Beyond Resistance: Phenotypic Plasticity in Bacterial Responses to Antibiotics, Oxidative Stress and Antimicrobial Photodynamic Inactivation
Abstract
1. Introduction
2. Conceptual Frameworks of Phenotypic Plasticity
2.1. Reaction Norms and Gene Regulatory Networks as Drivers of Plasticity
2.2. Costs and Limits of Plasticity
2.3. Rate of Plasticity and Environmental Predictability
2.4. Conceptual Links Between Plasticity and Evolutionary Rescue
3. Cellular Manifestations of Phenotypic Plasticity
3.1. Metabolic Plasticity
3.2. Morphological Plasticity
3.3. Envelope and Biofilm Plasticity
3.4. Regulatory Plasticity
3.5. Mobile Genetic Elements and Plasticity
4. Plasticity Under Oxidative and Photodynamic Stress
4.1. Regulatory Stress Networks Engaged by Photodynamic Versus Oxidative Stress
4.2. Single-Cell Heterogeneity in Photodynamic Inactivation
4.3. Biofilm as a Plasticity Hotspot Under Oxidative and Photodynamic Stress
4.4. Cross-Talk with Antibiotics
5. From Plasticity to Evolvability
5.1. Plasticity-First and the Baldwin Effect
5.2. Bet-Hedging as a Complementary Strategy to Plasticity
5.3. Burst Mutagenesis Under Oxidative Stress
5.4. Generalists via Phenotypic Switching
5.5. Limits of Plasticity in Extreme Environments
5.6. Plasticity and Evolutionary Rescue
6. Discussion and Future Directions
6.1. Standardizing Metrics of Plasticity
6.2. Integrating Single-Cell and Systems Approaches
6.3. Targeting Plasticity Therapeutically
6.4. Clinical and Translational Relevance
6.5. Implications for Evolutionary Rescue Under Antimicrobial Stress
7. Materials and Methods
Literature Search Strategy
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| aBL | antimicrobial Blue Light |
| AMR | antimicrobial resistance |
| aPDI | antimicrobial Photodynamic Inactivation |
| CF | cystic fibrosis |
| EPS | extracellular polymeric substances |
| GRN | gene regulatory network |
| HRT | horizontal regulatory transfer |
| ICEs | integrative and conjugative elements |
| LLPS | liquid–liquid phase separation (LLPS) |
| MDK | minimum duration of killing |
| MGEs | mobile genetic elements |
| MIC | minimum inhibitory concentration |
| NADPH | nicotinamide adenine dinucleotide phosphate (reduced form) |
| (p)ppGpp | guanosine tetraphosphate and guanosine pentaphosphate |
| RB | Rose Bengal |
| ROS | reactive oxygen species |
| SCVs | small colony variants |
| VAP | ventilator-associated pneumonia |
| VBNC | viable but non-culturable |
References
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular Mechanisms of Antibiotic Resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharm. Ther. 2015, 40, 277. [Google Scholar]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular Mechanisms of Antibiotic Resistance Revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef]
- Brauner, A.; Fridman, O.; Gefen, O.; Balaban, N.Q. Distinguishing between Resistance, Tolerance and Persistence to Antibiotic Treatment. Nat. Rev. Microbiol. 2016, 14, 320–330. [Google Scholar] [CrossRef]
- Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic Tolerance Facilitates the Evolution of Resistance. Science 2017, 355, 826–830. [Google Scholar] [CrossRef]
- Balaban, N.Q.; Helaine, S.; Lewis, K.; Ackermann, M.; Aldridge, B.; Andersson, D.I.; Brynildsen, M.P.; Bumann, D.; Camilli, A.; Collins, J.J.; et al. Definitions and Guidelines for Research on Antibiotic Persistence. Nat. Rev. Microbiol. 2019, 17, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Trastoy, R.; Manso, T.; Fernández-García, L.; Blasco, L.; Ambroa, A.; Pérez Del Molino, M.L.; Bou, G.; García-Contreras, R.; Wood, T.K.; Tomás, M. Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin. Microbiol. Rev. 2018, 31, e00023-18. [Google Scholar] [CrossRef]
- Maisonneuve, E.; Gerdes, K. Molecular Mechanisms Underlying Bacterial Persisters. Cell 2014, 157, 539–548. [Google Scholar] [CrossRef]
- Shen, J.P.; Chou, C.F. Morphological Plasticity of Bacteria—Open Questions. Biomicrofluidics 2016, 10, 031501. [Google Scholar] [CrossRef] [PubMed]
- Justice, S.S.; Hunstad, D.A.; Cegelski, L.; Hultgren, S.J. Morphological Plasticity as a Bacterial Survival Strategy. Nat. Rev. Microbiol. 2008, 6, 162–168. [Google Scholar] [CrossRef]
