Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (595)

Search Parameters:
Keywords = transient evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1589 KB  
Article
A Multiphysics Aging Model for SiOx–Graphite Lithium-Ion Batteries Considering Electrochemical–Thermal–Mechanical–Gaseous Interactions
by Xiao-Ying Ma, Xue Li, Meng-Ran Kang, Jintao Shi, Xingcun Fan, Zifeng Cong, Xiaolong Feng, Jiuchun Jiang and Xiao-Guang Yang
Batteries 2026, 12(1), 30; https://doi.org/10.3390/batteries12010030 - 16 Jan 2026
Abstract
Silicon oxide/graphite (SiOx/Gr) anodes are promising candidates for high energy-density lithium-ion batteries. However, their complex multiphysics degradation mechanisms pose challenges for accurately interpreting and predicting capacity fade behavior. In particular, existing multiphysics models typically treat gas generation and solid electrolyte interphase [...] Read more.
Silicon oxide/graphite (SiOx/Gr) anodes are promising candidates for high energy-density lithium-ion batteries. However, their complex multiphysics degradation mechanisms pose challenges for accurately interpreting and predicting capacity fade behavior. In particular, existing multiphysics models typically treat gas generation and solid electrolyte interphase (SEI) growth as independent or unidirectionally coupled processes, neglecting their bidirectional interactions. Here, we develop an electro–thermal–mechanical–gaseous coupled model to capture the dominant degradation processes in SiOx/Gr anodes, including SEI growth, gas generation, SEI formation on cracks, and particle fracture. Model validation shows that the proposed framework can accurately reproduce voltage responses under various currents and temperatures, as well as capacity fade under different thermal and mechanical conditions. Based on this validated model, a mechanistic analysis reveals two key findings: (1) Gas generation and SEI growth are bidirectionally coupled. SEI growth induces gas release, while accumulated gas in turn regulates subsequent SEI evolution by promoting SEI formation through hindered mass transfer and suppressing it through reduced active surface area. (2) Crack propagation within particles is jointly governed by the magnitude and duration of stress. High-rate discharges produce large but transient stresses that restrict crack growth, while prolonged stresses at low rates promote crack propagation and more severe structural degradation. This study provides new insights into the coupled degradation mechanisms of SiOx/Gr anodes, offering guidance for performance optimization and structural design to extend battery cycle life. Full article
14 pages, 5336 KB  
Article
Time-Dependent Microstructural Transformation and Interfacial Phase Evolution in TLP Bonding of CM247LC Superalloy
by Jaehui Bang, Hyukjoo Kwon, Taewon Park and Eunkyung Lee
Coatings 2026, 16(1), 121; https://doi.org/10.3390/coatings16010121 - 16 Jan 2026
Abstract
The bonding behavior of the Ni-based superalloy CM247LC during transient liquid phase (TLP) bonding is strongly governed by filler metal chemistry, particularly boron activity. In this study, the time-dependent bonding mechanisms of CM247LC joints fabricated using a high-boron MBF-80 filler and a low-boron [...] Read more.
The bonding behavior of the Ni-based superalloy CM247LC during transient liquid phase (TLP) bonding is strongly governed by filler metal chemistry, particularly boron activity. In this study, the time-dependent bonding mechanisms of CM247LC joints fabricated using a high-boron MBF-80 filler and a low-boron MBF-20 filler are systematically compared to clarifying the transition between reaction-dominated brazing and diffusion-assisted TLP bonding. Microstructural analyses reveal that MBF-80 promotes the formation of a persistent, reaction-stabilized interlayer characterized by strong boron localization and the development of boron-rich intermetallic reaction products. These features kinetically suppress diffusion-assisted homogenization and prevent isothermal solidification, resulting in pronounced chemical and mechanical discontinuities across the joint. In contrast, MBF-20 enables progressive boron depletion, suppression of stable intermetallic accumulation, and interfacial smoothing, leading to diffusion-assisted chemical redistribution and partial isothermal solidification. This evolution is accompanied by gradual convergence of hardness profiles toward that of the CM247LC base metal, indicating improved mechanical continuity. These results demonstrate that joint hardness alone is insufficient for evaluating bonding quality in CM247LC. Instead, controlled microstructural evolution governed by low-boron filler chemistry is essential for achieving chemically and mechanically compatible joints. The present work establishes a clear mechanistic link between filler metal composition and bonding behavior, providing guidance for the design of reliable TLP bonding strategies in Ni-based superalloys. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

