Sea Level Variability in the Equatorial Malacca Strait: The Influence of Climatic–Oceanographic Factors and Its Implications for Tidal Properties in the Estuarine Zone
Abstract
:1. Introduction
2. General Overview of the Malacca Strait
3. Materials and Methods
3.1. Data Acquisition
3.2. Statistical Analyses
- = predicted value of the dependent variable (target) for any given value of the independent variable;
- = the independent variable (the variable that we expect influencing );
- = the intercept, the predicted value of when the is 0;
- = the regression coefficient or scale factor;
- = the error of the estimation.
- = total number of observations (data points);
- = estimated value of a model;
- = the actual value of observation.
3.3. Estimating the Sea Level Projection Impacts on Tidal Characteristics in Estuarine Zone
4. Results and Discussions
4.1. Sea Level Trends in the Equatorial Malacca Strait over 27 Years of Observation
Location | Sea Level Trend | Measurement Period | Measurement Method | Source |
---|---|---|---|---|
West coast of Peninsular Malaysia | 0.2 cm/year | 1993–2008 | Tide gauge data | Ami et al. (2012) [38] |
West coast of Peninsular Malaysia | 0.14–0.41 cm/year | 1993–2008 | Altimetry | Ami et al. (2012) [38] |
West coast of Peninsular Malaysia | 0.29 cm/year | 1992–2006 | Tide gauge data | Tay et al. (2016) [6] |
Malacca Strait | 0.36 cm/year | 1986–2013 | Tide gauge data | Luu et al. (2015) [4] |
Malacca Strait | 0.24 cm/year | 1984–2011 | Tide gauge and altimetry | Luu et al. (2015) [7] |
Singapore Strait | 0.12–0.17 cm/year | 1975–2009 | Tide gauge data | Tkalich et al. (2013) [5] |
Singapore Strait | 0.19–0.46 cm/year | 1984–2009 | Tide gauge data | Tkalich et al. (2013) [5] |
Riau-Indonesia | 0.48–0.56 cm/year | 1993–2014 | Altimetry | Ariana et al. (2017) [40] |
South China Sea | 0.55 cm/year | 1993–2009 | Altimetry and gravity | Feng et al. (2012) [41] |
4.2. Interannual Comparison of Sea Level vs. Climatic–Oceanographic Factors
4.3. Correlation Analysis of Inter-Seasonal Variation of Sea Level vs. Climatic–Oceanographic Factors
4.4. The Possible Influence of Madden Julian Oscillation (MJO) on Triggering SLA
4.5. Future Impacts of Sea Level upward Trend on Tidal Properties in the Kampar Estuary
4.5.1. Estimated Changes in Tidal Harmonic Constituents
4.5.2. Sea Level Rising Trend Implication to Amplified Tidal Range in the Estuary of Kampar
5. Summary
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thia-Eng, C.; Gorre, I.R.; Ross, S.A.; Bernad, S.R.; Gervacio, B.; Ebarvia, M.C. The Malacca Straits. Mar. Pol. Bul. 2000, 41, 160–178. [Google Scholar] [CrossRef]
- Haditiar, Y.; Putri, M.R.; Ismail, N.; Muchlisin, Z.A.; Rizal, S. Numerical simulation of currents and volume transport in the Malacca Strait and part of south China sea. Eng. J. 2019, 23, 129–143. [Google Scholar] [CrossRef]
- Rong, Z.; Liu, Y.; Zong, H.; Cheng, Y. Interannual Sea Level Variability in the South China Sea and Its Response to ENSO. Glob. Planet. Chang. 2007, 55, 257–272. [Google Scholar] [CrossRef]
- Luu, Q.H.; Tkalich, P.; Tay, T.W. Sea Level Trend and Variability Around Peninsular Malaysia. Ocean Sci. 2015, 11, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Tkalich, P.; Vethamony, P.; Luu, Q.-H.; Babu, M.T. Sea Level Trend and Variability in the Singapore Strait. Ocean Sci. 2013, 9, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Tay, S.H.X.; Kurniawan, A.; Ooi, S.K.; Babovic, V. Sea level anomalies in straits of Malacca and Singapore. Appl. Ocean Res. 2016, 58, 104–117. [Google Scholar] [CrossRef]
