Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = transition metal dichalcogenide (TMDCs) nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 21985 KiB  
Review
Emerging Low Detection Limit of Optically Activated Gas Sensors Based on 2D and Hybrid Nanostructures
by Ambali Alade Odebowale, Amer Abdulghani, Andergachew Mekonnen Berhe, Dinelka Somaweera, Sanjida Akter, Salah Abdo, Khalil As’ham, Reza Masoudian Saadabad, Toan T. Tran, David P. Bishop, Alexander S. Solntsev, Andrey E. Miroshnichenko and Haroldo T. Hattori
Nanomaterials 2024, 14(18), 1521; https://doi.org/10.3390/nano14181521 - 19 Sep 2024
Cited by 6 | Viewed by 4345
Abstract
Gas sensing is essential for detecting and measuring gas concentrations across various environments, with applications in environmental monitoring, industrial safety, and healthcare. The integration of two-dimensional (2D) materials, organic materials, and metal oxides has significantly advanced gas sensor technology, enhancing its sensitivity, selectivity, [...] Read more.
Gas sensing is essential for detecting and measuring gas concentrations across various environments, with applications in environmental monitoring, industrial safety, and healthcare. The integration of two-dimensional (2D) materials, organic materials, and metal oxides has significantly advanced gas sensor technology, enhancing its sensitivity, selectivity, and response times at room temperature. This review examines the progress in optically activated gas sensors, with emphasis on 2D materials, metal oxides, and organic materials, due to limited studies on their use in optically activated gas sensors, in contrast to other traditional gas-sensing technologies. We detail the unique properties of these materials and their impact on improving the figures of merit (FoMs) of gas sensors. Transition metal dichalcogenides (TMDCs), with their high surface-to-volume ratio and tunable band gap, show exceptional performance in gas detection, especially when activated by UV light. Graphene-based sensors also demonstrate high sensitivity and low detection limits, making them suitable for various applications. Although organic materials and hybrid structures, such as metal–organic frameworks (MoFs) and conducting polymers, face challenges related to stability and sensitivity at room temperature, they hold potential for future advancements. Optically activated gas sensors incorporating metal oxides benefit from photoactive nanomaterials and UV irradiation, further enhancing their performance. This review highlights the potential of the advanced materials in developing the next generation of gas sensors, addressing current research gaps and paving the way for future innovations. Full article
(This article belongs to the Special Issue Nanoscale Material-Based Gas Sensors)
Show Figures

Figure 1

15 pages, 8609 KiB  
Review
A Mini Review: Phase Regulation for Molybdenum Dichalcogenide Nanomaterials
by Xiaosong Han, Zhihong Zhang and Rongming Wang
Nanomaterials 2024, 14(11), 984; https://doi.org/10.3390/nano14110984 - 6 Jun 2024
Cited by 1 | Viewed by 1484
Abstract
Atomically thin two-dimensional transition metal dichalcogenides (TMDCs) have been regarded as ideal and promising nanomaterials that bring broad application prospects in extensive fields due to their ultrathin layered structure, unique electronic band structure, and multiple spatial phase configurations. TMDCs with different phase structures [...] Read more.
Atomically thin two-dimensional transition metal dichalcogenides (TMDCs) have been regarded as ideal and promising nanomaterials that bring broad application prospects in extensive fields due to their ultrathin layered structure, unique electronic band structure, and multiple spatial phase configurations. TMDCs with different phase structures exhibit great diversities in physical and chemical properties. By regulating the phase structure, their properties would be modified to broaden the application fields. In this mini review, focusing on the most widely concerned molybdenum dichalcogenides (MoX2: X = S, Se, Te), we summarized their phase structures and corresponding electronic properties. Particularly, the mechanisms of phase transformation are explained, and the common methods of phase regulation or phase stabilization strategies are systematically reviewed and discussed. We hope the review could provide guidance for the phase regulation of molybdenum dichalcogenides nanomaterials, and further promote their real industrial applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

