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Abstract: The Tarim Basin is a large inland arid basin in the arid region of northwest China and has
been experiencing significant ”warming and wetting” since 1987. As a result, the purpose of this
paper is to determine whether the climate transition phenomenon occurred in the Tarim Basin as well
as the role of atmospheric circulation in this process. We use meteorological data and atmospheric
circulation indexes to study the seasonal trends of climate change in this region from 1987 to 2020
to understand how they are affected by atmospheric circulation. The findings show that, from
1987 to 2020, the Tarim Basin experienced significant warming and wetting; with the exception of
the winter scale, all other seasonal scales exhibited a clear warming and wetting trend. From the
perspective of spatial distribution, most of the areas showed a significant warming trend, and the
warming amplitude around the basin is greater than that in the central area of the basin. However,
there are significant regional differences in precipitation change rates. Meanwhile, wavelet analysis
shows that there is a significant oscillation period of 17–20 years between climate change and the
atmospheric circulation index during 1987–2020. The correlation analysis shows that the Pacific
decadal oscillation (PDO) and El Niño-Southern Oscillation (ENSO) are the main influencing factors
of climate change in the Tarim Basin at different seasonal scales, while the teleconnection of the
Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) is low and the PDO dominates the
summer and autumn temperature changes in the Tarim Basin. The research results of this paper show
that, despite the warming and wetting trends since 1987 in the Tarim Basin, the climate type did not
change. From 1987 to 2020, the main teleconnection factors of climate change in the Tarim Basin were
PDO and ENSO.

Keywords: the Tarim Basin; climate change; spatiotemporal climate characteristics; atmospheric
circulation; climate response

1. Introduction

The Tarim Basin in China has a typical continental desert climate and is thus very
sensitive to the climate of Central Asia and to global climate change. According to current
research, the arid region of northwest China has experienced a significant increase in
temperature and humidity since 1987, mainly characterized by a significant increase in the
frequency of extreme precipitation events [1–5]. The Tarim Basin is the most important
inland basin in the arid region of northwest China and even in the whole arid region of
Central Asia. A significant increase in extreme precipitation events in this region could
destabilize the annual runoff in the Tarim River Basin. Seasonally specific climate change,
in particular, will have a significant impact on the Tarim Basin’s ecological environment,
agricultural environment, and social economy [6–8]. Therefore, given the intensification
of the “warming and wetting” phenomenon in the arid region of northwest China, the
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question arises of how climate change is manifested on the seasonal timescale and whether
it significantly affects the Tarim Basin. In addition, the Tarim River is the major river in
the arid continental region of northwest China and is important for the development of
these areas, so the “wetting” phenomenon, especially the seasonally specific type, affects
not only the water resources of the Tarim Basin but also the development of ecological
resources. Moreover, it strongly affects the economic and agricultural development of this
region [9–13]. Therefore, it is vital to understand how seasonally specific climate change
affects the inland basins in these arid regions.

Numerous investigations, both domestic and international, have focused on the warm-
ing and wetting phenomena. For example, Shi et al. [1] reported a climate transition
occurring in northwest China in the early 21st century, and, based on meteorological
data, Chen et al. and Li et al. [14,15] confirmed that northwest China was experiencing a
significant warming and wetting phenomenon through trend analysis. In addition, Wu
et al. and Wang et al. [2,3] showed that the significant warming and wetting phenomenon
in the arid region of northwest China was caused primarily by a significant increase in
extreme precipitation events in the arid region. Similarly, by studying the intensity of
the humidification index in arid areas, Yang et al. and Zhang et al. [16,17] showed that
precipitation varied strongly in the different areas and seasons in northwest China, and
Gessner et al. [18] confirmed the result. Numerous studies of these regions thus report that
the main contributor to the warming and wetting phenomena is the significant increase
in the frequency of extreme precipitation, which strongly affects local ecosystems [19–21].
However, to date, more studies have focused on climate change on the interannual scale
in the arid region of northwest China, whereas little research has focused on seasonally
specific climate change in this region.

Previous studies have shown that atmospheric circulation plays a significant role in
climate change over different time scales. For example, the El Niño Southern Oscillation
(ENSO) can cause extreme hydrological events [4]. Numerous studies have investigated
the relationship between climate change and atmospheric circulation in arid areas, and the
results confirm that atmospheric circulation helps determine the climate in arid areas on an
inter-annual timescale [22–24]. However, at present, more studies focus on the interannual
timescale than on the seasonal timescale. And the seasonal timescale is important for
agriculture in the Tarim Basin because agriculture in this region is mainly rainfed, making
it extremely dependent on seasonal precipitation. Thus, the present study considers the
seasonal timescale not only to better analyze how atmospheric circulation affects the
seasonal climate in the Tarim Basin but also to determine what seasonal agricultural
adjustments should be made in this region.