- Proctor, R.A.; von Eiff, C.; Kahl, B.C.; Becker, K.; McNamara, P.; Herrmann, M.; Peters, G. Small Colony Variants: A Pathogenic Form of Bacteria That Facilitates Persistent and Recurrent Infections. Nat. Rev. Microbiol. 2006, 4, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Karasz, D.C.; Weaver, A.I.; Buckley, D.H.; Wilhelm, R.C. Conditional Filamentation as an Adaptive Trait of Bacteria and Its Ecological Significance in Soils. Environ. Microbiol. 2022, 24, 1–17. [Google Scholar] [CrossRef]
- Shi, X.; Zarkan, A. Bacterial Survivors: Evaluating the Mechanisms of Antibiotic Persistence. Microbiology 2022, 168, 001266. [Google Scholar] [CrossRef]
- Svenningsen, M.S.; Veress, A.; Harms, A.; Mitarai, N.; Semsey, S. Birth and Resuscitation of (p)PpGpp Induced Antibiotic Tolerant Persister Cells. Sci. Rep. 2019, 9, 6056. [Google Scholar] [CrossRef]
- Shan, Y.; Gandt, A.B.; Rowe, S.E.; Deisinger, J.P.; Conlon, B.P.; Lewis, K. ATP-Dependent Persister Formation in Escherichia coli. mBio 2017, 8, e02267-16. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial Biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Yan, J.; Bassler, B.L. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host Microbe 2019, 26, 15–21. [Google Scholar] [CrossRef]
- Bridier, A.; Briandet, R. Microbial Biofilms: Structural Plasticity and Emerging Properties. Microorganisms 2022, 10, 138. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.; Forestier, C.; Mathias, J.D. Antibiotic Resilience: A Necessary Concept to Complement Antibiotic Resistance? Proc. R. Soc. B Biol. Sci. 2019, 286, 20192408. [Google Scholar] [CrossRef]
- Meredith, H.R.; Andreani, V.; Ma, H.R.; Lopatkin, A.J.; Lee, A.J.; Anderson, D.J.; Batt, G.; You, L. Applying Ecological Resistance and Resilience to Dissect Bacterial Antibiotic Responses. Sci. Adv. 2018, 4, eaau1873. [Google Scholar] [CrossRef]
- Meirelles, L.A.; Perry, E.K.; Bergkessel, M.; Newman, D.K. Bacterial Defenses against a Natural Antibiotic Promote Collateral Resilience to Clinical Antibiotics. PLoS Biol. 2021, 19, e3001093. [Google Scholar] [CrossRef]
- Fisher, R.A.; Gollan, B.; Helaine, S. Persistent Bacterial Infections and Persister Cells. Nat. Rev. Microbiol. 2017, 15, 453–464. [Google Scholar] [CrossRef]
- Rapacka-Zdonczyk, A. Beyond Resistance: Tolerance and Resilience of Bacteria to Photodynamic and Oxidative Stress. Int. J. Mol. Sci. 2025, 26, 8908. [Google Scholar] [CrossRef]
- Callahan, H.S.; Maughan, H.; Steiner, U.K. Phenotypic Plasticity, Costs of Phenotypes, and Costs of Plasticity: Toward an Integrative View. Ann. N. Y. Acad. Sci. 2008, 1133, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S.M.; Barfield, M.; Holt, R.D. The Genetics of Phenotypic Plasticity. XV. Genetic Assimilation, the Baldwin Effect, and Evolutionary Rescue. Ecol. Evol. 2017, 7, 8788. [Google Scholar] [CrossRef]
- Pigliucci, M. Phenotypic Plasticity; Johns Hopkins University Press: Baltimore, MD, USA, 2001. [Google Scholar]
- Grinholc, M.; Rodziewicz, A.; Forys, K.; Rapacka-Zdonczyk, A.; Kawiak, A.; Domachowska, A.; Golunski, G.; Wolz, C.; Mesak, L.; Becker, K.; et al. Fine-Tuning RecA Expression in Staphylococcus aureus for Antimicrobial Photoinactivation: Importance of Photo-Induced DNA Damage in the Photoinactivation Mechanism. Appl. Microbiol. Biotechnol. 2015, 99, 9161–9176. [Google Scholar] [CrossRef] [PubMed]
- Rapacka-Zdończyk, A.; Woźniak, A.; Michalska, K.; Pierański, M.; Ogonowska, P.; Grinholc, M.; Nakonieczna, J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front. Med. 2021, 8, 642609. [Google Scholar] [CrossRef]
- dos Anjos, C.; Leanse, L.G.; Ribeiro, M.S.; Sellera, F.P.; Dropa, M.; Arana-Chavez, V.E.; Lincopan, N.; Baptista, M.S.; Pogliani, F.C.; Dai, T.; et al. New Insights into the Bacterial Targets of Antimicrobial Blue Light. Microbiol. Spectr. 2023, 11, e02833-22. [Google Scholar] [CrossRef]
- Leanse, L.G.; Anjos, C.d.; Kaler, K.R.; Hui, J.; Boyd, J.M.; Hooper, D.C.; Anderson, R.R.; Dai, T. Blue Light Potentiates Antibiotics in Bacteria via Parallel Pathways of Hydroxyl Radical Production and Enhanced Antibiotic Uptake. Adv. Sci. 2023, 10, e2303731. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, F.A.; Flint, S.; Li, Y.J.; Ou, K.; Yuan, L.; He, G.Q. Phenotypic and Genetic Heterogeneity within Biofilms with Particular Emphasis on Persistence and Antimicrobial Tolerance. Future Microbiol. 2017, 12, 1087–1107. [Google Scholar] [CrossRef]