30 pages, 1496 KB  
Article
A Newton–Raphson-Based Optimizer for PI and Feedforward Gain Tuning of Grid-Forming Converter Control in Low-Inertia Wind Energy Systems
by Mona Gafar, Shahenda Sarhan, Ahmed R. Ginidi and Abdullah M. Shaheen
Sustainability 2026, 18(2), 912; https://doi.org/10.3390/su18020912 - 15 Jan 2026
Abstract
The increasing penetration of wind energy has led to reduced system inertia and heightened sensitivity to dynamic disturbances in modern power systems. This paper proposes a Newton–Raphson-Based Optimizer (NRBO) for tuning proportional, integral, and feedforward gains of a grid-forming converter applied to a [...] Read more.
The increasing penetration of wind energy has led to reduced system inertia and heightened sensitivity to dynamic disturbances in modern power systems. This paper proposes a Newton–Raphson-Based Optimizer (NRBO) for tuning proportional, integral, and feedforward gains of a grid-forming converter applied to a wind energy conversion system operating in a low-inertia environment. The study considers an aggregated wind farm modeled as a single equivalent DFIG-based wind turbine connected to an infinite bus, with detailed dynamic representations of the converter control loops, synchronous generator dynamics, and network interactions formulated in the dq reference frame. The grid-forming converter operates in a grid-connected mode, regulating voltage and active–reactive power exchange. The NRBO algorithm is employed to optimize a composite objective function defined in terms of voltage deviation and active–reactive power mismatches. Performance is evaluated under two representative scenarios: small-signal disturbances induced by wind torque variations and short-duration symmetrical voltage disturbances of 20 ms. Comparative results demonstrate that NRBO achieves lower objective values, faster transient recovery, and reduced oscillatory behavior compared with Differential Evolution, Particle Swarm Optimization, Philosophical Proposition Optimizer, and Exponential Distribution Optimization. Statistical analyses over multiple independent runs confirm the robustness and consistency of NRBO through significantly reduced performance dispersion. The findings indicate that the proposed optimization framework provides an effective simulation-based approach for enhancing the transient performance of grid-forming wind energy converters in low-inertia systems, with potential relevance for supporting stable operation under increased renewable penetration. Improving the reliability and controllability of wind-dominated power grids enhances the delivery of cost-effective, cleaner, and more resilient energy systems, aiding in expanding sustainable electricity access in alignment with SDG7. Full article
(This article belongs to the Section Energy Sustainability)
12 pages, 264 KB  
Article
Timelike Thin-Shell Evolution in Gravitational Collapse: Classical Dynamics and Thermodynamic Interpretation
by Axel G. Schubert
Entropy 2026, 28(1), 96; https://doi.org/10.3390/e28010096 - 13 Jan 2026
Viewed by 45
Abstract
This work explores late-time gravitational collapse using timelike thin-shell methods in classical general relativity. A junction surface separates a regular de Sitter interior from a Schwarzschild or Schwarzschild–de Sitter exterior in a post-transient regime with fixed exterior mass M (ADM for [...] Read more.