Thus, the purpose of this study is to ascertain if the climate type in the arid Tarim
Basin of northwest China has changed since 1987 and to explain the seasonal relationship
between atmospheric circulation and climate change in this area. In addition, we investigate
the spatial characteristics of the seasonally specific warming and wetting phenomena in the
Tarim Basin by analyzing meteorological data and atmospheric circulation indexes from
1987 to 2020, and we discuss the relationship between seasonally specific climate change
and atmospheric circulation. The results reveal seasonally changing climate patterns in this
area and provide a basis for understanding how atmospheric circulation affects climate
change on a seasonal timescale. Finally, the research results of this paper show that, despite
the warming and wetting trends since 1987 in the Tarim Basin, the climate type did not
change. On the seasonal timescale, the Pacific decadal oscillation (PDO) and the El Niño-
Southern Oscillation (ENSO) are the main teleconnection factors of climate change in the
Tarim Basin during 1987–2020.

2. Materials and Methods
2.1. Study Area and Data Sources

The Tarim Basin is an important inland arid basin in the arid region of northwest
China (its geographical location is shown in Figure 1). It has a typical continental desert
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climate and is located between the Tianshan and Kunlun Mountains. It is 1100 km long
from east to west and is one of the largest inland basins in the world. The Tarim River
system is composed of four sources and one trunk. It is one of the more complicated
river systems in the inland river basin [25,26]. The Tarim River is not only the only
flowing water source for animals and plants in southern Xinjiang but also the water system
on which the local economy and industry depend for development [18]. In this work,
meteorological data is sourced from the Climatic Research Unit TS v.4.03 (CRU) database
(http://www.cru.uea.ac.uk/data/, accessed on 22 December 2022) and the data cover the
period 1987–2020. The atmospheric circulation index data are from the US National Oceanic
and Atmospheric Administration (http://www.esrl.noaa.gov/psd/enso/, accessed on
22 December 2022). The atmospheric circulation indexes considered herein are the Arctic
Oscillation (AO) index, the El Niño-Southern Oscillation (ENSO) index, the North Atlantic
Oscillation (NAO) index, and the Pacific Decadal Oscillation (PDO) index, and the data
cover the period 1987–2020.
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Figure 1. Location of the Tarim Basin.((a)—the location of the study area; (b)—the drainage systerm
and elevation of Tarim Basin; (c)—distribution of meteorological stations in The Tarim Basin).

The results of Figure 1c show that meteorological stations are mainly distributed in the
north and southwest, with an uneven spatial distribution. The CRU data sets are widely
used in meteorological and hydrological research. Although the spatial resolution of the
data set is relatively low, the spatial distribution in the area without monitoring sites is
relatively excellent. For the above reasons, this data set is finally adopted in this paper. In
this work, the meteorological data are rasterized using ArcGIS 10.8 software, following
which the monthly data are counted as seasonal data by pixel. Finally, the rasterized
seasonal data are extracted by region. The monthly atmospheric circulation indexes were
calculated and integrated into the seasonal data by using the R programming language.
The four seasons were divided according to the meteorological standard: spring ran from
March to May; summer from June to September; autumn from September to November;
and winter from December to February of the following year.

http://www.cru.uea.ac.uk/data/
http://www.esrl.noaa.gov/psd/enso/
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2.2. Research Methods
2.2.1. Analysis of Change Trend

Unitary linear regression is used in this paper to examine the temporal variation trend
of meteorological element value in the study area [27,28]. It is expressed as follows:

S =
n×∑n

i=1(i× xi)·(∑n
i=1 i)×∑n

i=1(xi)

n× (∑n
i=1 i2)·(∑n

i=1 i)2 (1)

where x is the meteorological element value of each grid; n is the number of years in the
research period, and n in this study is 10 a; S reflects the change rate of meteorological
factor values over time. When S > 0 (S < 0), the meteorological factor values showed an
increase-decrease trend, and the larger/smaller the value, the more significant the growth
(reduction) rate.

2.2.2. Spatial Interpolation Method

Inverse distance weighted interpolation (IDW) is a relatively mature spatial analysis
method used in the discipline of meteorology [29,30]. In this method, the distance between
the interpolation point and the sample point is used as the weighted average weight. The
closer the sample point is to the interpolation point, the greater the weight assigned to the
sample point.

