 2001–2019 by ozonesonde measurements in Beijing on the North China Plain. Previous studies using this dataset primarily focused on the vertical characteristics of climatological ozone and its variation; however, the driving factors of ozone variation have not been well discussed. In this study, by applying the wavelet analysis method (including continuous wavelet transform and cross wavelet) and sliding correlation coefficients to ~20 years of ozonesonde measurements collected in Beijing, we analyzed the dominant modes of ozone column variability within three height ranges over Beijing (total column ozone: TOT; stratospheric column ozone: SCO; and tropospheric column ozone: TCO). Moreover, we also preliminarily discussed the relationship between these three ozone columns and the El Niño Southern Oscillation (ENSO), Quasi-biennial Oscillation (QBO), and 11-year solar activity cycle. The results revealed that the ozone columns within the three height ranges predominantly adhered to interannual variability patterns, and the short-term variabilities in TOT and SCO may have been related to eruptive volcanic activity. In comparison to the TOT and SCO, the TCO was more susceptible to the forcing influences of high-frequency factors such as pollutant transport. Similar to the results in other mid-latitude regions, strong ENSO and QBO signals were revealed in the interannual ozone column variability over Beijing. The TOT and SCO showed positive anomalous responses to ENSO warm-phase events, and the peak of the ENSO warm phase led the winter peaks of the TOT and SCO by approximately 3–6 months. During the strong cold–warm transition phase in 2009–2012, the TOT and SCO showed a significant positive correlation with the ENSO index. The strong seasonality of the meridional circulation process driven by the QBO led to a significant positive correlation between the QBO index and the TOT and SCO in the interannual cycle, except for two periods of abnormal QBO fluctuations in 2010–2012 and 2015–2017, whereas the TCO showed a time-lagged correlation of approximately 3 months in the annual cycle relative to the QBO due to the influence of the thermodynamic tropopause. In addition, analysis of the F10.7 index and the ozone columns revealed that the ozone columns over Beijing exhibited lagged responses to the peaks of sunspot activity, and there was no obvious correlation between ozone columns and 11-year solar activity cycle. Given the complex driving mechanism of the climatic factors on local ozone variability, the preliminary results obtained in this study still require further validation using longer time series of observational data and the combination of chemical models and more auxiliary data. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing)
Show Figures

Figure 1

19 pages, 4649 KB  
Article
Refining Fire–Climate Relationship Methodologies: Southern California
by Benjamin Bleiman, Tom Rolinski, Eric Hoffman, Eric Kelsey and David Bangor
Fire 2023, 6(8), 302; https://doi.org/10.3390/fire6080302 - 5 Aug 2023
Viewed by 2850
Abstract
Efforts to delineate the influence of atmospheric variability on regional wildfire activity have previously been complicated by the stochastic occurrence of ignition and large fire events, particularly for Southern California, where anthropogenic modulation of the fire regime is extensive. Traditional metrics of wildfire [...] Read more.
Efforts to delineate the influence of atmospheric variability on regional wildfire activity have previously been complicated by the stochastic occurrence of ignition and large fire events, particularly for Southern California, where anthropogenic modulation of the fire regime is extensive. Traditional metrics of wildfire activity inherently contain this stochasticity, likely weakening regional fire–climate relationships. To resolve this complication, we first develop a new method of quantifying regional wildfire activity that aims to more clearly capture the atmospheric fire regime component by aggregating four metrics of fire activity into an annual index value, the Annual Fire Severity Index (AFSI), for the 27-year period of 1992–2018. We then decompose the AFSI into trend and oscillatory components using singular spectrum analysis (SSA) and relate each component to a set of five climate predictors known to modulate macroscale fire activity in Southern California. These include the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), El Niño–Southern Oscillation (ENSO), and Santa Ana wind (SAW) events, and marine layer frequency. The results indicate that SSA effectively isolates the individual influence of each predictor on AFSI quantified by generally moderate fire–climate correlations, |r|>0.4, over the full study period, and |r|>0.5 over select 13–15-year periods. A transition between weaker and stronger fire–climate relationships for each of the oscillatory PC–predictor pairs is centered around the mid-2000s, suggesting a significant shift in fire–climate variability at this time. Our approach of aggregating and decomposing a fire activity index yields a straightforward methodology to identify the individual influence of climatic predictors on macroscale fire activity even in fire regimes heavily modified by anthropogenic influence. Full article
Show Figures