- Luu, Q.H.; Tkalich, P.; Tay, T.W. Sea Level Trend and variability around the Peninsular Malaysia. Ocean Sci. Discuss. 2014, 11, 1519–1541. [Google Scholar] [CrossRef]
- Yanalagaran, R.; Ramli, N.I. Assessment of coastal erosion related to wind characteristics in peninsular Malaysia. J. Eng. Sci. Technol. 2018, 13, 3677–3690. [Google Scholar]
- Mohamad, M.F.; Lee, L.H.; Samion, M.K.H. Coastal Vulnerability Assessment towards Sustainable Management of Peninsular Malaysia Coastline. Int. J. Environ. Sci. Dev. 2014, 5, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Lumban-Gaol, J.; Tambunan, E.; Osawa, T.; Pasaribu, B.; Nurjaya, I.W. Sea level rise impact on eastern coast of North Sumatra, Indonesia. In Proceedings of the 2nd International Forum on Sustainable Future in Asia, 2nd NIES International Forum, Bali, Indonesia, 26–28 January 2017. [Google Scholar]
- Khojasteh, D.; Lewis, M.; Tavakoli, S.; Farzadkhoo, M.; Felder, S.; Iglesias, G.; Glamore, W. Sea level rise will change estuarine tidal energy: A review. Renew. Sustain. Energy Rev. 2022, 156, 111855. [Google Scholar] [CrossRef]
- Ward, S.L.; Green, J.A.M.; Pelling, H.E. Tides, sea-level rise and tidal power extraction on the European shelf. Ocean Dyn. 2012, 62, 1153–1167. [Google Scholar] [CrossRef]
- Harker, A.; Green, J.M.; Schindelegger, M.; Wilmes, S.B. The impact of sea-level rise on tidal characteristics around Australia. Ocean Sci. 2019, 15, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Khojasteh, D.; Chen, S.; Felder, S.; Heimhuber, V.; Glamore, W. Estuarine tidal range dynamics under rising sea levels. PLoS ONE 2021, 16, e0257538. [Google Scholar] [CrossRef]
- Wisha, U.J.; Wijaya, Y.J.; Hisaki, Y. Tidal bore generation and transport mechanism in the Rokan River Estuary, Indonesia: Hydro-oceanographic perspectives. Reg. Stud. Mar. Sci. 2022, 52, 102309. [Google Scholar] [CrossRef]
- Wisha, U.J.; Wijaya, Y.J.; Hisaki, Y. Real-Time Properties of Hydraulic Jump off a Tidal Bore, Its Generation and Transport Mechanisms: A Case Study of the Kampar River Estuary, Indonesia. Water 2022, 14, 2561. [Google Scholar] [CrossRef]
- Strait of Malacca. Available online: https://www.britannica.com/place/Strait-of-Malacca (accessed on 28 December 2022).
- Isa, N.S.; Akhir, M.F.; Khalil, I.; Poh, H.K.; Roseli, N.H. Seasonal Characteristics of Sea Surface Temperature and Sea Surface Currents in the Strait of Malacca and Andaman Sea. J. Sustain. Sci. Manag. 2020, 15, 66–77. [Google Scholar] [CrossRef]
- Iskandar, T. Modeling studies of barotropic and baroclinic dynamics in the Malacca Strait. In Proceedings of the International Conference on Science and Technology, Medan, Indonesia, 4–6 May 2018. [Google Scholar] [CrossRef]
- Solihuddin, T. A drowning Sunda Shelf model during last glacial maximum (LGM) and Holocene: A review. Indones. J. Geosci. 2014, 1, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Emmel, F.J.; Curray, J.R. A submerged late Pleistocene delta and other features related to sea level changes in the Malacca Strait. Mar. Geol. 1982, 47, 197–216. [Google Scholar] [CrossRef]
- Rizal, S.; Damm, P.; Wahid, M.A.; Sündermann, J.; Ilhamsyah, Y.; Iskandar, T. General circulation in the malacca strait and andaman sea: A numerical model study. Am. J. Environ. Sci. 2012, 8, 479–488. [Google Scholar] [CrossRef]
- Ibrahim, Z.Z.; Yanagi, T. The influence of the Andaman Sea and the South China Sea on water mass in the Malacca Strait. La mer 2006, 43, 33–42. [Google Scholar]
- The Sea Level Explorer. Available online: https://ccar.colorado.edu/altimetry/index.html (accessed on 28 December 2022).
