Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,693)

Search Parameters:
Keywords = transit-time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 626 KiB  
Article
Mapping Clinical Questions to the Nursing Interventions Classification: An Evidence-Based Needs Assessment in Emergency and Intensive Care Nursing Practice in South Korea
by Jaeyong Yoo
Healthcare 2025, 13(15), 1892; https://doi.org/10.3390/healthcare13151892 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Evidence-based nursing practice (EBNP) is essential in high-acuity settings such as intensive care units (ICUs) and emergency departments (EDs), where nurses are frequently required to make time-critical, high-stakes clinical decisions that directly influence patient safety and outcomes. Despite its recognized importance, [...] Read more.
Background/Objectives: Evidence-based nursing practice (EBNP) is essential in high-acuity settings such as intensive care units (ICUs) and emergency departments (EDs), where nurses are frequently required to make time-critical, high-stakes clinical decisions that directly influence patient safety and outcomes. Despite its recognized importance, the implementation of EBNP remains inconsistent, with frontline nurses often facing barriers to accessing and applying current evidence. Methods: This descriptive, cross-sectional study systematically mapped and prioritized clinical questions generated by ICU and ED nurses at a tertiary hospital in South Korea. Using open-ended questionnaires, 204 clinical questions were collected from 112 nurses. Each question was coded and classified according to the Nursing Interventions Classification (NIC) taxonomy (8th edition) through a structured cross-mapping methodology. Inter-rater reliability was assessed using Cohen’s kappa coefficient. Results: The majority of clinical questions (56.9%) were mapped to the Physiological: Complex domain, with infection control, ventilator management, and tissue perfusion management identified as the most frequent areas of inquiry. Patient safety was the second most common domain (21.6%). Notably, no clinical questions were mapped to the Family or Community domains, highlighting a gap in holistic and transitional care considerations. The mapping process demonstrated high inter-rater reliability (κ = 0.85, 95% CI: 0.80–0.89). Conclusions: Frontline nurses in high-acuity environments predominantly seek evidence related to complex physiological interventions and patient safety, while holistic and community-oriented care remain underrepresented in clinical inquiry. Utilizing the NIC taxonomy for systematic mapping establishes a reliable framework to identify evidence gaps and support targeted interventions in nursing practice. Regular protocol evaluation, alignment of continuing education with empirically identified priorities, and the integration of concise evidence summaries into clinical workflows are recommended to enhance EBNP implementation. Future research should expand to multicenter and interdisciplinary settings, incorporate advanced technologies such as artificial intelligence for automated mapping, and assess the long-term impact of evidence-based interventions on patient outcomes. Full article
(This article belongs to the Section Nursing)
Show Figures

Figure 1

20 pages, 10013 KiB  
Article
Addressing Challenges in Rds,on Measurement for Cloud-Connected Condition Monitoring in WBG Power Converter Applications
by Farzad Hosseinabadi, Sachin Kumar Bhoi, Hakan Polat, Sajib Chakraborty and Omar Hegazy
Electronics 2025, 14(15), 3093; https://doi.org/10.3390/electronics14153093 (registering DOI) - 2 Aug 2025
Abstract
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, [...] Read more.
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, addressing key limitations in current state-of-the-art (SOTA) methods. Traditional approaches rely on expensive data acquisition systems under controlled laboratory conditions, making them unsuitable for real-world applications due to component variability, time delay, and noise sensitivity. Furthermore, these methods lack cloud interfacing for real-time data analysis and fail to provide comprehensive reliability metrics such as Remaining Useful Life (RUL). Additionally, the proposed CM method benefits from noise mitigation during switching transitions by utilizing delay circuits to ensure stable and accurate data capture. Moreover, collected data are transmitted to the cloud for long-term health assessment and damage evaluation. In this paper, experimental validation follows a structured design involving signal acquisition, filtering, cloud transmission, and temperature and thermal degradation tracking. Experimental testing has been conducted at different temperatures and operating conditions, considering coolant temperature variations (40 °C to 80 °C), and an output power of 7 kW. Results have demonstrated a clear correlation between temperature rise and Rds,on variations, validating the ability of the proposed method to predict device degradation. Finally, by leveraging cloud computing, this work provides a practical solution for real-world Wide Band Gap (WBG)-based PEC reliability and lifetime assessment. Full article
(This article belongs to the Section Industrial Electronics)
21 pages, 1646 KiB  
Article
How Does New Quality Productive Forces Affect Green Total Factor Energy Efficiency in China? Consider the Threshold Effect of Artificial Intelligence
by Boyu Yuan, Runde Gu, Peng Wang and Yuwei Hu
Sustainability 2025, 17(15), 7012; https://doi.org/10.3390/su17157012 (registering DOI) - 1 Aug 2025
Abstract
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving [...] Read more.
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving this relationship, is essential for economic transformation and long-term sustainability. This study establishes an evaluation framework for NQPF, integrating technological, green, and digital dimensions. We apply fixed-effects models, the spatial Durbin model (SDM), a moderation model, and a threshold model to analyze the influence of NQPF on Green Total Factor Energy Efficiency (GTFEE) and its spatial implications. This underscores the necessity of distinguishing it from traditional productivity frameworks and adopting a new analytical perspective. Furthermore, by considering dimensions such as input, application, innovation capability, and market efficiency, we reveal the moderating role and heterogeneous effects of artificial intelligence (AI). The findings are as follows: The development of NQPF significantly enhances GTFEE, and the conclusion remains robust after tail reduction and endogeneity tests. NQPF has a positive spatial spillover effect on GTFEE; that is, while improving the local GTFEE, it also improves neighboring regions GTFEE. The advancement of AI significantly strengthens the positive impact of NQPF on GTFEE. AI exhibits a significant U-shaped threshold effect: as AI levels increase, its moderating effect transitions from suppression to facilitation, with marginal benefits gradually increasing over time. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