23 pages, 4819 KiB  
Article
New MoS2/Tegafur-Containing Pharmaceutical Formulations for Selective LED-Based Skin Cancer Photo-Chemotherapy
by Miguel T. Campos, Filipa A. L. S. Silva, José Ramiro Fernandes, Susana G. Santos, Fernão D. Magalhães, Maria J. Oliveira and Artur M. Pinto
Pharmaceutics 2024, 16(3), 360; https://doi.org/10.3390/pharmaceutics16030360 - 4 Mar 2024
Cited by 4 | Viewed by 2548
Abstract
Non-melanoma skin cancer (NMSC) is one of the most common types of cancer worldwide. Despite the low mortality rate, rising incidence and recurrence rates are a burden on healthcare systems. Standard treatments such as chemotherapy, radiotherapy, and surgery are either invasive or toxic [...] Read more.
Non-melanoma skin cancer (NMSC) is one of the most common types of cancer worldwide. Despite the low mortality rate, rising incidence and recurrence rates are a burden on healthcare systems. Standard treatments such as chemotherapy, radiotherapy, and surgery are either invasive or toxic to healthy tissues; therefore, new, alternative, selective treatments are needed. In this work, a combined photothermal and chemotherapeutic approach is proposed. MoS2 was used as photothermal agent. It was prepared by a liquid-phase exfoliation and intercalation method using polyvinylpyrrolidone (PVP), followed by recirculation through a custom-built high-power ultrasonication probe. After 6 h of ultrasonication treatment, the average particle size was 165 ± 170 nm. Near-infrared (NIR) irradiation assays (810 nm, 0.1 W/cm2, 30 min, 180 J/cm2) confirmed that MoS2 nanosheets can efficiently convert NIR light into heat and reach 52 °C. The therapeutic doses of MoS2 (125 µg/mL) and Tegafur (50 µg/mL) were optimized and both were simultaneously incorporated into a Carbopol hydrogel. The cells were brought into contact with the hydrogel and irradiated with a custom-built NIR LED system. In HFF-1 cells (normal human fibroblasts), the metabolic activity was 78% (above the 70% toxicity limit—ISO 10993-5:2009(E)), while in A-431 skin cancer cells, it was 28%. In addition, the MoS2 + Tegafur hydrogels led to a 1.9-fold decrease in A-431 cancer cell metabolic activity, 72 h after irradiation, in comparison to MoS2 hydrogels, indicating a combined effect of photothermal and chemotherapy. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies)
Show Figures

Figure 1

11 pages, 3498 KiB  
Article
Colloidal Synthesis, Characterization, and Photoconductivity of Quasi-Layered CuCrS2 Nanosheets
by Jose J. Sanchez Rodriguez, Andrea N. Nunez Leon, Jabeen Abbasi, Pravin S. Shinde, Igor Fedin and Arunava Gupta
Nanomaterials 2022, 12(23), 4164; https://doi.org/10.3390/nano12234164 - 24 Nov 2022
Cited by 5 | Viewed by 2222
Abstract
The current need to accelerate the adoption of photovoltaic (PV) systems has increased the need to explore new nanomaterials that can harvest and convert solar energy into electricity. Transition metal dichalcogenides (TMDCs) are good candidates because of their tunable physical and chemical properties. [...] Read more.
The current need to accelerate the adoption of photovoltaic (PV) systems has increased the need to explore new nanomaterials that can harvest and convert solar energy into electricity. Transition metal dichalcogenides (TMDCs) are good candidates because of their tunable physical and chemical properties. CuCrS2 has shown good electrical and thermoelectrical properties; however, its optical and photoconductivity properties remain unexplored. In this study, we synthesized CuCrS2 nanosheets with average dimensions of 43.6 ± 6.7 nm in length and 25.6 ± 4.1 nm in width using a heat-up synthesis approach and fabricated films by the spray-coating method to probe their photoresponse. This method yielded CuCrS2 nanosheets with an optical bandgap of ~1.21 eV. The fabricated film had an average thickness of ~570 nm, exhibiting a net current conversion efficiency of ~11.3%. These results demonstrate the potential use of CuCrS2 as an absorber layer in solar cells. Full article
Show Figures