Figure 1

21 pages, 7254 KB  
Article
Sea Level Variability in the Equatorial Malacca Strait: The Influence of Climatic–Oceanographic Factors and Its Implications for Tidal Properties in the Estuarine Zone
by Ulung Jantama Wisha, Yusuf Jati Wijaya and Yukiharu Hisaki
Climate 2023, 11(3), 70; https://doi.org/10.3390/cli11030070 - 16 Mar 2023
Cited by 8 | Viewed by 6227
Abstract
The sea level trend in the equatorial Malacca Strait is a significant issue that needs to be reviewed since it is an area of interest. Assessing its future impact on estuarine tidal characteristics is worth studying because it relates to the potency of [...] Read more.
The sea level trend in the equatorial Malacca Strait is a significant issue that needs to be reviewed since it is an area of interest. Assessing its future impact on estuarine tidal characteristics is worth studying because it relates to the potency of coastal damages. This study aimed to discuss the relationship between sea level variations and anomalies and their possible triggering factors and to estimate the future impacts on the tidal properties in the estuarine zone. Tide gauge and altimetry data in the Tanjong Pagar site were used to assess the sea level trends over 27 years of observation (from 1992 to 2019). Both altimetry and tide gauge data showed an upward trend, with 0.24 cm/year and 0.39 cm/year, respectively. Due to the near-equatorial area of interest, sea level variability is more synchronized with ENSO rather than IOD. At some points, ENSO shapes the sea level fluctuation, with an R2 of less than 10%. For specific periods, the coupling effects between MJO and La Niña may trigger higher evaporation in the maritime continent, triggering increasing sea levels. Of particular concern, among the other assessed factors, the zonal currents and winds (wind-driven currents) are strongly correlated with sea level variations, primarily during the NE monsoon and the second transitional periods, with a determination coefficient of about 18–36%. As a result of sea level rises, it is estimated that tidal constituent amplitudes will increase by about 8.9% and 18.3% in 2050 and 2100, respectively. The increase in tidal range will possibly relate to the tidal bore passage in the Kampar estuary. Therefore, more advanced hydrodynamic modeling is necessary to determine the impact of sea level rises on tidal bore generation. Full article
Show Figures

Figure 1

13 pages, 10606 KB  
Article
Spatiotemporal Characteristics of Watershed Warming and Wetting: The Response to Atmospheric Circulation in Arid Areas of Northwest China
by Taohui Li, Aifeng Lv, Wenxiang Zhang and Yonghao Liu
Atmosphere 2023, 14(1), 151; https://doi.org/10.3390/atmos14010151 - 10 Jan 2023
Cited by 6 | Viewed by 2178
Abstract
The Tarim Basin is a large inland arid basin in the arid region of northwest China and has been experiencing significant “warming and wetting” since 1987. As a result, the purpose of this paper is to determine whether the climate transition phenomenon occurred [...] Read more.
The Tarim Basin is a large inland arid basin in the arid region of northwest China and has been experiencing significant “warming and wetting” since 1987. As a result, the purpose of this paper is to determine whether the climate transition phenomenon occurred in the Tarim Basin as well as the role of atmospheric circulation in this process. We use meteorological data and atmospheric circulation indexes to study the seasonal trends of climate change in this region from 1987 to 2020 to understand how they are affected by atmospheric circulation. The findings show that, from 1987 to 2020, the Tarim Basin experienced significant warming and wetting; with the exception of the winter scale, all other seasonal scales exhibited a clear warming and wetting trend. From the perspective of spatial distribution, most of the areas showed a significant warming trend, and the warming amplitude around the basin is greater than that in the central area of the basin. However, there are significant regional differences in precipitation change rates. Meanwhile, wavelet analysis shows that there is a significant oscillation period of 17–20 years between climate change and the atmospheric circulation index during 1987–2020. The correlation analysis shows that the Pacific decadal oscillation (PDO) and El Niño-Southern Oscillation (ENSO) are the main influencing factors of climate change in the Tarim Basin at different seasonal scales, while the teleconnection of the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) is low and the PDO dominates the summer and autumn temperature changes in the Tarim Basin. The research results of this paper show that, despite the warming and wetting trends since 1987 in the Tarim Basin, the climate type did not change. From 1987 to 2020, the main teleconnection factors of climate change in the Tarim Basin were PDO and ENSO. Full article
Show Figures