- Choudhary, D.; Lagage, V.; Foster, K.R.; Uphoff, S. Phenotypic Heterogeneity in the Bacterial Oxidative Stress Response Is Driven by Cell-Cell Interactions. Cell Rep. 2023, 42, 112168. [Google Scholar] [CrossRef] [PubMed]
- Veening, J.W.; Smits, W.K.; Kuipers, O.P. Bistability, Epigenetics, and Bet-Hedging in Bacteria. Annu. Rev. Microbiol. 2008, 62, 193–210. [Google Scholar] [CrossRef]
- Veening, J.W.; Stewart, E.J.; Berngruber, T.W.; Taddei, F.; Kuipers, O.P.; Hamoen, L.W. Bet-Hedging and Epigenetic Inheritance in Bacterial Cell Development. Proc. Natl. Acad. Sci. USA 2008, 105, 4393–4398. [Google Scholar] [CrossRef]
- Grimbergen, A.J.; Siebring, J.; Solopova, A.; Kuipers, O.P. Microbial Bet-Hedging: The Power of Being Different. Curr. Opin. Microbiol. 2015, 25, 67–72. [Google Scholar] [CrossRef]
- Morawska, L.P.; Hernandez-Valdes, J.A.; Kuipers, O.P. Diversity of Bet-hedging Strategies in Microbial Communities—Recent Cases and Insights. Wires Mech. Dis. 2021, 14, e1544. [Google Scholar] [CrossRef]
- De Jong, I.G.; Haccou, P.; Kuipers, O.P. Bet Hedging or Not? A Guide to Proper Classification of Microbial Survival Strategies. Bioessays 2011, 33, 215–223. [Google Scholar] [CrossRef]
- Vatansever, F.; de Melo, W.C.M.A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; et al. Antimicrobial Strategies Centered around Reactive Oxygen Species—Bactericidal Antibiotics, Photodynamic Therapy, and Beyond. FEMS Microbiol. Rev. 2013, 37, 955–989. [Google Scholar] [CrossRef]
- Imlay, J.A. Where in the World Do Bacteria Experience Oxidative Stress? Environ. Microbiol. 2019, 21, 521–530. [Google Scholar] [CrossRef]
- Grant, S.S.; Hung, D.T. Persistent Bacterial Infections, Antibiotic Tolerance, and the Oxidative Stress Response. Virulence 2013, 4, 273–283. [Google Scholar] [CrossRef] [PubMed]
- West-Eberhard, M.J. Developmental Plasticity and Evolution—Mary Jane West-Eberhard; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Chevin, L.M.; Hoffmann, A.A. Evolution of Phenotypic Plasticity in Extreme Environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160138. [Google Scholar] [CrossRef]
- Fraebel, D.T.; Gowda, K.; Mani, M.; Kuehn, S. Evolution of Generalists by Phenotypic Plasticity. iScience 2020, 23, 101678. [Google Scholar] [CrossRef]
- Santiago, E.; Moreno, D.F.; Acar, M. Phenotypic Plasticity as a Facilitator of Microbial Evolution. Environ. Epigenet. 2022, 8, dvac020. [Google Scholar] [CrossRef]
- Edelmann, D.; Berghoff, B.A. Type I Toxin-Dependent Generation of Superoxide Affects the Persister Life Cycle of Escherichia coli. Sci. Rep. 2019, 9, 14256. [Google Scholar] [CrossRef]
- Hengge, R. Stationary-Phase Gene Regulation in Escherichia coli §. EcoSal Plus 2011, 4, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Battesti, A.; Majdalani, N.; Gottesman, S. The RpoS-Mediated General Stress Response in Escherichia coli. Annu. Rev. Microbiol. 2011, 65, 189–213. [Google Scholar] [CrossRef]
- Dalebroux, Z.D.; Swanson, M.S. PpGpp: Magic beyond RNA Polymerase. Nat. Rev. Microbiol. 2012, 10, 203–212. [Google Scholar] [CrossRef]
- Potrykus, K.; Cashel, M. (P)PpGpp: Still Magical? Annu. Rev. Microbiol. 2008, 62, 35–51. [Google Scholar] [CrossRef]
- Gaca, A.O.; Kudrin, P.; Colomer-Winter, C.; Beljantseva, J.; Liu, K.; Anderson, B.; Wang, J.D.; Rejman, D.; Potrykus, K.; Cashel, M.; et al. From (p)PpGpp to (Pp)PGpp: Characterization of Regulatory Effects of PGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis. J. Bacteriol. 2015, 197, 2908–2919. [Google Scholar] [CrossRef] [PubMed]
- Steinchen, W.; Bange, G. The Magic Dance of the Alarmones (p)PpGpp. Mol. Microbiol. 2016, 101, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Harms, A.; Maisonneuve, E.; Gerdes, K. Mechanisms of Bacterial Persistence during Stress and Antibiotic Exposure. Science 2016, 354, aaf4268. [Google Scholar] [CrossRef]
- Taylor, T.B.; Shepherd, M.J.; Jackson, R.W.; Silby, M.W. Natural Selection on Crosstalk between Gene Regulatory Networks Facilitates Bacterial Adaptation to Novel Environments. Curr. Opin. Microbiol. 2022, 67, 102140. [Google Scholar] [CrossRef]
- Gefen, O.; Balaban, N.Q. The Importance of Being Persistent: Heterogeneity of Bacterial Populations under Antibiotic Stress: Review Article. FEMS Microbiol. Rev. 2009, 33, 704–717. [Google Scholar] [CrossRef]