- Caldwell, P.C.; Merrfield, M.A.; Thompson, P.R. Sea level measured by tide gauges from global oceans—the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for Environmental Information, Dataset. Cent. Environ. Inf. Dataset 2015, 10, V5V40S47W. [Google Scholar] [CrossRef]
- Nardelli, B.B. A multi-year time series of observation-based 3D horizontal and vertical quasi-geostrophic global ocean currents. Earth Syst. Sci. Data 2020, 12, 1711–1723. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Single Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 2019. Available online: https://cds.climate.copernicus.eu/ (accessed on 25 January 2023).
- Wheeler, M.C.; Hendon, H.H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Weather. Rev. 2004, 132, 1917–1932. [Google Scholar] [CrossRef]
- Madden-Julian Oscillation (MJO). Available online: http://www.bom.gov.au/climate/mjo/ (accessed on 28 December 2022).
- Ezer, T.; Corlett, W.B. Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ludbrook, J. Linear regression analysis for comparing two measurers or methods of measurement: But which regression? Clin. Exp. Pharmacol. Physiol. 2010, 37, 692–699. [Google Scholar] [CrossRef]
- Kobayashi, K.; Salam, M.U. Comparing simulated and measured values using mean squared deviation and its components. Agron. J. 2000, 92, 345–352. [Google Scholar] [CrossRef]
- Campbell, H.; Lakens, D. Can we disregard the whole model? Omnibus non-inferiority testing for R2 in multi-variable linear regression and in ANOVA. Br. J. Math. Stat. Psychol. 2021, 74, 64–89. [Google Scholar] [CrossRef]
- Gharineiat, Z.; Deng, X. Application of the multi-adaptive regression splines to integrate sea level data from altimetry and tide gauges for monitoring extreme sea level events. Mar. Geodesy 2015, 38, 261–276. [Google Scholar] [CrossRef]
- Tran, K.T.; Nguyen, H.D.Q.; Truong, P.T.; Phung, D.T.M.; Nguyen, B.T. Evaluation of sea-level rise influence on tidal characteristics using a numerical model approach: A case study of a southern city coastal area in Vietnam. Model. Earth Syst. Environ. 2022, 9, 1089–1102. [Google Scholar] [CrossRef]
- Fenoglio-Marc, L.; Schöne, T.; Illigner, J.; Becker, M.; Manurung, P.; Khafid. Sea level change and vertical motion from satellite altimetry, tide gauges and GPS in the Indonesian region. Mar. Geodesy 2012, 35, 137–150. [Google Scholar] [CrossRef]
- Pajak, K.; Kowalczyk, K. A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data. Adv. Space Res. 2019, 63, 1768–1780. [Google Scholar] [CrossRef]
- Ami, H.M.D.; Kamaludin, M.O.; Marc, N.; Sahrum, S. Long-term Sea level change in the Malaysian seas from multi-mission altimetry data. Int. J. Phys. Sci. 2012, 7, 1694–1712. [Google Scholar] [CrossRef] [Green Version]
- BPBD Riau Ungkap Daerah-Daerah Ini Rawan Banjir ROB. Available online: https://www.cakaplah.com/artikel/serantau/10618/2022/09/14/bpbd-riau-ungkap-daerahdaerah-ini-rawan-banjir-rob#sthash.nqeO0JDT.dpbs. (accessed on 16 January 2023). (In Indonesian).
- Ariana, D.; Kusmana, C.; Setiawan, Y. Study of Sea Level Rise Using Satellite Altimetry Data in the Sea of Dumai, Riau, Indonesia. Geoplanning J. Geomat. Plan. 2017, 4, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Zhong, M.; Xu, H. Sea level variations in the South China Sea inferred from satellite gravity, altimetry, and oceanographic data. Sci. China Earth Sci. 2012, 55, 1696–1701. [Google Scholar] [CrossRef]
- Rahmawan, G.A.; Wisha, U.J. Tendency for Climate-Variability-Driven Rise in Sea Level Detected in the Altimeter Era in the Marine Waters of Aceh, Indonesia. Int. J. Remote Sens. Earth Sci. 2019, 16, 165–178. [Google Scholar] [CrossRef]