Figure 1

15 pages, 13741 KB  
Article
Terrestrial Water Storage Component Changes Derived from Multisource Data and Their Responses to ENSO in Nicaragua
by Guangyu Jian, Chuang Xu, Jinbo Li, Xingfu Zhang and Li Feng
Remote Sens. 2022, 14(23), 6012; https://doi.org/10.3390/rs14236012 - 27 Nov 2022
Cited by 2 | Viewed by 6828
Abstract
Approximately 3.5 million people in Nicaragua have experienced food insecurity due to the El Niño-Southern Oscillation (ENSO)-induced drought from 2014 to 2016. It is essential to study terrestrial water storage component (TWSC) changes and their responses to ENSO to prevent the water crisis [...] Read more.
Approximately 3.5 million people in Nicaragua have experienced food insecurity due to the El Niño-Southern Oscillation (ENSO)-induced drought from 2014 to 2016. It is essential to study terrestrial water storage component (TWSC) changes and their responses to ENSO to prevent the water crisis in Nicaragua influenced by ENSO. In this paper, we investigate the TWSC changes in Nicaragua and its sub-basins derived from the Gravity Recovery and Climate Experiment (GRACE)’s temporal gravity field, hydrological model, and water level data, and then determine the connection between the TWSC and ENSO from April 2002 to April 2021 by time series analysis. The research results show that: (1) The estimated TWSC changes in Nicaragua are in good agreement with the variation of precipitation and evaporation, and precipitation is the main cause of TWSC variation. (2) According to the cross-correlation analysis, there is a significant negative peak correlation between the interannual TWSC and ENSO in western Nicaragua, especially for interannual soil moisture (−0.80). The difference in peak correlation between the western and eastern sub-basins may be due to the topographic hindrance of the ENSO-inspired precipitation process. (3) The cross-wavelet analysis indicates that the resonance periods between TWSC and ENSO are primarily 2 and 4 years. These resonance periods are related to the two ENSO modes (the central Pacific (CP) mode with a quasi-2-year period and the eastern Pacific (EP) mode with a quasi-4-year period). Furthermore, their resonance phase variation may be due to the transition to ENSO mode. This study revealed the relationship between ENSO and TWSC in Nicaragua, which can provide a certain reference for water resources regulation. Full article
(This article belongs to the Special Issue GRACE for Earth System Mass Change: Monitoring and Measurement)
Show Figures