- Fridman, O.; Goldberg, A.; Ronin, I.; Shoresh, N.; Balaban, N.Q. Optimization of Lag Time Underlies Antibiotic Tolerance in Evolved Bacterial Populations. Nature 2014, 513, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Radzikowski, J.L.; Schramke, H.; Heinemann, M. Bacterial Persistence from a System-Level Perspective. Curr. Opin. Biotechnol. 2017, 46, 98–105. [Google Scholar] [CrossRef] [PubMed]
- El Meouche, I.; Siu, Y.; Dunlop, M.J. Stochastic Expression of a Multiple Antibiotic Resistance Activator Confers Transient Resistance in Single Cells. Sci. Rep. 2016, 6, 19538. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; He, L.; Cui, P.; Wang, W.; Yuan, Y.; Liu, S.; Xu, T.; Zhang, S.; Wu, J.; Zhang, W.; et al. Ranking of Persister Genes in the Same Escherichia coli Genetic Background Demonstrates Varying Importance of Individual Persister Genes in Tolerance to Different Antibiotics. Front. Microbiol. 2015, 6, 156803. [Google Scholar] [CrossRef]
- Yuan, S.; Shen, Y.; Quan, Y.; Gao, S.; Zuo, J.; Jin, W.; Li, R.; Yi, L.; Wang, Y.; Wang, Y. Molecular Mechanism and Application of Emerging Technologies in Study of Bacterial Persisters. BMC Microbiol. 2024, 24, 480. [Google Scholar] [CrossRef]
- Zou, J.; Peng, B.; Qu, J.; Zheng, J. Are Bacterial Persisters Dormant Cells Only? Front. Microbiol. 2022, 12, 708580. [Google Scholar]
- Plata, G.; Henry, C.S.; Vitkup, D. Long-Term Phenotypic Evolution of Bacteria. Nature 2015, 517, 369–372. [Google Scholar] [CrossRef]
- Fu, T.; Gifford, D.R.; Knight, C.G.; Brockhurst, M.A. Eco-Evolutionary Dynamics of Experimental Pseudomonas aeruginosa Populations under Oxidative Stress. Microbiology 2023, 169, 001396. [Google Scholar] [CrossRef]
- Malik, Z. Photodynamic Inactivation of Antibiotic-Resistant Gram-Positive Bacteria: Challenges and Opportunities. Transl. Biophotonics 2020, 2, e201900030. [Google Scholar] [CrossRef]
- Hatfield, B.M.; LaSarre, B.; Liu, M.; Dong, H.; Nettleton, D.; Beattie, G.A. Light Cues Induce Protective Anticipation of Environmental Water Loss in Terrestrial Bacteria. Proc. Natl. Acad. Sci. USA 2023, 120, e2309632120. [Google Scholar] [CrossRef]
- Tuttobene, M.R.; Cribb, P.; Mussi, M.A. BlsA Integrates Light and Temperature Signals into Iron Metabolism through Fur in the Human Pathogen Acinetobacter baumannii. Sci. Rep. 2018, 8, 7728. [Google Scholar] [CrossRef]
- Chitrakar, I.; Iuliano, J.N.; He, Y.; Woroniecka, H.A.; Tolentino Collado, J.; Wint, J.M.; Walker, S.G.; Tonge, P.J.; French, J.B. Structural Basis for the Regulation of Biofilm Formation and Iron Uptake in A. Baumannii by the Blue-Light-Using Photoreceptor, BlsA. ACS Infect. Dis. 2020, 6, 2592–2603. [Google Scholar] [CrossRef] [PubMed]
- Perez Mora, B.; Giordano, R.; Permingeat, V.; Calderone, M.; Arana, N.; Müller, G.; Rodríguez, R.E.; Krasauskas, R.; Mussi, M.A. BfmRS Encodes a Regulatory System Involved in Light Signal Transduction Modulating Motility and Desiccation Tolerance in the Human Pathogen Acinetobacter baumannii. Sci. Rep. 2023, 13, 175. [Google Scholar] [CrossRef]
- Squire, M.S.; Townsend, H.A.; Actis, L.A. The Influence of Blue Light and the BlsA Photoreceptor on the Oxidative Stress Resistance Mechanisms of Acinetobacter baumannii. Front. Cell. Infect. Microbiol. 2022, 12, 856953. [Google Scholar] [CrossRef]
- Losi, A.; Gärtner, W. Bacterial Bilin- and Flavin-Binding Photoreceptors. Photochem. Photobiol. Sci. 2008, 7, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Tardu, M.; Bulut, S.; Kavakli, I.H. MerR and ChrR Mediate Blue Light Induced Photo-Oxidative Stress Response at the Transcriptional Level in Vibrio Cholerae. Sci. Rep. 2017, 7, 40817. [Google Scholar] [CrossRef]
- Hadi, J.; Wu, S.; Brightwell, G. Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance. Foods 2020, 9, 1895. [Google Scholar] [CrossRef]
- Tuttobene, M.R.; Pérez, J.F.; Pavesi, E.S.; Mora, B.P.; Biancotti, D.; Cribb, P.; Altilio, M.; Müller, G.L.; Gramajo, H.; Tamagno, G.; et al. Light Modulates Important Pathogenic Determinants and Virulence in ESKAPE Pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus. J. Bacteriol. 2021, 203, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rojas, A.; Kim, J.J.; Johnston, P.R.; Makarova, O.; Eravci, M.; Weise, C.; Hengge, R.; Rolff, J. Non-Lethal Exposure to H2O2 Boosts Bacterial Survival and Evolvability against Oxidative Stress. PLoS Genet. 2020, 16, e1008649. [Google Scholar] [CrossRef] [PubMed]