Suppose a series of discrete points are distributed on the plane. Because we know that
all of the coordinates are Xi, Yi, Zi (i = 1,2,3, . . . ,n), the distance (Di) between the discrete
point (Xi, Yi) and the grid point (X, Y) is:

Di =

√
(Xi − X)2 + (Yi −Y)2 (2)

The estimated value of grid points (X, Y) is:

Z =
∑n

i=1

(
Zi
D2

i

)
∑n

i=1

(
1

D2
i

) (3)

2.2.3. Wavelet Analysis

To calculate the real part of the wavelet, this study uses the Morlet continuous complex
wavelet as the basis function (i.e., the comr function) [31,32]. It is expressed as follows:

comr(x) =
σ2iπ·Fe × x2

Fb√
π·Fb

(4)

where Fe is the center frequency and Fb is the frequency bandwidth. The wavelet square
difference is denoted Var and can be obtained by integrating the square of the wavelet
coefficient over the time translation domain b:

Var(α) =
∫ ∞

−∞
ω f |(a, b)|2db (5)

2.2.4. Correlational Analysis

Correlation analysis is a statistical method to analyze the correlation between variables
and is widely used in hydrometeorology. Consider two time series, x and y; we use
statistical methods to calculate the correlation coefficient between the two, as follows:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2
(6)
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where r is the correlation coefficient, which ranges from −1.0 to 1.0. When r > 0 (r < 0),
the two time series are positively (or negatively) correlated. The correlation is stronger for
larger |r| [33,34].

3. Results
3.1. Temporal Characteristics of Climate Change in the Tarim Basin

This study investigates the interannual variation of temperature and rainfall in the
Tarim Basin (Figure 2). For all seasons, temperatures and precipitation rise during the
study period. The warming trend in spring is the most significant, with a warming rate of
0.443 ◦C/decade. The warming trend in winter is not significant, with a warming rate of
0.008 ◦C/decade. The autumn precipitation increases at the greatest rate (1.34 mm/decade).
The increasing rate of precipitation in winter is 0.05 mm/decade. Overall, the warming
and wetting phenomenon has been significant in the Tarim Basin over the last 30 years
in the spring, summer, and autumn but less so in the winter. This variation is consistent
with the typical continental desert climate characteristics of the Tarim Basin, which involve
significant changes in climate between the four seasons, with winters being cold and
dry [35].
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A Morlet wavelet analysis is used to study the seasonal climate cycles in the Tarim
Basin from 1987 to 2020 (Figure 3). The results show that the temperatures and precipitation
from 1987 to 2020 in the Tarim Basin alternate between a positive phase and a negative phase
in the 17–20 year weekly period, which indicates that, from 1987 to 2020, the temperature
and precipitation in the Tarim Basin undergo seasonally periodic variations. Calculating
the wavelet square difference of temperature and precipitation for each season (results
not shown) indicates that, for each season, the temperature and precipitation oscillate
with a period of 17–20 years. This phenomenon indicates that the warming and wetting
phenomena in the Tarim Basin from 1987 to 2020 followed the same pattern, as shown
by the wavelet analysis of the various atmospheric circulation indexes (AO index, ENSO
index, NAO index, and PDO index) from 1987 to 2020. From 1987 to 2020, the atmospheric
circulation indexes also oscillate significantly with a 17–20-year period, which indicates
that the warming and wetting phenomena of the Tarim Basin are related to the atmospheric
circulation because they oscillate with the same period. However, how do atmospheric



Atmosphere 2023, 14, 151 6 of 13

circulation and climate change in space in the Tarim Basin? Further research is needed to
address this question.
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from 1987 to 2020 (Different factors of climate change and atmospheric circulation are listed on the
horizontal and at different seasonal scales on the vertical).

3.2. Spatial Characteristics of Climate Change in the Tarim Basin

The warming and wetting rates of the Tarim Basin are calculated based on the rate
of change of the climate, and spatial interpolation (inverse distance weighting) is used to
analyze the spatial distribution of climate trends for each season in the Tarim Basin [27,28].
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The results in Figure 4 show that the warming trend occurred in most regions of the Tarim
Basin for all seasons; the warming amplitude around the basin is greater than that in
the central area of the basin. In spring, the temperature increased in the Tarim Basin by
0.827 ◦C/decade, which was the fastest of all seasons. In winter, the temperature increased
in the Tarim Basin by −0.088 ◦C/decade, which was the slowest of all seasons. The rate
of change in precipitation in the Tarim Basin depends on the season and location, with
significant increases in some areas and significant decreases in others. The regional rate of
change in rainfall in spring is like that in autumn. Precipitation increased significantly in
the southeastern parts of the basin, with the highest rate of change in precipitation being
5.062 mm/decade. The regional rate of change of precipitation in the summer varied the
most, decreasing from the northwest part of the basin to the southeastern parts of the
basin. The maximum rate of change was 6.965 mm/decade. The regional rate of change in
precipitation varied the least in winter, reaching −2.319 mm/decade.