Figure 1

14 pages, 4848 KiB  
Article
Investigation of the Crystallization Kinetics and Melting Behaviour of Polymer Blend Nanocomposites Based on Poly(L-Lactic Acid), Nylon 11 and TMDCs WS2
by Mohammed Naffakh and Peter S. Shuttleworth
Polymers 2022, 14(13), 2692; https://doi.org/10.3390/polym14132692 - 30 Jun 2022
Cited by 1 | Viewed by 2289
Abstract
The aim of this work was to study the crystallization kinetics and melting behaviour of polymer blend nanocomposites based on poly (L-lactic acid) (PLLA), nylon 11 and tungsten disulfide nanotubes (INT-WS2), which are layered transition metal dichalcogenides (TMDCs), using non-isothermal differential [...] Read more.
The aim of this work was to study the crystallization kinetics and melting behaviour of polymer blend nanocomposites based on poly (L-lactic acid) (PLLA), nylon 11 and tungsten disulfide nanotubes (INT-WS2), which are layered transition metal dichalcogenides (TMDCs), using non-isothermal differential scanning calorimetry (DSC). Blends containing different nylon 11 contents ranging from 20 to 80 wt.% with or without INT-WS2 were prepared by melt mixing. Evaluation of their morphology with high-resolution SEM imaging proved that the incorporation of inorganic nanotubes into the immiscible PLLA/nylon 11 mixtures led to an improvement in the dispersibility of the nylon 11 phase, a reduction in its average domain size and, consequently, an increase in its interfacial area. The crystallization temperatures of these PLLA/nylon 11-INT blends were influenced by the cooling rate and composition. In particular, the DSC results appear to demonstrate that the 1D-TMDCs WS2 within the PLLA/nylon 11-INT blend nanocomposites initiated nucleation in both polymeric components, with the effect being more pronounced for PLLA. Moreover, the nucleation activity and activation energy were calculated to support these findings. The nucleation effect of INT-WS2, which influences the melting behaviour of PLLA, is highly important, particularly when evaluating polymer crystallinity. This study opens up new perspectives for the development of advanced PLA-based nanomaterials that show great potential for ecological and biomedical applications. Full article
Show Figures

Figure 1

24 pages, 2348 KiB  
Review
Transition Metal Dichalcogenides (TMDC)-Based Nanozymes for Biosensing and Therapeutic Applications
by Dario Presutti, Tarun Agarwal, Atefeh Zarepour, Nehar Celikkin, Sara Hooshmand, Chinmay Nayak, Matineh Ghomi, Ali Zarrabi, Marco Costantini, Birendra Behera and Tapas Kumar Maiti
Materials 2022, 15(1), 337; https://doi.org/10.3390/ma15010337 - 4 Jan 2022
Cited by 49 | Viewed by 10934
Abstract
Nanozymes, a type of nanomaterial with enzyme-like properties, are a promising alternative to natural enzymes. In particular, transition metal dichalcogenides (TMDCs, with the general formula MX2, where M represents a transition metal and X is a chalcogen element)-based nanozymes have demonstrated [...] Read more.
Nanozymes, a type of nanomaterial with enzyme-like properties, are a promising alternative to natural enzymes. In particular, transition metal dichalcogenides (TMDCs, with the general formula MX2, where M represents a transition metal and X is a chalcogen element)-based nanozymes have demonstrated exceptional potential in the healthcare and diagnostic sectors. TMDCs have different enzymatic properties due to their unique nano-architecture, high surface area, and semiconducting properties with tunable band gaps. Furthermore, the compatibility of TMDCs with various chemical or physical modification strategies provide a simple and scalable way to engineer and control their enzymatic activity. Here, we discuss recent advances made with TMDC-based nanozymes for biosensing and therapeutic applications. We also discuss their synthesis strategies, various enzymatic properties, current challenges, and the outlook for future developments in this field. Full article
(This article belongs to the Special Issue Nanozyme: Synthesis, Mechanisms, and Applications)
Show Figures