- Lagage, V.; Chen, V.; Uphoff, S. Adaptation Delay Causes a Burst of Mutations in Bacteria Responding to Oxidative Stress. EMBO Rep. 2023, 24, e55640. [Google Scholar] [CrossRef] [PubMed]
- Chevin, L.M.; Lande, R. When Do Adaptive Plasticity and Genetic Evolution Prevent Extinction of a Density-Regulated Population? Evolution 2010, 64, 1143–1150. [Google Scholar] [CrossRef]
- Leiby, N.; Marx, C.J. Metabolic Erosion Primarily Through Mutation Accumulation, and Not Tradeoffs, Drives Limited Evolution of Substrate Specificity in Escherichia coli. PLoS Biol. 2014, 12, e1001789. [Google Scholar] [CrossRef]
- Cooper, V.S. The Origins of Specialization: Insights from Bacteria Held 25 Years in Captivity. PLoS Biol. 2014, 12, e1001790. [Google Scholar] [CrossRef]
- Singh, R.; Mailloux, R.J.; Puiseux-Dao, S.; Appanna, V.D. Oxidative Stress Evokes a Metabolic Adaptation That Favors Increased NADPH Synthesis and Decreased NADH Production in Pseudomonas Fluorescens. J. Bacteriol. 2007, 189, 6665–6675. [Google Scholar] [CrossRef]
- Krapp, A.R.; Humbert, M.V.; Carrillo, N. The SoxRS Response of Escherichia coli Can Be Induced in the Absence of Oxidative Stress and Oxygen by Modulation of NADPH Content. Microbiology 2011, 157, 957–965. [Google Scholar] [CrossRef]
- Amato, S.M.; Orman, M.A.; Brynildsen, M.P. Metabolic Control of Persister Formation in Escherichia coli. Mol. Cell 2013, 50, 475–487. [Google Scholar] [CrossRef]
- Pál, C.; Papp, B.; Lercher, M.J. Adaptive Evolution of Bacterial Metabolic Networks by Horizontal Gene Transfer. Nat. Genet. 2005, 37, 1372–1375. [Google Scholar] [CrossRef]
- Josephides, C.; Swain, P.S. Predicting Metabolic Adaptation from Networks of Mutational Paths. Nat. Commun. 2017, 8, 685. [Google Scholar] [CrossRef]
- Yi, X.; Dean, A.M. Adaptive Landscapes in the Age of Synthetic Biology. Mol. Biol. Evol. 2019, 36, 890–907. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.M.; Pereira, M.O. Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs—A Review. Pathogens 2014, 3, 680. [Google Scholar] [CrossRef] [PubMed]
- Miskinyte, M.; Sousa, A.; Ramiro, R.S.; de Sousa, J.A.M.; Kotlinowski, J.; Caramalho, I.; Magalhães, S.; Soares, M.P.; Gordo, I. The Genetic Basis of Escherichia coli Pathoadaptation to Macrophages. PLoS Pathog. 2013, 9, e1003802. [Google Scholar] [CrossRef] [PubMed]
- Leaver, M.; Domínguez-Cuevas, P.; Coxhead, J.M.; Daniel, R.A.; Errington, J. Life without a Wall or Division Machine in Bacillus subtilis. Nature 2009, 457, 849–853. [Google Scholar] [CrossRef]
- Errington, J. L-Form Bacteria, Cell Walls and the Origins of Life. Open Biol. 2013, 3. [Google Scholar] [CrossRef]
- Allan, E.J.; Hoischen, C.; Gumpert, J. Chapter 1 Bacterial L-Forms. Adv. Appl. Microbiol. 2009, 68, 1–39. [Google Scholar]
- Jin, X.; Lee, J.-E.; Schaefer, C.; Luo, X.; M Wollman, A.J.; Payne-Dwyer, A.L.; Tian, T.; Zhang, X.; Chen, X.; Li, Y.; et al. Membraneless Organelles Formed by Liquid-Liquid Phase Separation Increase Bacterial Fitness. Sci. Adv. 2021, 7, eabh2929. [Google Scholar] [CrossRef]
- Sasazawa, M.; Tomares, D.T.; Childers, W.S.; Saurabh, S. Biomolecular Condensates as Stress Sensors and Modulators of Bacterial Signaling. PLoS Pathog. 2024, 20, e1012413. [Google Scholar] [CrossRef]
- Zhao, Y.; Dai, E.; Zhang, M.; Wu, Y.; Sun, D.; Ding, J. Mechanisms and Pathological Significance of Liquid–Liquid Phase Separation in Bacteria. FASEB J. 2025, 39, e71074. [Google Scholar] [CrossRef]
- Barros-Medina, I.; Robles-Ramos, M.Á.; Sobrinos-Sanguino, M.; Luque-Ortega, J.R.; Alfonso, C.; Margolin, W.; Rivas, G.; Monterroso, B.; Zorrilla, S. Evidence for Biomolecular Condensates Formed by the Escherichia coli MatP Protein in Spatiotemporal Regulation of the Bacterial Cell Division Cycle. Int. J. Biol. Macromol. 2025, 309, 142691. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Zheng, B.; Liu, J.-F. DEAD-Box ATPase-Marked Condensates Coordinate Compartmentalized Translation and Antibiotic Persistence. Sci. Adv. 2026, 12, eady1930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, D.; Zheng, B.; Liu, J. Sequestration of SerRS through LLPS Impairs Localized Translation and Contributes to Antibiotic Persistence. bioRxiv 2025. bioRxiv:2024.12.31.630848. [Google Scholar]