26 pages, 7374 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 (registering DOI) - 1 Aug 2025
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of –0.46 mA·cm−2 at –0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
11 pages, 487 KiB  
Perspective
Constipation in Ulcerative Colitis: An Underestimated Problem
by Gabrio Bassotti, Sara Bologna and Elisabetta Antonelli
J. Clin. Med. 2025, 14(15), 5428; https://doi.org/10.3390/jcm14155428 (registering DOI) - 1 Aug 2025
Abstract
Ulcerative colitis is a chronic intestinal disorder that belongs to the category of inflammatory bowel diseases, and is usually characterized by the presence of bloody diarrhea and abdominal pain, due to an accelerated transit and intestinal sensibilization following inflammation of the colonic mucosa. [...] Read more.
Ulcerative colitis is a chronic intestinal disorder that belongs to the category of inflammatory bowel diseases, and is usually characterized by the presence of bloody diarrhea and abdominal pain, due to an accelerated transit and intestinal sensibilization following inflammation of the colonic mucosa. However, the literature reports that ulcerative colitis may sometimes feature fecal stasis with constipation. This apparent paradox may be partially explained by the motor abnormalities of the large bowel following inflammation, damage to the enteric innervation, and the onset of parietal fibrosis over time. Moreover, some anorectal abnormalities such pelvic floor dyssynergia may explain the symptoms of constipation reported in subsets of patients. Since these abnormalities may be responsible for diagnostic delays and non- or partial responses to therapy, it is important to recognize them as early as possible to avoid incorrect clinical and therapeutic approaches to these patients. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

10 pages, 483 KiB  
Article
The Lack of Impact of Primary Care Units on Screening Services in Thailand and the Transition to Local Administrative Organization Policy
by Noppcha Singweratham, Jiruth Sriratanaban, Daoroong Komwong, Mano Maneechay and Pallop Siewchaisakul
Healthcare 2025, 13(15), 1884; https://doi.org/10.3390/healthcare13151884 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: In Thailand, the transition of primary care units (PCUs) to Local Administrative Organizations (LAOs) has raised concerns regarding the potential impact on healthcare service delivery. This study aimed to compare health services between PCUs that have been transferred to LAOs and [...] Read more.
Background/Objectives: In Thailand, the transition of primary care units (PCUs) to Local Administrative Organizations (LAOs) has raised concerns regarding the potential impact on healthcare service delivery. This study aimed to compare health services between PCUs that have been transferred to LAOs and those that have not. Methods: A total of 15 transferred PCUs (T-PCUs) and 45 non-transferred PCUs (NT-PCUs), matched by population within the same provinces, were purposively sampled. The study population consisted of the cumulative number of diabetes (DM) and hypertension (HTN) screenings retrieved from the National Health Security Office (NHSO) database from 2017 to 2023. The impact of the LAO transfer policy on health service delivery was assessed using generalized estimating equation (GEE) models. All analyses were performed using Stata version 15. Results: The result showed no significant difference in the population and size of PCUs. DM screening was non-significantly lower by 18.9% (AdjRR: 0.811), and HTN screening was lower by 18.6% (AdjRR: 0.814), when comparing T-PCU with NT-PCU. Similarly, the DM and HTN screening in T-PCU was non-significantly lower than NT-PCU when interacting with time. Both T-PCU and NT-PCU show decreases over time; however, the decrease was not statistically significant. Conclusions: Our results show a non-significant difference in DM and HTN screening between T-PCU and NT-PCU. Therefore, decentralization did not clearly demonstrate a negative impact on the delivery of these health services. Further research is needed to consider other confounding and covariate factors for DM and HTN screening. Full article
Show Figures