This work explores late-time gravitational collapse using timelike thin-shell methods in classical general relativity. A junction surface separates a regular de Sitter interior from a Schwarzschild or Schwarzschild–de Sitter exterior in a post-transient regime with fixed exterior mass M (ADM for Λ+=0), modelling a vacuum–energy core surrounded by an asymptotically classical spacetime. The configuration admits a natural thermodynamic interpretation based on a geometric area functional SshellR2 and Tolman redshift, both derived from classical junction conditions and used as an entropy-like coarse-grained quantity rather than a fundamental statistical entropy. Key results include (i) identification of a deceleration mechanism at the balance radius Rthr=(3M/Λ)1/3 for linear surface equations of state p=wσ; (ii) classification of the allowable radial domain V(R)0 for outward evolution; (iii) bounded curvature invariants throughout the shell-supported spacetime region; and (iv) a mass-scaled frequency bound fcRSξ/(33π) for persistent near-shell spectral modes. All predictions follow from standard Israel junction techniques and provide concrete observational tests. The framework offers an analytically tractable example of regular thin-shell collapse dynamics within classical general relativity, with implications for alternative compact object scenarios. Full article
(This article belongs to the Special Issue Coarse and Fine-Grained Aspects of Gravitational Entropy)
14 pages, 2468 KB  
Article
Transient Arcing Characteristics of the Pantograph–Catenary System in Electrical Sectioning Overlaps
by Like Pan, Xiaokang Wang, Yuan Yuan, Tong Xing and Liming Chen
Infrastructures 2026, 11(1), 17; https://doi.org/10.3390/infrastructures11010017 - 8 Jan 2026
Viewed by 96
Abstract
Transient arcing often occurs as an electric locomotive traverses an electrical sectioning overlap (ESO), deteriorating current collection stability and reducing the durability of the pantograph–catenary (PC) system. In this study, the formation mechanism and electrical evolution characteristics of transient arcing in the ESO [...] Read more.
Transient arcing often occurs as an electric locomotive traverses an electrical sectioning overlap (ESO), deteriorating current collection stability and reducing the durability of the pantograph–catenary (PC) system. In this study, the formation mechanism and electrical evolution characteristics of transient arcing in the ESO region are investigated through theoretical analysis and numerical simulations. First, based on the dynamic motion of the locomotive passing through the ESO, the transient arcing mechanism of the ESO is clarified, and the plasma characteristics of the arc are described. Then, the electromagnetic, airflow, and thermal field interactions within the PC contact gap during arc ignition are analyzed. A Multiphysics coupled PC arc model is developed, incorporating aerodynamic, electromagnetic, and heat transfer effects. Subsequently, finite element meshing and boundary conditions are applied to simulate the transient evolution of the ESO arc. Finally, the transient arcing characteristics of the ESO are analyzed. The results indicate that the current density is highly concentrated at the initial arcing stage and gradually forms an axially symmetric conductive channel (approximately 107 A/m2), which shifts upward as the contact gap increases. Moreover, due to the geometric discontinuity of the ESO, a strong localized electric field develops near the wire edge, leading to arc root migration and reignition. Full article
(This article belongs to the Special Issue The Resilience of Railway Networks: Enhancing Safety and Robustness)
Show Figures