- Bollen, C.; Louwagie, S.; Deroover, F.; Duverger, W.; Khodaparast, L.; Khodaparast, L.; Hofkens, D.; Schymkowitz, J.; Rousseau, F.; Dewachter, L.; et al. Composition and Liquid-to-Solid Maturation of Protein Aggregates Contribute to Bacterial Dormancy Development and Recovery. Nat. Commun. 2025, 16, 1046. [Google Scholar] [CrossRef]
- Nikaido, H. Multidrug Resistance in Bacteria. Annu. Rev. Biochem. 2009, 78, 119. [Google Scholar] [CrossRef] [PubMed]
- Charoenwong, D.; Andrews, S.; Mackey, B. Role of RpoS in the Development of Cell Envelope Resilience and Pressure Resistance in Stationary-Phase Escherichia coli. Appl. Environ. Microbiol. 2011, 77, 5220–5229. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S.; Franklin, M.J. Physiological Heterogeneity in Biofilms. Nat. Rev. Microbiol. 2008, 6, 199–210. [Google Scholar] [CrossRef]
- Oliver, J.D. The Viable but Nonculturable State in Bacteria. J. Microbiol. 2005, 43, 93–100. [Google Scholar]
- Li, L.; Mendis, N.; Trigui, H.; Oliver, J.D.; Faucher, S.P. The Importance of the Viable but Non-Culturable State in Human Bacterial Pathogens. Front. Microbiol. 2014, 5, 258. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Kjellerup, B.V.; Xu, Z. Viable but Nonculturable (VBNC) State, an Underestimated and Controversial Microbial Survival Strategy. Trends Microbiol. 2023, 31, 1013–1023. [Google Scholar] [CrossRef]
- Ayrapetyan, M.; Williams, T.C.; Baxter, R.; Oliver, J.D. Viable but Nonculturable and Persister Cells Coexist Stochastically and Are Induced by Human Serum. Infect. Immun. 2015, 83, 4194–4203. [Google Scholar] [CrossRef]
- Pinto, D.; Santos, M.A.; Chambel, L. Thirty Years of Viable but Nonculturable State Research: Unsolved Molecular Mechanisms. Crit. Rev. Microbiol. 2015, 41, 61–76. [Google Scholar] [CrossRef]
- Kim, J.S.; Chowdhury, N.; Yamasaki, R.; Wood, T.K. Viable but Non-Culturable and Persistence Describe the Same Bacterial Stress State. Environ. Microbiol. 2018, 20, 2038–2048. [Google Scholar] [CrossRef]
- Yan, J.; Nadell, C.D.; Bassler, B.L. Environmental Fluctuation Governs Selection for Plasticity in Biofilm Production. ISME J. 2017, 11, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Bridier, A.; Piard, J.C.; Pandin, C.; Labarthe, S.; Dubois-Brissonnet, F.; Briandet, R. Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities. Front. Microbiol. 2017, 8, 267538. [Google Scholar] [CrossRef]
- Gallegos-Monterrosa, R.; Kovács, Á.T. Phenotypic Plasticity: The Role of a Phosphatase Family Rap in the Genetic Regulation of Bacilli. Mol. Microbiol. 2023, 120, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Oren, Y.; Smith, M.B.; Johns, N.I.; Zeevi, M.K.; Biran, D.; Ron, E.Z.; Corander, J.; Wang, H.H.; Alm, E.J.; Pupko, T. Transfer of Noncoding DNA Drives Regulatory Rewiring in Bacteria. Proc. Natl. Acad. Sci. USA 2014, 111, 16112–16117. [Google Scholar] [CrossRef]
- Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019; pp. 1–324. [Google Scholar] [CrossRef]
- Casadesús, J.; Low, D. Epigenetic Gene Regulation in the Bacterial World. Microbiol. Mol. Biol. Rev. 2006, 70, 830–856. [Google Scholar] [CrossRef]
- San Millan, A.; MacLean, R.C. Fitness Costs of Plasmids: A Limit to Plasmid Transmission. Microbiol. Spectr. 2017, 5, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Beltrán, J.; DelaFuente, J.; León-Sampedro, R.; MacLean, R.C.; San Millán, Á. Beyond Horizontal Gene Transfer: The Role of Plasmids in Bacterial Evolution. Nat. Rev. Microbiol. 2021, 19, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.; Brockhurst, M.A. Plasmid-Mediated Horizontal Gene Transfer Is a Coevolutionary Process. Trends Microbiol. 2012, 20, 262–267. [Google Scholar] [CrossRef]
- Lopatkin, A.J.; Meredith, H.R.; Srimani, J.K.; Pfeiffer, C.; Durrett, R.; You, L. Persistence and Reversal of Plasmid-Mediated Antibiotic Resistance. Nat. Commun. 2017, 8, 1689. [Google Scholar] [CrossRef]
- Hall, E.K.; Bernhardt, E.S.; Bier, R.L.; Bradford, M.A.; Boot, C.M.; Cotner, J.B.; del Giorgio, P.A.; Evans, S.E.; Graham, E.B.; Jones, S.E.; et al. Understanding How Microbiomes Influence the Systems They Inhabit. Nat. Microbiol. 2018, 3, 977–982. [Google Scholar] [CrossRef]
- Castañeda-Barba, S.; Top, E.M.; Stalder, T. Plasmids, a Molecular Cornerstone of Antimicrobial Resistance in the One Health Era. Nat. Rev. Microbiol. 2024, 22, 18–32. [Google Scholar] [CrossRef]