- Liu, Q.; Feng, M.; Wang, D. ENSO-induced interannual variability in the southeastern South China Sea. J. Oceanogr. 2011, 67, 127–133. [Google Scholar] [CrossRef]
- Athie, G.; Marin, F. Cross-equatorial structure and temporal modulation of intraseasonal variability at the surface of the Tropical Atlantic Ocean. J. Geophys. Res. Ocean. 2008, 113, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Dogan, M.; Cigizoglu, H.K.; Şanlı, D.U.; Ulke, A. Investigation of sea level anomalies related with NAO along the west coasts of Turkey and their consistency with sea surface temperature trends. Theor. Appl. Clim. 2015, 121, 349–358. [Google Scholar] [CrossRef]
- Vignudelli, S.; Birol, F.; Benveniste, J.; Fu, L.-L.; Picot, N.; Raynal, M.; Roinard, H. Satellite altimetry measurements of sea level in the coastal zone. Surv. Geophys. 2019, 40, 1319–1349. [Google Scholar] [CrossRef]
- Durand, F.; Piecuch, C.G.; Becker, M.; Papa, F.; Raju, S.V.; Khan, J.U.; Ponte, R.M. Impact of continental freshwater runoff on coastal sea level. Surv. Geophys. 2019, 40, 1437–1466. [Google Scholar] [CrossRef] [Green Version]
- Singh, O.P.; Khan, T.M.A.; Aktar, F.; Sarker, M.A. Recent sea level and sea surface temperature changes along the Maldives coast. Mar. Geod. 2001, 24, 209–218. [Google Scholar] [CrossRef]
- Singh, O.P. Cause-effect relationships between sea surface temperature, precipitation and sea level along the Bangladesh coast. Theor. Appl. Clim. 2001, 68, 233–243. [Google Scholar] [CrossRef]
- Nababan, B.; Rosyadi, N.; Manurung, D.; Natih, N.M.; Hakim, R. The seasonal variability of sea surface temperature and chlorophyll-a concentration in the south of Makassar Strait. Procedia Environ. Sci. 2016, 33, 583–599. [Google Scholar] [CrossRef] [Green Version]
- Wibowo, M.A.; Tanjung, A.; Yoswaty, D.; Susanti, R.; Muttaqin, A.S.; Fajary, F.R.; Anwika, Y.M. Understanding the Mechanism of Currents through the Malacca Strait Study Case 2020–2022: Mean state, Seasonal and Monthly Variation. In Proceedings of the 11th International and National Seminar on Fisheries and Marine Science, Pekanbaru, Indonesia, 14–15 September 2022; IOP Conference Series: Earth and Environmental Science. IOP Publishing: Bristol, UK; Volume 1118, p. 012069. [Google Scholar] [CrossRef]
- Wisha, U.J.; Gemilang, W.A.; Wijaya, Y.J.; Purwanto, A.D. Model-based estimation of plastic debris accumulation in Banten Bay, Indonesia, using particle tracking—Flow model hydrodynamics approach. Ocean Coast. Manag. 2022, 217, 106009. [Google Scholar] [CrossRef]
- Virts, K.S.; Wallace, J.M.; Hutchins, M.L.; Holzworth, R.H. Diurnal lightning variability over the Maritime Continent: Impact of low-level winds, cloudiness, and the MJO. J. Atmos. Sci. 2013, 70, 3128–3146. [Google Scholar] [CrossRef]
- Moum, J.N.; Pujiana, K.; Lien, R.-C.; Smyth, W.D. Ocean feedback to pulses of the Madden–Julian Oscillation in the equatorial Indian Ocean. Nat. Commun. 2016, 7, 13203. [Google Scholar] [CrossRef] [Green Version]
- Roxy, M.K.; Dasgupta, P.; McPhaden, M.J.; Suematsu, T.; Zhang, C.; Kim, D. Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature 2019, 575, 647–651. [Google Scholar] [CrossRef]
- Kim, H.-M.; Kim, D.; Vitart, F.; Toma, V.E.; Kug, J.-S.; Webster, P.J. MJO Propagation across the Maritime Continent in the ECMWF Ensemble Prediction System. J. Clim. 2016, 29, 3973–3988. [Google Scholar] [CrossRef]
- Qian, J. Multi-scale climate processes and rainfall variability in Sumatra and Malay Peninsula associated with ENSO in boreal fall and winter. Int. J. Clim. 2020, 40, 4171–4188. [Google Scholar] [CrossRef]