Figure 1

28 pages, 3634 KiB  
Review
2D Nanomaterial-Based Surface Plasmon Resonance Sensors for Biosensing Applications
by Sachin Singh, Pravin Kumar Singh, Ahmad Umar, Pooja Lohia, Hasan Albargi, L. Castañeda and D. K. Dwivedi
Micromachines 2020, 11(8), 779; https://doi.org/10.3390/mi11080779 - 15 Aug 2020
Cited by 120 | Viewed by 7143
Abstract
The absorption and binding energy of material plays an important role with a large surface area and conductivity for the development of any sensing device. The newly grown 2D nanomaterials like black phosphorus transition metal dichalcogenides (TMDCs) or graphene have excellent properties for [...] Read more.
The absorption and binding energy of material plays an important role with a large surface area and conductivity for the development of any sensing device. The newly grown 2D nanomaterials like black phosphorus transition metal dichalcogenides (TMDCs) or graphene have excellent properties for sensing devices’ fabrication. This paper summarizes the progress in the area of the 2D nanomaterial-based surface plasmon resonance (SPR) sensor during last decade. The paper also focuses on the structure of Kretschmann configuration, the sensing principle of SPR, its characteristic parameters, application in various fields, and some important recent works related to SPR sensors have also been discussed, based on the present and future scope of this field. The present paper provides a platform for researchers to work in the field of 2D nanomaterial-based SPR sensors. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors: Fabrication and Application, Volume II)
Show Figures

Figure 1

16 pages, 6318 KiB  
Article
Molecular Adsorption of NH3 and NO2 on Zr and Hf Dichalcogenides (S, Se, Te) Monolayers: A Density Functional Theory Study
by Shimeles Shumi Raya, Abu Saad Ansari and Bonggeun Shong
Nanomaterials 2020, 10(6), 1215; https://doi.org/10.3390/nano10061215 - 22 Jun 2020
Cited by 22 | Viewed by 4233
Abstract
Due to their atomic thicknesses and semiconducting properties, two-dimensional transition metal dichalcogenides (TMDCs) are gaining increasing research interest. Among them, Hf- and Zr-based TMDCs demonstrate the unique advantage that their oxides (HfO2 and ZrO2) are excellent dielectric materials. One possible [...] Read more.
Due to their atomic thicknesses and semiconducting properties, two-dimensional transition metal dichalcogenides (TMDCs) are gaining increasing research interest. Among them, Hf- and Zr-based TMDCs demonstrate the unique advantage that their oxides (HfO2 and ZrO2) are excellent dielectric materials. One possible method to precisely tune the material properties of two-dimensional atomically thin nanomaterials is to adsorb molecules on their surfaces as non-bonded dopants. In the present work, the molecular adsorption of NO2 and NH3 on the two-dimensional trigonal prismatic (1H) and octahedral (1T) phases of Hf and Zr dichalcogenides (S, Se, Te) is studied using dispersion-corrected periodic density functional theory (DFT) calculations. The adsorption configuration, energy, and charge-transfer properties during molecular adsorption are investigated. In addition, the effects of the molecular dopants (NH3 and NO2) on the electronic structure of the materials are studied. It was observed that the adsorbed NH3 donates electrons to the conduction band of the Hf (Zr) dichalcogenides, while NO2 receives electrons from the valance band. Furthermore, the NO2 dopant affects than NH3 significantly. The resulting band structure of the molecularly doped Zr and Hf dichalcogenides are modulated by the molecular adsorbates. This study explores, not only the properties of the two-dimensional 1H and 1T phases of Hf and Zr dichalcogenides (S, Se, Te), but also tunes their electronic properties by adsorbing non-bonded dopants. Full article
(This article belongs to the Special Issue Electronics, Electromagnetism and Applications of Nanomaterials)
Show Figures