Figure 1

23 pages, 2888 KiB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 (registering DOI) - 1 Aug 2025
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 (registering DOI) - 1 Aug 2025
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

40 pages, 585 KiB  
Article
Finite-Time Thermodynamics and Complex Energy Landscapes: A Perspective
by Johann Christian Schön
Entropy 2025, 27(8), 819; https://doi.org/10.3390/e27080819 (registering DOI) - 1 Aug 2025
Abstract
Finite-time thermodynamics (FTT) describes the study of thermodynamic processes that take place in finite time. Due to the finite-time requirement, in general the system cannot move from equilibrium state to equilibrium state. As a consequence, excess entropy is generated, available work is reduced, [...] Read more.
Finite-time thermodynamics (FTT) describes the study of thermodynamic processes that take place in finite time. Due to the finite-time requirement, in general the system cannot move from equilibrium state to equilibrium state. As a consequence, excess entropy is generated, available work is reduced, and/or the maximally achievable efficiency is not achieved; minimizing these negative side-effects constitutes an optimal control problem. Particularly challenging are processes and cycles that involve phase transitions of the working fluid material or the target material of a synthesis process, especially since most materials reside on a highly complex energy landscape exhibiting alternative metastable phases or glassy states. In this perspective, we discuss the issues and challenges involved in dealing with such materials when performing thermodynamic processes that include phase transitions in finite time. We focus on thermodynamic cycles with one back-and-forth transition and the generation of new materials via a phase transition; other systems discussed concern the computation of free energy differences and the general applicability of FTT to systems outside the realm of chemistry and physics that exhibit cost function landscapes with phase transition-like dynamics. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

23 pages, 1178 KiB  
Article
A Qualitative Analysis and Discussion of a New Model for Optimizing Obesity and Associated Comorbidities
by Mohamed I. Youssef, Robert M. Maina, Duncan K. Gathungu and Amr Radwan
Symmetry 2025, 17(8), 1216; https://doi.org/10.3390/sym17081216 - 1 Aug 2025
Abstract
This paper addresses the problem of optimizing obesity, which has been a challenging issue in the last decade based on recent data revealed in 2024 by the World Health Organization (WHO). The current work introduces a new mathematical model of the dynamics of [...] Read more.
This paper addresses the problem of optimizing obesity, which has been a challenging issue in the last decade based on recent data revealed in 2024 by the World Health Organization (WHO). The current work introduces a new mathematical model of the dynamics of weight over time with embedded control parameters to optimize the number of obese, overweight, and comorbidity populations. The mathematical formulation of the model is developed under certain sufficient conditions that guarantee the positivity and boundedness of solutions over time. The model structure exhibits inherent symmetry in population group transitions, particularly around the equilibrium state, which allows the application of analytical tools such as the Routh–Hurwitz and Metzler criteria. Then, the analysis of local and global stability of the obesity-free equilibrium state is discussed based on these criteria. Based on the Pontryagin maximum principle (PMP), the deviation from the obesity-free equilibrium state is controlled. The model’s effectiveness is demonstrated through simulation using the Forward–Backward Sweeping algorithm with parameters derived from recent research in human health. Incorporating symmetry considerations in the model enhances the understanding of system behavior and supports balanced intervention strategies. Results suggest that the model can effectively inform strategies to mitigate obesity prevalence and associated health risks. Full article
(This article belongs to the Special Issue Mathematical Modeling of the Infectious Diseases and Their Controls)
Show Figures