3.3. Climate Change and Atmospheric Circulation in the Tarim Basin

On the interannual scale, the wavelet analysis of climate change shows that the
warming and wetting phenomena in the Tarim Basin are related to atmospheric circulation
(Figure 3). The results of this paper are consistent with those of Wu et al. and Lv et al.
at multiple scales. However, the spatial evolution of teleconnection between warm and
humid phenomena is not clear from seasonal atmospheric circulation. For this reason, we
use the monthly circulation indexes (AO index, ENSO index, NAO index, and PDO index)
that describe the atmospheric circulation from 1987 to 2020 to calculate the seasonal data
and determine if seasonal temperature and precipitation are correlated with these indexes
in the Tarim Basin. There is a remote correlation between the seasonal temperature and
the atmospheric circulation in Section 3.3.1 and a remote correlation between the seasonal
precipitation and the atmospheric circulation in Section 3.3.2.
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3.3.1. The Seasonal Temperature and Atmospheric Circulation in the Tarim Basin

In most Tarim Basin regions, seasonal temperature and atmospheric circulation indexes
are relatively low (α = 0.05) as shown in Figure 5. In spring, the PDO and ENSO indices
showed a significant negative correlation with the temperature in some regions. In the
summer (autumn), the PDO index had a significant negative correlation with Tarim Basin
temperature, whereas the other indexes had no statistical significance. In winter, there is a
significant positive correlation between the ENSO index and the southwest Tarim Basin.
The results in Figure 5 show that the climate change in the Tarim Basin during 1987–2020
is related to the change of atmospheric circulation. PDO is the leading factor of summer
and autumn climate change in the Tarim Basin, and ENSO also plays an important role in
spring and winter climate change.
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3.3.2. The Seasonal Precipitation and Atmospheric Circulation in the Tarim Basin

Seasonal precipitation and the corresponding atmospheric circulation indexes are
relatively low (α = 0.05) in most regions of the Tarim Basin, as shown in Figure 6. In
spring, the AO index showed a significant negative correlation with precipitation in some
regions, while the ENSO index (PDO index) showed a significant positive correlation
with precipitation in some regions. In summer, the NAO index showed a significant
positive correlation with precipitation in eastern parts of the basin, while other atmospheric
circulation indexes showed no statistical significance. In autumn, there is a significant
positive correlation between the ENSO index and precipitation in the southeast Tarim Basin.
In winter, the correlation between the atmospheric circulation index and precipitation in the
Tarim Basin is not statistically significant. The results of Figure 6 show that the influence
of atmospheric circulation on the teleconnection of the Tarim Basin is relatively small. In
this paper, it is concluded that atmospheric circulation is not the main factor affecting
precipitation in the Tarim Basin at a seasonal scale and that the main controlling factors of
precipitation seasonal variation need to be explained in combination with other factors.
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Figure 6. Spatial distribution of correlation between annual precipitation and atmospheric circulation
in the Tarim Basin. Each column in the figure corresponds to a season, and each row corresponds to
an atmospheric circulation index (The black grid indicate that the trends are statistically significant at
the 0.05 level).

4. Discussion

The Tarim Basin has a typical continental desert climate and is in the extremely arid
region of northwest China [20,21]. The Tarim Basin is the only inland basin in the arid
region of northwest China and is of great significance for research into climate change, the
ecological environment, and the social economy of the entire northwest region of China and
even the entire arid region of Central Asia [6–8,36,37]. However, our current knowledge
about the spatial distribution of the warming and wetting phenomena in the Tarim Basin
on a seasonal timescale remains poor. Most studies of this phenomenon focus on the
spatiotemporal evolution of water resources and drought in the Tarim Basin or analyze the
spatial characteristics of climate change on a long-term scale in the arid region of northwest
China [35,38,39].