Figure 1

17 pages, 4213 KB  
Article
Transient Liquid Phase Bonding of Hastelloy X with Inconel 738 Superalloy Using BNi-2 Interlayer: Microstructure and Mechanical Properties
by Lin Yang, Yuwei Zhao, Xingdong Chen, Ke Li, Xingyu Zhang, Panpan Lin, Tiesong Lin and Peng He
Materials 2026, 19(2), 227; https://doi.org/10.3390/ma19020227 - 6 Jan 2026
Viewed by 168
Abstract
The dissimilar joining of solid-solution-strengthened superalloys and precipitation-strengthened superalloys enables complementary performance synergy, holding significant application potential in the aerospace industry. This study investigated the transient liquid phase bonding of Hastelloy X and IN738 using a BNi-2 interlayer, focusing on the effects of [...] Read more.
The dissimilar joining of solid-solution-strengthened superalloys and precipitation-strengthened superalloys enables complementary performance synergy, holding significant application potential in the aerospace industry. This study investigated the transient liquid phase bonding of Hastelloy X and IN738 using a BNi-2 interlayer, focusing on the effects of bonding temperature and time on interfacial microstructure evolution and mechanical properties. The results demonstrated that achieving complete isothermal solidification is paramount for joint properties, a process governed by the synergistic control of bonding temperature and time. At lower temperatures (e.g., 1050 °C), the joint centerline contained an athermal solidification zone (ASZ) rich in hard and brittle Cr-rich (∼15.9 GPa) and Ni-rich borides, which served as the failure initiation site. As the ASZ was progressively eliminated with increasing temperature, a fully isothermal solidified zone (ISZ, ∼52 μm wide) consisting of γ-Ni formed at 1100 °C. Concurrently, Cr-Mo borides (∼9.8 GPa) precipitated within the diffusion-affected zone (DAZ) on the Hastelloy X side, becoming the new potential sites for crack initiation. Prolonging the holding time at 1100 °C not only ensured complete isothermal solidification but also promoted Mo diffusion, which improved the plasticity of the Cr-Mo borides and their interfacial bonding with the γ-Ni matrix (∼5.9 GPa). This synergistic optimization resulted in a significant increase in joint shear strength, achieving a maximum value of 587 MPa under the optimal condition of 1100 °C/40 min. Full article
Show Figures

Figure 1

25 pages, 5165 KB  
Article
Impact of Sensor Network Resolution on Methane Leak Characterization in Large Indoor Spaces for Green-Fuel Vessel Applications
by Wook Kwon, Dahye Choi, Soungwoo Park and Jinkyu Kim
Processes 2026, 14(1), 150; https://doi.org/10.3390/pr14010150 - 1 Jan 2026
Viewed by 393
Abstract
A quantitative understanding of methane leakage has become essential for safety design as eco-friendly fuel systems expand in modern ship applications. To address this need, controlled methane-release experiments were conducted in a large indoor chamber (30 × 16 × 20 m) to evaluate [...] Read more.
A quantitative understanding of methane leakage has become essential for safety design as eco-friendly fuel systems expand in modern ship applications. To address this need, controlled methane-release experiments were conducted in a large indoor chamber (30 × 16 × 20 m) to evaluate how sensor-network resolution (1 m vs. 0.5 m spacing) influences dispersion measurement and 5% Lower Explosive Limit (LEL)-based risk assessment. Initial tests with a 1 m grid showed that most sensors detected only low concentrations except for near the release nozzle, demonstrating that coarse spatial resolution cannot capture the primary dispersion pathway or transient peaks. This limitation motivated the use of a 0.5 m high-density sensor network, which enabled clear identification of the dispersion centerline, concentration-gradient development, early detection behavior, and the evolution of diluted regions, particularly under buoyancy-driven plume rise. Experimental results were compared with CFD simulations using the RNG k–ε and k–ω GEKO turbulence models. Strong agreement was obtained in peak concentration, concentration-rise rates during the accumulation phase, and LEL-based dispersion distances. These findings confirm the suitability of the selected turbulence models for predicting methane behavior in large enclosed spaces and highlight the sensitivity of model–experiment agreement to measurement resolution. The results provide an experimentally grounded reference for sensor layout design and verification of gas-detection strategies in ship compartments, fuel-gas preparation rooms, and modular supply units. Overall, the study establishes a methodological framework that integrates high-resolution experiments with CFD modeling to support safer design and operation of methane-fueled vessels. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 10771 KB  
Article
When Analog Electronics Extends Solar Life: Gate-Resistance Retuning for PV Reuse
by Euzeli C. dos Santos, Yongchun Ni, Fabiano Salvadori and Haitham Kanakri
Processes 2026, 14(1), 146; https://doi.org/10.3390/pr14010146 - 1 Jan 2026
Viewed by 343
Abstract
This paper proposes an analog retuning strategy that strengthens the functional longevity of photovoltaic (PV) systems operating within circular-economy environments. Although PV modules can be relocated from large generation sites to low-demand rural or remote settings, their electrical behavior offers no adjustable quantities [...] Read more.
This paper proposes an analog retuning strategy that strengthens the functional longevity of photovoltaic (PV) systems operating within circular-economy environments. Although PV modules can be relocated from large generation sites to low-demand rural or remote settings, their electrical behavior offers no adjustable quantities capable of extending service duration. In many cases, even after formal disposal or decommissioning, these solar panels still retain a considerable portion of their energy-generation capability and can operate for many additional years before their output becomes negligible, making second-life deployment both technically viable and economically attractive. In contrast, the associated power-electronic converters contain modifiable gate-driver parameters that can be reconfigured to moderate transient phenomena and lessen device stress. The method introduced here adjusts the external gate resistance in conjunction with coordinated switching-frequency adaptation, reducing overshoot, ringing, and steep dv/dt slopes while preserving the original switching-loss budget. A unified analytical framework connects stress mitigation, ripple evolution, and projected lifetime enhancement, demonstrating that deliberate analog tuning can substantially increase the endurance of aged semiconductor hardware without compromising suitability for second-life PV applications. Analytical results are supported by experimental validation, including hardware measurements of switching waveforms and energy dissipation under multiple gate-resistance configurations. Full article
Show Figures