- Frost, L.S.; Leplae, R.; Summers, A.O.; Toussaint, A. Mobile Genetic Elements: The Agents of Open Source Evolution. Nat. Rev. Microbiol. 2005, 3, 722–732. [Google Scholar] [CrossRef]
- Imlay, J.A. Transcription Factors That Defend Bacteria Against Reactive Oxygen Species. Annu. Rev. Microbiol. 2015, 69, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Ezraty, B.; Gennaris, A.; Barras, F.; Collet, J.F. Oxidative Stress, Protein Damage and Repair in Bacteria. Nat. Rev. Microbiol. 2017, 15, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.M.; Schellhorn, H.E. Regulators of Oxidative Stress Response Genes in Escherichia coli and Their Functional Conservation in Bacteria. Arch. Biochem. Biophys. 2012, 525, 161–169. [Google Scholar] [CrossRef]
- Kobayashi, K.; Fujikawa, M.; Kozawa, T. Oxidative Stress Sensing by the Iron-Sulfur Cluster in the Transcription Factor, SoxR. J. Inorg. Biochem. 2014, 133, 87–91. [Google Scholar] [CrossRef]
- Alfei, S.; Schito, G.C.; Schito, A.M.; Zuccari, G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int. J. Mol. Sci. 2024, 25, 7182. [Google Scholar] [CrossRef]
- Metzger, M.; Hacobian, A.; Karner, L.; Krausgruber, L.; Grillari, J.; Dungel, P. Resistance of Bacteria toward 475 Nm Blue Light Exposure and the Possible Role of the SOS Response. Life 2022, 12, 1499. [Google Scholar] [CrossRef]
- Chittò, M.; Tutschner, D.; Dobrindt, U.; Galstyan, A.; Berger, M. Photosensitizer-Specific Bacterial Stress Responses in Escherichia coli Reveal Distinct Targets in Photoinduced Inactivation. Commun. Biol. 2025, 8, 1413. [Google Scholar] [CrossRef]
- Imlay, J.A. The Molecular Mechanisms and Physiological Consequences of Oxidative Stress: Lessons from a Model Bacterium. Nat. Rev. Microbiol. 2013, 11, 443–454. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. Cell 2007, 130, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Kruszewska-Naczk, B.; Grinholc, M.; Rapacka-Zdonczyk, A. Mimicking the Effects of Antimicrobial Blue Light: Exploring Single Stressors and Their Impact on Microbial Growth. Antioxidants 2024, 13, 1583. [Google Scholar] [CrossRef] [PubMed]
- Rapacka-Zdonczyk, A.; Wozniak, A.; Pieranski, M.; Woziwodzka, A.; Bielawski, K.P.; Grinholc, M. Development of Staphylococcus aureus Tolerance to Antimicrobial Photodynamic Inactivation and Antimicrobial Blue Light upon Sub-Lethal Treatment. Sci. Rep. 2019, 9, 9423. [Google Scholar] [CrossRef] [PubMed]
- Martínez, S.R.; Palacios, Y.B.; Heredia, D.A.; Agazzi, M.L.; Durantini, A.M. Phenotypic Resistance in Photodynamic Inactivation Unravelled at the Single Bacterium Level. ACS Infect. Dis. 2019, 5, 1624–1633. [Google Scholar] [CrossRef]
- Pieranski, M.; Sitkiewicz, I.; Grinholc, M. Increased Photoinactivation Stress Tolerance of Streptococcus Agalactiae upon Consecutive Sublethal Phototreatments. Free Radic. Biol. Med. 2020, 160, 657–669. [Google Scholar] [CrossRef]
- Karami, A.; Farivar, F.; De Prinse, T.J.; Rabiee, H.; Kidd, S.; Sumby, C.J.; Bi, J. Facile Multistep Synthesis of ZnO-Coated β-NaYF4:Yb/Tm Up-conversion Nanoparticles as an Antimicrobial Photodynamic Therapy for Persistent Staphylococcus Aureus Small Colony Variants. ACS Appl. Bio Mater. 2021, 4, 6125–6136. [Google Scholar] [CrossRef]
- Cieplik, F.; Deng, D.; Crielaard, W.; Buchalla, W.; Hellwig, E.; Al-Ahmad, A.; Maisch, T. Antimicrobial Photodynamic Therapy–What We Know and What We Don’t. Crit. Rev. Microbiol. 2018, 44, 571–589. [Google Scholar] [CrossRef]
- Songca, S.P.; Adjei, Y. Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. Int. J. Mol. Sci. 2022, 23, 3209. [Google Scholar] [CrossRef]
- Di Poto, A.; Sbarra, M.S.; Provenza, G.; Visai, L.; Speziale, P. The Effect of Photodynamic Treatment Combined with Antibiotic Action or Host Defence Mechanisms on Staphylococcus aureus Biofilms. Biomaterials 2009, 30, 3158–3166. [Google Scholar] [CrossRef] [PubMed]
- Vilela, S.F.G.; Junqueira, J.C.; Barbosa, J.O.; Majewski, M.; Munin, E.; Jorge, A.O.C. Photodynamic Inactivation of Staphylococcus aureus and Escherichia coli Biofilms by Malachite Green and Phenothiazine Dyes: An in Vitro Study. Arch. Oral Biol. 2012, 57, 704–710. [Google Scholar] [CrossRef]
- Woźniak, A.; Kruszewska, B.; Pierański, M.K.; Rychłowski, M.; Grinholc, M. Antimicrobial Photodynamic Inactivation Affects the Antibiotic Susceptibility of Enterococcus Spp. Clinical Isolates in Biofilm and Planktonic Cultures. Biomolecules 2021, 11, 693. [Google Scholar] [CrossRef] [PubMed]