Figure 1

16 pages, 1873 KiB  
Systematic Review
A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration
by Ayda Zaroujtaghi, Omid Mansourihanis, Mohammad Tayarani, Fatemeh Mansouri, Moein Hemmati and Ali Soltani
Future Transp. 2025, 5(3), 97; https://doi.org/10.3390/futuretransp5030097 (registering DOI) - 1 Aug 2025
Abstract
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data [...] Read more.
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data models, methodologies, and outcomes from 2004 to 2024. This study addresses this gap through a longitudinal analysis of GIS-based transportation research from 2004 to 2024, adhering to PRISMA guidelines. By conducting a mixed-methods analysis of 241 peer-reviewed articles, this study delineates major trends, such as increased emphasis on sustainability, equity, stakeholder involvement, and the incorporation of advanced technologies. Prominent domains include land use–transportation coordination, accessibility, artificial intelligence, real-time monitoring, and policy evaluation. Expanded data sources, such as real-time sensor feeds and 3D models, alongside sophisticated modeling techniques, enable evidence-based, multifaceted decision-making. However, challenges like data limitations, ethical concerns, and the need for specialized expertise persist, particularly in developing regions. Future geospatial innovations should prioritize the responsible adoption of emerging technologies, inclusive capacity building, and environmental justice to foster equitable and efficient transportation systems. This review highlights GIS’s evolution from a supplementary tool to a cornerstone of data-driven, sustainable urban mobility planning, offering insights for researchers, practitioners, and policymakers to advance transportation strategies that align with equity and sustainability goals. Full article
Show Figures

Figure 1

26 pages, 1337 KiB  
Article
Design of Logistics Platform Business Models in the View of Value Co-Creation
by Ke Huang, Fang Wang and Jie Bai
Systems 2025, 13(8), 640; https://doi.org/10.3390/systems13080640 (registering DOI) - 1 Aug 2025
Abstract
The effective design of logistics platform business models is an important means for platform-type logistics enterprises to gain a competitive advantage. This study employs RRS Logistics as a case study to clarify the dynamic environmental mechanisms of logistics platform business models from the [...] Read more.
The effective design of logistics platform business models is an important means for platform-type logistics enterprises to gain a competitive advantage. This study employs RRS Logistics as a case study to clarify the dynamic environmental mechanisms of logistics platform business models from the perspective of value co-creation and build a novel structural framework for logistics platform business models with community at their core. The research findings are as follows: First, guided by the idea of “value positioning–value co–creation–value support–value maintenance–value capture”, the conceptual framework of business models is redefined. The key steps in designing logistics platform business models, which can provide guidance and assistance for different logistics platforms, are proposed. Second, the design process for logistics platform business models should be dynamically adjusted in real time according to changes and environmental uncertainty. Third, in the process of transitioning to an ecological platform, logistics platforms’ ecosystem service clusters and ecosystem envelope are key factors in achieving a win–win scenario for all the stakeholders in the community. The case studies show that in logistics platform business model design, methods and key steps based on value co-creation could enhance the core competitiveness of logistics platforms. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

29 pages, 5343 KiB  
Article
Optimizing Electric Bus Efficiency: Evaluating Seasonal Performance in a Southern USA Transit System
by MD Rezwan Hossain, Arjun Babuji, Md. Hasibul Hasan, Haofei Yu, Amr Oloufa and Hatem Abou-Senna
Future Transp. 2025, 5(3), 92; https://doi.org/10.3390/futuretransp5030092 (registering DOI) - 1 Aug 2025
Abstract
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced [...] Read more.
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced battery performance, this study presents a contrasting perspective based on a three-year longitudinal analysis of the LYMMO fleet in Orlando, Florida—a subtropical U.S. region. The findings reveal that summer is the most energy-intensive season, primarily due to sustained HVAC usage driven by high ambient temperatures—a seasonal pattern rarely reported in the current literature and a key regional contribution. Additionally, idling time exceeds driving time across all seasons, with HVAC usage during idling emerging as the dominant contributor to total energy consumption. To mitigate these inefficiencies, a proxy-based HVAC energy estimation method and an optimization model were developed, incorporating ambient temperature and peak passenger load. This approach achieved up to 24% energy savings without compromising thermal comfort. Results validated through non-parametric statistical testing support operational strategies such as idling reduction, HVAC control, and seasonally adaptive scheduling, offering practical pathways to improve EB efficiency in warm-weather transit systems. Full article
Show Figures