4.1. Spatiotemporal Characteristics of Climate Change in the Tarim Basin

To elucidate the warming and wetting phenomenon that currently envelops the arid
region of northwest China, we analyze here its seasonally specific spatial evolution in the
Tarim Basin. The results show that the warming trend occurred in most regions of the Tarim
Basin for all seasons; the warming amplitude around the basin is greater than that in the
central area of the basin. At the same time, the wetting trend differs significantly between
different zones of the region. These results are consistent with the climate of the Tarim
Basin, namely, the significant seasonal differences in climate and the copious evaporation
led to spatial variations in the wetting trend [11,12]. This indicates that the warming and
wetting phenomenon in the arid Tarim Basin has not forced the spatiotemporal evolution of
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the climate on the seasonal scale to depart from the original climate type, which means that
this phenomenon has not significantly changed the climate type of the Tarim Basin [13,40].

In this paper, the temporal and spatial characteristics of temperatures and precipitation
on the seasonal scale are analyzed by statistical methods. The results show that the climate
types in the Tarim Basin have not changed at the seasonal scale, and the climate changes
in the Tarim Basin are still consistent with the original climate types. Based on previous
research, we conclude that the warming and wetting phenomenon in the Tarim Basin is
linked to global warming, extreme precipitation events, and seasonal agricultural activities.
A key question now is: how long will the warming and wetting phenomena continue in
the future? This is the reason why the climate type of the Tarim Basin will change in the
future. Again, this is our next research topic.

4.2. Climate Evolution in the Tarim Basin: Effect of Atmospheric Circulation

A wavelet analysis shows that the periodic characteristics of climate in the Tarim Basin
from 1987 to 2020 and atmospheric circulation are similar, which indicates that atmospheric
circulation plays a role in generating the warming and wetting phenomena in the Tarim
Basin. An analysis of the seasonal correlations between climate change and atmospheric
circulation shows that PDO and ENSO are the main influencing factors of climate change in
the Tarim Basin at different seasonal scales, while the teleconnection of AO and NAO is low.
Among them, the PDO dominates the summer and autumn temperature changes in the
Tarim Basin. However, the teleconnection effect of atmospheric circulation on precipitation
in the Tarim Basin is relatively low. These results indicate that atmospheric circulation is
not the only factor contributing to the warming and wetting phenomena in the Tarim Basin;
internal variations in climate factors can also be important. The phenomenon may also be
promoted by external stress factors other than atmospheric circulation [41,42].

Many studies have shown that atmospheric circulation is the dominant factor in cli-
mate change in northwest China [5,41,42]. However, due to the Tarim Basin’s uniqueness
in comparison to northwest China, for example, it has the Tarim River system and the
Taklimakan Desert. Therefore, the actual physical mechanism in the Tarim Basin is com-
plicated. In future studies, many factors should be considered to analyze the seasonally
specific spatiotemporal characteristics of the warming and wetting phenomena in the Tarim
Basin [43,44].

5. Conclusions

The seasonally specific spatiotemporal variations of the Tarim Basin’s climate were
studied using climate inclination rate, wavelet analysis, and correlation analysis, and the
correlations (α = 0.05) between these climate indexes and atmospheric circulation were
examined. The results lead to the following conclusions:

(1) The Tarim Basin experienced a significant, seasonally specific warming and wetting
phenomenon from 1987 to 2020. All areas of the Tarim Basin warmed significantly in
all seasons over this period, whereas the precipitation differed significantly across the
seasons. The climate of the basin and the atmospheric circulation both oscillated over
a period of 17–20 years, which indicates that the atmospheric circulation is involved
in the generation of the wetting phenomenon of the Tarim Basin. Moreover, the
spatiotemporal evolution of climate change in the Tarim Basin still follows its original
climate type, despite experiencing a warming and wetting phenomenon over the
study period. Because the two indices of temperature and precipitation were studied
by statistical methods in this paper, the research results are weak in explaining the
mechanism. In future studies, we need to consider using different indicators (such as
the Drought Index, Drought Frequency, and Normalized Difference Vegetation Index)
to explore the characteristics of climate change in the Tarim Basin at the seasonal scale.

(2) Seasonal temperature (precipitation) and the corresponding atmospheric circulation
indexes are relatively low (α = 0.05) in most regions of the Tarim Basin. PDO is the
leading factor of summer and autumn climate change in the Tarim Basin, and ENSO
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also plays an important role in spring and winter climate change. However, the
teleconnection effect of atmospheric circulation on precipitation in the Tarim Basin
is relatively low. The results show that atmospheric circulation is only one of the
dominant factors contributing to the warm and wet phenomenon in the Tarim Basin.
For example, extreme precipitation events may be the main cause of the wetting
phenomenon in the Tarim Basin. Therefore, because the actual physical mechanism
in the Tarim Basin is complicated, many internal factors need to be considered in
future research.
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