Figure 1

24 pages, 8008 KB  
Article
Finite Element Study on the Stiffness Variation Mechanisms of Radially Bolted Cylindrical–Cylindrical Shell Joints Under Transient Thermo-Mechanical Loading
by Ning Guo, Weizhen Yun, Shuo Zhang, Haoyu Du and Chao Xu
Aerospace 2026, 13(1), 49; https://doi.org/10.3390/aerospace13010049 - 31 Dec 2025
Viewed by 259
Abstract
Radially bolted cylindrical–cylindrical shell joints are critical load-bearing components in aerospace vehicles. These joints experience complex thermo–mechanical environments during flight, where aerodynamic heating and mechanical loads jointly induce nonlinear deformation and stiffness variation through evolving interfacial contact states. To elucidate these mechanisms, this [...] Read more.
Radially bolted cylindrical–cylindrical shell joints are critical load-bearing components in aerospace vehicles. These joints experience complex thermo–mechanical environments during flight, where aerodynamic heating and mechanical loads jointly induce nonlinear deformation and stiffness variation through evolving interfacial contact states. To elucidate these mechanisms, this study develops a sequentially coupled thermo–mechanical finite-element framework to analyze the stiffness evolution of RBCCSJs under transient heating and combined mechanical loads (tension, compression, and bending). The results show that the global stiffness evolves through distinct contact-controlled stages (sticking → microslip → macroslip → mechanical bearing), producing pronounced nonlinear stiffness troughs spanning over two orders of magnitude. Under tension and bending, stiffness peaks during full sticking and decreases with slip, whereas under compression, it recovers earlier due to its end-face-bearing formation. Transient heating introduces two competing effects, thermal-expansion-induced frictional stiffening during short-term heating and temperature-dependent material softening during sustained exposure, leading to a 19.2–34% reduction in stiffness under steady thermal conditions. These findings clarify the dominant role of contact-state evolution and thermo–mechanical coupling in joint behavior and provide a quantitative analytical basis for enhancing the stiffness reliability and design optimization of aerospace bolted assemblies operating in transient thermal environments. Full article
Show Figures