Figure 1

25 pages, 14065 KB  
Article
Multiscale Interactions of Climate Variability and Rainfall in the Sogamoso River Basin: Implications for the 1998–2000 and 2010–2012 Multiyear La Niña Events
by Wilmar L. Cerón, Nilton Díaz, Daniel Escobar-Carbonari, Jeimar Tapasco, Rita V. Andreoli, Mary T. Kayano and Teresita Canchala
Water 2022, 14(22), 3635; https://doi.org/10.3390/w14223635 - 11 Nov 2022
Viewed by 3338
Abstract
In this research, we explored rainfall variability in the Sogamoso River Basin (SRB), its relationship with multiple scales of variability associated with El Niño–Southern Oscillation (ENSO), and the implications for rainfall prolongation during multiyear La Niña events. First, we examined time-frequency rainfall variations [...] Read more.
In this research, we explored rainfall variability in the Sogamoso River Basin (SRB), its relationship with multiple scales of variability associated with El Niño–Southern Oscillation (ENSO), and the implications for rainfall prolongation during multiyear La Niña events. First, we examined time-frequency rainfall variations in the SRB based on the standardized precipitation index (SPI) from 1982 to 2019, using wavelet transform and principal component analysis (PCA). In addition, we applied wavelet analysis to investigate the links at different time scales between ENSO and the main mode of rainfall variability in the SRB. Finally, we explored the role that each scale of variability played in the prolongation and intensity of rainfall in the SRB during the 1998–2000 and 2010–2012 multiyear La Niña events. The results of the wavelet analyses revealed significant ENSO relationships affecting SRB rainfall at three different scales: quasi-biennial (2–3-years) between 1994 and 2002, as well as from 2008 to 2015; interannual (5–7 years) from 1995 to 2011; and quasi-decadal (9–12 years) from 1994 to 2012. This indicates that multiyear events are a consequence of the interaction of several scales of variability rather than a unique scale. During the 1998–2000 event, El Niño conditions were observed during the first half of 1998; subsequently, a cooling of the central and eastern tropical Pacific (western tropical Pacific) on the quasi-biennial (interannual) scale was observed during 1999; in 2000, only La Niña conditions were observed on the interannual scale. Therefore, during this event, the quasi-biennial (interannual) scale promoted wet conditions in the Caribbean, the Andes, and the Colombian Pacific from June–August (JJA) 1998 to JJA 1999 (during 1999–2000). During the 2010–2012 La Niña event, the interbasin sea surface temperature gradient between the tropical Pacific and tropical North Atlantic contributed to strengthening (weakening) of the Choco jet (Caribbean low-level jet) on the quasi-biennial scale during 2010, and the interannual scale prolonged its intensification (weakening) during 2011–2012, acting to extend the rainy periods over most of the Colombian territory. Variations on quasi-decadal scales were modulated by the Pacific decadal oscillation (PDO), resulting in a further intensification of the 2010–2012 La Niña event, which developed under conditions of the cold PDO (CPDO) phase, whereas the 1998–2000 La Niña occurred during the transition from warm (WPDO, 1977–1998) to cold (CPDO, 2001–2015) conditions. These results indicate that the interaction of quasi-biennial to quasi-decadal scales of variability could play a differential role in the configuration and prolongation of rainfall events in the SRB. Full article
Show Figures

Figure 1

20 pages, 8898 KB  
Article
Quantifying Intra-Catchment Streamflow Processes and Response to Climate Change within a Climatic Transitional Zone: A Case Study of Buffalo Catchment, Eastern Cape, South Africa
by Solomon Temidayo Owolabi, Johanes A. Belle and Sonwabo Mazinyo
Mathematics 2022, 10(16), 3003; https://doi.org/10.3390/math10163003 - 19 Aug 2022
Cited by 6 | Viewed by 3290
Abstract
The complexity of streamflow processes inhibits significant information about catchment performance and its sensitivity to climate change. Little is known about the severity of climate change within the coastal area of the monsoon–subtropical zone of climatic transition. This study advances a quasi-local scale [...] Read more.
The complexity of streamflow processes inhibits significant information about catchment performance and its sensitivity to climate change. Little is known about the severity of climate change within the coastal area of the monsoon–subtropical zone of climatic transition. This study advances a quasi-local scale analysis to simplify daily streamflow dynamics and their relationship with monthly hydro-climatic series (1981–2020) using six gauging stations on the Buffalo River due to its socio-economic significance. An integrated framework based on continuous wavelet transform (CWT), wavelet coherence (WC), innovative trend analysis (ITA), Mann–Kendall (MK), Sequential Mann–Kendall, and Pettitt tests were employed. CWT showed huge declivity in daily streamflow intensity (7676 to 719), >100 mm/day streamflow frequency (15 to 0), and wetness spell time-gap. WC obtained significant streamflow–rainfall co-movement of 8–196-month periodicities, which characterized Buffalo as anti-phase (1–4-month), lag-lead (8–32-month), and in-phase (64–196-month) in processes. The Buffalo River’s sensitivity to significantly decreasing rainfall trends and increasing temperature trends depicts Streamflow–ENSO teleconnection. Contrarily, ITA and MK exhibited significantly increasing trends of tributaries’ low flow and inferred the perennial status of the catchment. The Pettitt test corroborates the deductions and asserts 1990 (temperature), 1996 (streamflow), and 2004/2013 (rainfall) as the abrupt change points, while SMK captured a critical streamflow slump in 2015–2020. Overall, the study proved the reductionist approach and model framework to achieve the hydrological process simplification and resolution of hotspots of hydrologic extremes within a bimodal climate with complex topography. This study remarks on the management policy of the BR and provides a reference for managing water resources and catchment hydro-climatic extremes. Full article
(This article belongs to the Special Issue Advanced Statistical Techniques in Oceans and Climate Research)
Show Figures