Graphical abstract

33 pages, 5920 KiB  
Review
Transition Metal Dichalcogenides for the Application of Pollution Reduction: A Review
by Xixia Zhang, Sin Yong Teng, Adrian Chun Minh Loy, Bing Shen How, Wei Dong Leong and Xutang Tao
Nanomaterials 2020, 10(6), 1012; https://doi.org/10.3390/nano10061012 - 26 May 2020
Cited by 110 | Viewed by 10158
Abstract
The material characteristics and properties of transition metal dichalcogenide (TMDCs) have gained research interest in various fields, such as electronics, catalytic, and energy storage. In particular, many researchers have been focusing on the applications of TMDCs in dealing with environmental pollution. TMDCs provide [...] Read more.
The material characteristics and properties of transition metal dichalcogenide (TMDCs) have gained research interest in various fields, such as electronics, catalytic, and energy storage. In particular, many researchers have been focusing on the applications of TMDCs in dealing with environmental pollution. TMDCs provide a unique opportunity to develop higher-value applications related to environmental matters. This work highlights the applications of TMDCs contributing to pollution reduction in (i) gas sensing technology, (ii) gas adsorption and removal, (iii) wastewater treatment, (iv) fuel cleaning, and (v) carbon dioxide valorization and conversion. Overall, the applications of TMDCs have successfully demonstrated the advantages of contributing to environmental conversation due to their special properties. The challenges and bottlenecks of implementing TMDCs in the actual industry are also highlighted. More efforts need to be devoted to overcoming the hurdles to maximize the potential of TMDCs implementation in the industry. Full article
(This article belongs to the Special Issue Characterization, Synthesis and Applications of 2D Nanomaterials)
Show Figures

Graphical abstract

10 pages, 2135 KiB  
Article
Thickness-Dependent Differential Reflectance Spectra of Monolayer and Few-Layer MoS2, MoSe2, WS2 and WSe2
by Yue Niu, Sergio Gonzalez-Abad, Riccardo Frisenda, Philipp Marauhn, Matthias Drüppel, Patricia Gant, Robert Schmidt, Najme S. Taghavi, David Barcons, Aday J. Molina-Mendoza, Steffen Michaelis De Vasconcellos, Rudolf Bratschitsch, David Perez De Lara, Michael Rohlfing and Andres Castellanos-Gomez
Nanomaterials 2018, 8(9), 725; https://doi.org/10.3390/nano8090725 - 14 Sep 2018
Cited by 201 | Viewed by 22722
Abstract
The research field of two dimensional (2D) materials strongly relies on optical microscopy characterization tools to identify atomically thin materials and to determine their number of layers. Moreover, optical microscopy-based techniques opened the door to study the optical properties of these nanomaterials. We [...] Read more.
The research field of two dimensional (2D) materials strongly relies on optical microscopy characterization tools to identify atomically thin materials and to determine their number of layers. Moreover, optical microscopy-based techniques opened the door to study the optical properties of these nanomaterials. We presented a comprehensive study of the differential reflectance spectra of 2D semiconducting transition metal dichalcogenides (TMDCs), MoS2, MoSe2, WS2, and WSe2, with thickness ranging from one layer up to six layers. We analyzed the thickness-dependent energy of the different excitonic features, indicating the change in the band structure of the different TMDC materials with the number of layers. Our work provided a route to employ differential reflectance spectroscopy for determining the number of layers of MoS2, MoSe2, WS2, and WSe2. Full article
Show Figures

Figure 1

Back to TopTop