Figure 1

18 pages, 4023 KB  
Article
Electrochemical Tracking of Lithium Metal Anode Surface Evolution via Voltage Relaxation Analysis
by Yu-Jeong Min and Heon-Cheol Shin
Energies 2026, 19(1), 187; https://doi.org/10.3390/en19010187 - 29 Dec 2025
Viewed by 171
Abstract
The surface morphology of lithium metal electrodes evolves markedly during cycling, modulating interfacial kinetics and increasing the risk of dendrite-driven internal short circuits. Here, we infer this morphological evolution from direct-current (DC) signals by analyzing open-circuit voltage (OCV) transients after constant current interruptions. [...] Read more.
The surface morphology of lithium metal electrodes evolves markedly during cycling, modulating interfacial kinetics and increasing the risk of dendrite-driven internal short circuits. Here, we infer this morphological evolution from direct-current (DC) signals by analyzing open-circuit voltage (OCV) transients after constant current interruptions. The OCV exhibits a rapid initial decay followed by a transition to a slower long-time decay. With repeated plating, this transition shifts to earlier times, thereby increasing the contribution of long-term relaxation. We quantitatively analyze this behavior using an equivalent circuit with a transmission-line model (TLM) representing the electrolyte-accessible interfacial region of the electrode, discretized into ten depth-direction segments. Tracking segment-wise changes in resistances and capacitances with cycling enables morphology estimation. Repeated plating strongly increases the double-layer area near the current collector, while the charge-transfer-active surface shifts toward the separator side, showing progressively smaller and eventually negative changes toward the current-collector side. Together with the segment-resolved time constants, these trends indicate that lithium deposition becomes increasingly localized near the separator-facing surface, while the interior becomes more tortuous, consistent with post-mortem observations. Overall, the results demonstrate that DC voltage-relaxation analysis combined with a TLM framework provides a practical route to track lithium metal electrode surface evolution in Li-metal-based cells. Full article
Show Figures

Figure 1

31 pages, 2552 KB  
Article
Fast Risk Assessment for Receiving-End Power Grids with High Penetration of Renewable Energy Based on the Fault Transient Evolution Process
by Shanshan Qiu, Yixuan Peng, Changgang Li, Hao Tian and Changhui Ma
Processes 2026, 14(1), 120; https://doi.org/10.3390/pr14010120 - 29 Dec 2025
Viewed by 168
Abstract
Addressing the complexity of transient evolution and the difficulty of rapid risk quantification in high-penetration renewable energy receiving-end grids under short-circuit faults, this paper proposes a rapid risk assessment method based on the fault transient evolution process. The method first constructs a directed [...] Read more.
Addressing the complexity of transient evolution and the difficulty of rapid risk quantification in high-penetration renewable energy receiving-end grids under short-circuit faults, this paper proposes a rapid risk assessment method based on the fault transient evolution process. The method first constructs a directed weighted graph model to characterize the fault transient evolution process. It then integrates mechanism analysis with data-driven approaches to establish state transition models and temporal feature models, which are used to generate the fault evolution path. Based on the transient evolution path, this paper defines the equivalent active power loss as the risk index and rapidly quantifies it through a phased simplified calculation approach. Finally, validation using a provincial power grid case study confirms the efficacy of the method and successfully achieves reliable predictions of fault evolution scenarios, as well as rapid and effective assessment of power loss during the transient process. Full article
(This article belongs to the Special Issue Modeling, Operation and Control in Renewable Energy Systems)
Show Figures