Figure 1

28 pages, 36399 KB  
Article
Spatiotemporal Dynamics of NDVI, Soil Moisture and ENSO in Tropical South America
by Diana M. Álvarez and Germán Poveda
Remote Sens. 2022, 14(11), 2521; https://doi.org/10.3390/rs14112521 - 24 May 2022
Cited by 6 | Viewed by 3904
Abstract
We evaluated the coupled dynamics of vegetation dynamics (NDVI) and soil moisture (SMOS) at monthly resolution over different regions of tropical South America and the effects of the Eastern Pacific (EP) and the Central Pacific (CP) El Niño–Southern Oscillation (ENSO) events. We used [...] Read more.
We evaluated the coupled dynamics of vegetation dynamics (NDVI) and soil moisture (SMOS) at monthly resolution over different regions of tropical South America and the effects of the Eastern Pacific (EP) and the Central Pacific (CP) El Niño–Southern Oscillation (ENSO) events. We used linear Pearson cross-correlation, wavelet and cross wavelet analysis (CWA) and three nonlinear causality methods: ParrCorr, GPDC and PCMCIplus. Results showed that NDVI peaks when SMOS is transitioning from maximum to minimum monthly values, which confirms the role of SMOS in the hydrological dynamics of the Amazonian greening up during the dry season. Linear correlations showed significant positive values when SMOS leads NDVI by 1–3 months. Wavelet analysis evidenced strong 12- and 64-month frequency bands throughout the entire record length, in particular for SMOS, whereas the CWA analyses indicated that both variables exhibit a strong coherency at a wide range of frequency bands from 2 to 32 months. Linear and nonlinear causality measures also showed that ENSO effects are greater on SMOS. Lagged cross-correlations displayed that western (eastern) regions are more associated with the CP (EP), and that the effects of ENSO manifest as a travelling wave over time, from northwest (earlier) to southeast (later) over tropical South America and the Amazon River basin. The ParrCorr and PCMCIplus methods produced the most coherent results, and allowed us to conclude that: (1) the nonlinear temporal persistence (memory) of soil moisture is stronger than that of NDVI; (2) the existence of two-way nonlinear causalities between NDVI and SMOS; (3) diverse causal links between both variables and the ENSO indices: CP (7/12 with ParrCorr; 6/12 with PCMCIplus), and less with EP (5/12 with ParrCorr; 3/12 with PCMCIplus). Full article
(This article belongs to the Special Issue Remote Sensing of Hydrological Processes: Modelling and Applications)
Show Figures

Graphical abstract

25 pages, 10198 KB  
Review
A Review of the Role of the Oceanic Rossby Waves in Climate Variability
by Jean-Louis Pinault
J. Mar. Sci. Eng. 2022, 10(4), 493; https://doi.org/10.3390/jmse10040493 - 2 Apr 2022
Cited by 14 | Viewed by 5985
Abstract
In this paper, the role of oceanic Rossby waves in climate variability is reviewed, as well as their dynamics in tropical oceans and at mid-latitudes. For tropical oceans, both the interactions between equatorial Rossby and Kelvin waves, and off-equatorial Rossby waves are privileged. [...] Read more.
In this paper, the role of oceanic Rossby waves in climate variability is reviewed, as well as their dynamics in tropical oceans and at mid-latitudes. For tropical oceans, both the interactions between equatorial Rossby and Kelvin waves, and off-equatorial Rossby waves are privileged. The difference in the size of the basins induces disparities both in the forcing modes and in the dynamics of the tropical waves, which form a single quasi-stationary wave system. For Rossby waves at mid-latitudes, a wide range of periods is considered, varying from a few days to several million years when very-long-period Rossby waves winding around the subtropical gyres are hypothesized. This review focuses on the resonant forcing of Rossby waves that seems ubiquitous: the quasi-geostrophic adjustment of the oceans favors natural periods close to the forcing period, while those far from it are damped because of friction. Prospective work concentrates on the resonant forcing of dynamical systems in subharmonic modes. According to this new concept, the development of ENSO depends on its date of occurrence. Opportunities arise to shed new light on open issues such as the Middle Pleistocene transition. Full article
(This article belongs to the Special Issue Reviews in Physical Oceanography)
Show Figures

Figure 1

Back to TopTop