Figure 1

17 pages, 1754 KiB  
Article
A Fuzzy Five-Region Membership Model for Continuous-Time Vehicle Flow Statistics in Underground Mines
by Hao Wang, Maoqua Wan, Hanjun Gong and Jie Hou
Processes 2025, 13(8), 2434; https://doi.org/10.3390/pr13082434 - 31 Jul 2025
Abstract
Accurate dynamic flow statistics for trackless vehicles are critical for efficiently scheduling trackless transportation systems in underground mining. However, traditional discrete time-point methods suffer from “time membership discontinuity” due to RFID timestamp sparsity. This study proposes a fuzzy five-region membership (FZFM) model to [...] Read more.
Accurate dynamic flow statistics for trackless vehicles are critical for efficiently scheduling trackless transportation systems in underground mining. However, traditional discrete time-point methods suffer from “time membership discontinuity” due to RFID timestamp sparsity. This study proposes a fuzzy five-region membership (FZFM) model to address this issue by subdividing time intervals into five characteristic regions and constructing a composite Gaussian–quadratic membership function. The model dynamically assigns weights to adjacent segments based on temporal distances, ensuring smooth transitions between time intervals while preserving flow conservation. When validated on a 29-day RFID dataset from a large coal mine, FZFM eliminated conservation bias, reduced the boundary mutation index by 11.1% compared with traditional absolute segmentation, and maintained high computational efficiency, proving suitable for real-time systems. The method effectively mitigates abrupt flow jumps at segment boundaries, providing continuous and robust flow distributions for intelligent scheduling algorithms in complex underground logistics systems. Full article
(This article belongs to the Special Issue Data-Driven Analysis and Simulation of Coal Mining)
Show Figures

Figure 1

21 pages, 4874 KiB  
Article
Influence of Vegetation Cover and Soil Properties on Water Infiltration: A Study in High-Andean Ecosystems of Peru
by Azucena Chávez-Collantes, Danny Jarlis Vásquez Lozano, Leslie Diana Velarde-Apaza, Juan-Pablo Cuevas, Richard Solórzano and Ricardo Flores-Marquez
Water 2025, 17(15), 2280; https://doi.org/10.3390/w17152280 - 31 Jul 2025
Abstract
Water infiltration into soil is a key process in regulating the hydrological cycle and sustaining ecosystem services in high-Andean environments. However, limited information is available regarding its dynamics in these ecosystems. This study evaluated the influence of three types of vegetation cover and [...] Read more.
Water infiltration into soil is a key process in regulating the hydrological cycle and sustaining ecosystem services in high-Andean environments. However, limited information is available regarding its dynamics in these ecosystems. This study evaluated the influence of three types of vegetation cover and soil properties on water infiltration in a high-Andean environment. A double-ring infiltrometer, the Water Drop Penetration Time (WDPT, s) method, and laboratory physicochemical characterization were employed. Soils under forest cover exhibited significantly higher quasi-steady infiltration rates (is, 0.248 ± 0.028 cm·min−1) compared to grazing areas (0.051 ± 0.016 cm·min−1) and agricultural lands (0.032 ± 0.013 cm·min−1). Soil organic matter content was positively correlated with is. The modified Kostiakov infiltration model provided the best overall fit, while the Horton model better described infiltration rates approaching is. Sand and clay fractions, along with K+, Ca2+, and Mg2+, were particularly significant during the soil’s wet stages. In drier stages, increased Na+ concentrations and decreased silt content were associated with higher water repellency. Based on WDPT, agricultural soils exhibited persistent hydrophilic behavior even after drying (median [IQR] from 0.61 [0.38] s to 1.24 [0.46] s), whereas forest (from 2.84 [3.73] s to 3.53 [24.17] s) and grazing soils (from 4.37 [1.95] s to 19.83 [109.33] s) transitioned to weakly or moderately hydrophobic patterns. These findings demonstrate that native Andean forest soils exhibit a higher infiltration capacity than soils under anthropogenic management (agriculture and grazing), highlighting the need to conserve and restore native vegetation cover to strengthen water resilience and mitigate the impacts of land-use change. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

Back to TopTop