Figure 1

22 pages, 19590 KB  
Article
Effect of Interlayer Temperature-Controlled Thermal Cycling on the Microstructure and Mechanical Properties of Wire Arc Directed Energy Deposition H13 Steel
by Chuang Li, Hawke Suen, Yajin Yang, Liang Zhang, Qiuxia Chen, Tianlong Gao, Bo Yuan, Lyusha Cheng and Zhe Lv
Materials 2026, 19(1), 111; https://doi.org/10.3390/ma19010111 - 29 Dec 2025
Viewed by 309
Abstract
Wire arc directed energy deposition (WA-DED) is a cost-effective technique for fabricating large metallic components. However, the inherent layer-by-layer deposition process leads to substantial heat accumulation, which significantly influences the resulting microstructure and mechanical properties. In this study, the effects of thermal cycling [...] Read more.
Wire arc directed energy deposition (WA-DED) is a cost-effective technique for fabricating large metallic components. However, the inherent layer-by-layer deposition process leads to substantial heat accumulation, which significantly influences the resulting microstructure and mechanical properties. In this study, the effects of thermal cycling histories, at different interlayer temperatures, on the microstructural evolution and mechanical behavior of WA-DED fabricated H13 steel thin walls were systematically investigated, using an experimentally calibrated transient thermal model combined with experimental validation. Microstructural analysis revealed that at an interlayer temperature of 200 °C, the deposited material primarily consisted of coarse martensite with a low dislocation density and relatively large precipitates at a moderate volume fraction, resulting in an ultimate tensile strength of 1103 ± 28 MPa and an elongation of 14.6%. Increasing the interlayer temperature to 400 °C facilitated the formation of finer martensite with a higher dislocation density and smaller precipitates of slightly increased volume fraction. These microstructural refinements enhanced the tensile strength to 1549 ± 43 MPa, albeit at the expense of ductility, reducing elongation to 8.3%. When the interlayer temperature was further raised to 600 °C, fine martensite and a moderate dislocation density were retained; however, precipitate coarsening and a reduced volume fraction led to a decline in tensile strength to 1434 ± 33 MPa, accompanied by a slight recovery in elongation to 8.6%. Quantitative analysis based on classical strengthening models confirmed that dislocation strengthening is the dominant mechanism governing the variation in mechanical properties with changing interlayer temperature. Full article
(This article belongs to the Special Issue The Additive Manufacturing of Metallic Alloys (Second Edition))
Show Figures

Figure 1

23 pages, 3957 KB  
Article
CFD Investigation of Gas–Liquid Two-Phase Flow Dynamics and Pressure Loss at Fracture Junctions for Coalbed Methane Extraction Optimization
by Xiaohu Zhang, Mi Li, Aizhong Luo and Jiong Wang
Processes 2026, 14(1), 69; https://doi.org/10.3390/pr14010069 - 24 Dec 2025
Viewed by 217
Abstract
The dynamics of gas–liquid two-phase flow at fracture junctions are crucial for optimizing fluid transport in the complex fracture networks of coal seams, particularly for coalbed methane (CBM) extraction and gas hazard management. This study presents a comprehensive numerical investigation of transient air–water [...] Read more.
The dynamics of gas–liquid two-phase flow at fracture junctions are crucial for optimizing fluid transport in the complex fracture networks of coal seams, particularly for coalbed methane (CBM) extraction and gas hazard management. This study presents a comprehensive numerical investigation of transient air–water flow in a two-dimensional, symmetric, cross-shaped fracture junction. Using the Volume of Fluid (VOF) model coupled with the SST k-ω turbulence model, the simulations accurately capture phase interface evolution, accounting for surface tension and a 50° contact angle. The effects of inlet velocity (0.2 to 5.0 m/s) on flow patterns, pressure distribution, and energy dissipation are systematically analyzed. Three distinct phenomenological flow regimes are identified based on interface morphology and force balance: an inertia-dominated high-speed impinging flow (Re > 4000), a moderate-speed transitional flow characterized by a dynamic balance between inertial and viscous forces (∼1000 < Re < ∼4000), and a viscous-gravity dominated low-speed creeping filling flow (Re < ∼1000). Flow partitioning at the junction—defined as the quantitative split of the total inflow between the main (straight-through) flow path and the deflected (lateral) paths—exhibits a strong dependence on the Reynolds number. The main flow ratio increases dramatically from approximately 30% at Re ∼ 500 to over 95% at Re ∼ 12,000, while the deflected flow ratio correspondingly decreases. Furthermore, the pressure loss (head loss, ΔH) across the junction increases non-linearly, following a quadratic scaling relationship with the inlet velocity (ΔH ∝ V01.95), indicating that energy dissipation is predominantly governed by inertial effects. These findings provide fundamental, quantitative insights into two-phase flow behavior at fracture intersections and offer data-driven guidance for optimizing injection strategies in CBM engineering. Full article
(This article belongs to the Topic Green Mining, 3rd Edition)
Show Figures