- Mandal, S.; Behera, N.; Gangopadhyay, A.; Susanto, R.D.; Pandey, P.C. Evidence of a chlorophyll “tongue” in the Malacca Strait from satellite observations. J. Mar. Syst. 2021, 223, 103610. [Google Scholar] [CrossRef]
- Putri, M.R.; Pohlmann, T. Hydrodynamic and Transport Model of the Siak Estuary. In Coastal Environments: Focus on Asian Regions, 1st ed.; Subramanian, V., Ed.; Springer: Dordrecht, The Netherlands, 2012; Volume 8, pp. 155–172. [Google Scholar] [CrossRef]
- Rose, L.; Bhaskaran, P.K. Tidal asymmetry and characteristics of tides at the head of the Bay of Bengal. Q. J. R. Meteorol. Soc. 2017, 143, 2735–2740. [Google Scholar] [CrossRef]
- Mandal, S.; Sil, S.; Gangopadhyay, A.; Jena, B.K.; Venkatesan, R. On the nature of tidal asymmetry in the Gulf of Khambhat, Arabian Sea using HF radar surface currents. Estuar. Coast. Shelf Sci. 2020, 232, 106481. [Google Scholar] [CrossRef]
- Mao, Q.; Shi, P.; Yin, K.; Gan, J.; Qi, Y. Tides and tidal currents in the Pearl River Estuary. Cont. Shelf Res. 2004, 24, 1797–1808. [Google Scholar] [CrossRef]
- Lee, S.B.; Li, M.; Zhang, F. Impact of sea level rise on tidal range in Chesapeake and Delaware Bays. J. Geophys. Res. Oceans 2017, 122, 3917–3938. [Google Scholar] [CrossRef]
Observation Period | 1992–2019 | 1992–2009 | 2009–2019 | |||
---|---|---|---|---|---|---|
Source | Altimetry | Tide gauge | Altimetry | Tide gauge | Altimetry | Tide gauge |
Trend (cm/year) | 0.24 | 0.39 | 0.22 | 0.45 | −0.18 | −0.03 |
Annual Amplitude (cm) | 12.96 | 13.46 | 13.06 | 13.42 | 12.53 | 13.73 |
Semi-Annual Amplitude (cm) | 1.82 | 2.50 | 1.79 | 2.66 | 2.29 | 2.38 |
Season | Multiple R | R2 | Standard Error | Significance F |
---|---|---|---|---|
NE Monsoon | 0.152 | 0.022 | 5.598 | 0.179 |
First Transitional | 0.135 | 0.018 | 7.708 | 0.227 |
SW Monsoon | 0.126 | 0.015 | 8.225 | 0.258 |
Second Transitional | 0.146 | 0.021 | 4.563 | 0.193 |
Tidal Constituents | Amplitude (cm) | Phase Lag (°) | ||||
---|---|---|---|---|---|---|
Measured in 2016 | Estimated in 2050 | Estimated in 2100 | Measured in 2016 | Estimated in 2050 | Estimated in 2100 | |
M2 | 115.74 | 125.53 | 134.69 | 164.77 | 156.75 | 152.75 |
S2 | 55.80 | 58.26 | 61.83 | 49.92 | 47.65 | 44.65 |
K1 | 34.19 | 36.96 | 38.17 | 50.56 | 49.95 | 46.95 |
O1 | 27.57 | 29.62 | 31.53 | 69.69 | 67.43 | 62.43 |
M4 | 15.02 | 16.32 | 17.43 | 20.41 | 19.39 | 17.39 |
MS4 | 12.01 | 14.02 | 16.89 | 170.24 | 169.45 | 167.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wisha, U.J.; Wijaya, Y.J.; Hisaki, Y. Sea Level Variability in the Equatorial Malacca Strait: The Influence of Climatic–Oceanographic Factors and Its Implications for Tidal Properties in the Estuarine Zone. Climate 2023, 11, 70. https://doi.org/10.3390/cli11030070
Wisha UJ, Wijaya YJ, Hisaki Y. Sea Level Variability in the Equatorial Malacca Strait: The Influence of Climatic–Oceanographic Factors and Its Implications for Tidal Properties in the Estuarine Zone. Climate. 2023; 11(3):70. https://doi.org/10.3390/cli11030070
Chicago/Turabian StyleWisha, Ulung Jantama, Yusuf Jati Wijaya, and Yukiharu Hisaki. 2023. "Sea Level Variability in the Equatorial Malacca Strait: The Influence of Climatic–Oceanographic Factors and Its Implications for Tidal Properties in the Estuarine Zone" Climate 11, no. 3: 70. https://doi.org/10.3390/cli11030070
APA StyleWisha, U. J., Wijaya, Y. J., & Hisaki, Y. (2023). Sea Level Variability in the Equatorial Malacca Strait: The Influence of Climatic–Oceanographic Factors and Its Implications for Tidal Properties in the Estuarine Zone. Climate, 11(3), 70. https://doi.org/10.3390/cli11030070