Figure 1

19 pages, 7458 KB  
Article
Transient Pressure Build-Up in Saturated Column System from Buffering-Induced CO2 Generation: Implications for Soil Liquefaction in Lignite Overburden Dumps
by Donata N. W. Wardani, Nils Hoth, Sarah Amos, Kofi Moro, Johanes Maria Vianney and Carsten Drebenstedt
Geotechnics 2026, 6(1), 1; https://doi.org/10.3390/geotechnics6010001 - 24 Dec 2025
Viewed by 156
Abstract
Spontaneous liquefaction in the Lusatian lignite dump sites has raised significant geotechnical and environmental concerns. While mechanical influences have been extensively studied, hydrochemical investigations suggest an inner initial that is highly correlated to CO2 generation, attributed to buffering reactions, which lays the [...] Read more.
Spontaneous liquefaction in the Lusatian lignite dump sites has raised significant geotechnical and environmental concerns. While mechanical influences have been extensively studied, hydrochemical investigations suggest an inner initial that is highly correlated to CO2 generation, attributed to buffering reactions, which lays the foundation for this study. This study aims to understand the process behind and to quantify the transient evolution of excess pore-pressure induced by CO2 accumulation, both dissolved and as free gas, in saturated medium using a series of column experiments. Excess pore-pressures up to 7.7 kPa were recorded following a period of buffering reaction, with discharged gas confirmed as CO2. The results demonstrate that the buffering process strongly influences the elevated pressure, while, in turn, elevated pressures affect the chemical conditions within the column. Secondary mineral precipitation, as one of the effects, was observed to reduce buffering reactivity and modify pore structure, thereby altering pore-pressure response. These findings highlight hydrochemical feedback as critical internal triggers and amplifiers in liquefaction events, complementing mechanical explanations and advancing understanding of coupled hydro-chemo-mechanical processes in dump site stability. Full article
Show Figures

Figure 1

24 pages, 7870 KB  
Article
A Novel Gudermannian Function-Driven Controller Architecture Optimized by Starfish Optimizer for Superior Transient Performance of Automatic Voltage Regulation
by Davut Izci, Serdar Ekinci, Mostafa Jabari, Behçet Kocaman, Burcu Bektaş Güneş, Enver Adas and Mohd Ashraf Ahmad
Biomimetics 2026, 11(1), 7; https://doi.org/10.3390/biomimetics11010007 - 23 Dec 2025
Viewed by 404
Abstract
This paper proposes a Gudermannian function-based proportional–integral–derivative (G-PID) controller to enhance the transient performance of automatic voltage regulator (AVR) systems operating under highly dynamic conditions. By embedding the smooth and bounded nonlinear mapping of the Gudermannian function into the classical PID structure, the [...] Read more.
This paper proposes a Gudermannian function-based proportional–integral–derivative (G-PID) controller to enhance the transient performance of automatic voltage regulator (AVR) systems operating under highly dynamic conditions. By embedding the smooth and bounded nonlinear mapping of the Gudermannian function into the classical PID structure, the proposed controller improves adaptability to large signal variations while effectively suppressing overshoot. The controller parameters are optimally tuned using the starfish optimization algorithm (SFOA), which provides a robust balance between exploration and exploitation in nonlinear search spaces. Simulation results demonstrate that the SFOA-optimized G-PID controller achieves superior transient performance, with a rise time of 0.0551 s, zero overshoot, and a settling time of 0.0830 s. Comparative evaluations confirm that the proposed approach outperforms widely used optimization algorithms (particle swarm optimization, grey wolf optimizer, success history-based adaptive differential evolution with linear population size, and Kirchhoff’s law algorithm) and advanced AVR control schemes, including fractional-order and higher-order PID-based designs. These results indicate that the proposed SFOA optimized G-PID controller offers a computationally efficient and structurally simple solution for high-performance voltage regulation in modern power systems. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

Back to TopTop