- dos Anjos, C.; Sellera, F.P.; Ribeiro, M.S.; Baptista, M.S.; Pogliani, F.C.; Lincopan, N.; Sabino, C.P. Antimicrobial Blue Light and Photodynamic Therapy Inhibit Clinically Relevant β-Lactamases with Extended-Spectrum (ESBL) and Carbapenemase Activity. Photodiagn. Photodyn. Ther. 2020, 32, 102086. [Google Scholar] [CrossRef] [PubMed]
- Branco, T.M.; Valério, N.C.; Jesus, V.I.R.; Dias, C.J.; Neves, M.G.P.M.S.; Faustino, M.A.F.; Almeida, A. Single and Combined Effects of Photodynamic Therapy and Antibiotics to Inactivate Staphylococcus aureus on Skin. Photodiagn. Photodyn. Ther. 2018, 21, 285–293. [Google Scholar] [CrossRef]
- Almeida, J.; Tomé, J.P.C.; Neves, M.G.P.M.S.; Tomé, A.C.; Cavaleiro, J.A.S.; Cunha, Â.; Costa, L.; Faustino, M.A.F.; Almeida, A. Photodynamic Inactivation of Multidrug-Resistant Bacteria in Hospital Wastewaters: Influence of Residual Antibiotics. Photochem. Photobiol. Sci. 2014, 13, 626. [Google Scholar] [CrossRef]
- Marfavi, Z.; Cai, Y.; Lv, Q.; Han, Y.; Yang, R.; Sun, K.; Yuan, C.; Tao, K. The Synergy between Antibiotics and the Nanoparticle-Based Photodynamic Effect. Nano Lett. 2024, 24, 12973–12980. [Google Scholar] [CrossRef]
- Feng, Y.; Coradi Tonon, C.; Ashraf, S.; Hasan, T. Photodynamic and Antibiotic Therapy in Combination against Bacterial Infections: Efficacy, Determinants, Mechanisms, and Future Perspectives. Adv. Drug Deliv. Rev. 2021, 177, 113941. [Google Scholar] [CrossRef]
- Kruszewska-Naczk, B.; Pikulik-Arif, P.; Grinholc, M.; Rapacka-Zdonczyk, A. Antibacterial Blue Light Is a Promising Tool for Inactivating Escherichia coli in the Food Sector Due to Its Low Risk of Cross-Stress Tolerance. Chem. Biol. Technol. Agric. 2024, 11, 126. [Google Scholar] [CrossRef]
- Crispo, E. The Baldwin Effect and Genetic Assimilation: Revisiting Two Mechanisms of Evolutionary Change Mediated by Phenotypic Plasticity. Evolution 2007, 61, 2469–2479. [Google Scholar] [CrossRef]
- Snell-Rood, E.C. An Overview of the Evolutionary Causes and Consequences of Behavioural Plasticity. Anim. Behav. 2013, 85, 1004–1011. [Google Scholar] [CrossRef]
- Ghalambor, C.K.; Hoke, K.L.; Ruell, E.W.; Fischer, E.K.; Reznick, D.N.; Hughes, K.A. Non-Adaptive Plasticity Potentiates Rapid Adaptive Evolution of Gene Expression in Nature. Nature 2015, 525, 372–375. [Google Scholar] [CrossRef]
- Soares, J.M.; Inada, N.M.; Bagnato, V.S.; Blanco, K.C. Evolution of Surviving Streptoccocus Pyogenes from Pharyngotonsillitis Patients Submit to Multiple Cycles of Antimicrobial Photodynamic Therapy. J. Photochem. Photobiol. B 2020, 210, 111985. [Google Scholar] [CrossRef]
- Snell, S.B.; Gill, A.L.; Haidaris, C.G.; Foster, T.H.; Baran, T.M.; Gill, S.R. Staphylococcus aureus Tolerance and Genomic Response to Photodynamic Inactivation. mSphere 2021, 6, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Lowrey, L.C.; Gadda, N.C.; Tamayo, R. Maximizing Bacterial Survival: Integrating Sense-and-Respond and Bet-Hedging Mechanisms. Trends Microbiol. 2025, 33, 1304–1316. [Google Scholar] [CrossRef]
- Bayliss, C.D.; Clark, J.L.; van der Woude, M.W. 100+ Years of Phase Variation: The Premier Bacterial Bet-Hedging Phenomenon. Microbiology 2025, 171, 001537. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.N.; Goulian, M. A Bacterial Signaling System Regulates Noise to Enable Bet Hedging. Curr. Genet. 2019, 65, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Mulcahy, L.R.; Burns, J.L.; Lory, S.; Lewis, K. Emergence of Pseudomonas aeruginosa Strains Producing High Levels of Persister Cells in Patients with Cystic Fibrosis. J. Bacteriol. 2010, 192, 6191–6199. [Google Scholar] [CrossRef]
- Bjedov, I.; Tenaillon, O.; Gérard, B.; Souza, V.; Denamur, E.; Radman, M.; Taddei, F.; Matic, I. Stress-Induced Mutagenesis in Bacteria. Science 2003, 300, 1404–1409. [Google Scholar] [CrossRef]
- Carvajal-Garciaa, J.; Samadpourb, A.N.; Hernandez Vieraa, A.J.; Merrikha, H. Oxidative Stress Drives Mutagenesis through Transcription-Coupled Repair in Bacteria. Proc. Natl. Acad. Sci. USA 2023, 120, e2300761120. [Google Scholar] [CrossRef]
- Foster, P.L. Stress-Induced Mutagenesis in Bacteria. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 373–397. [Google Scholar] [CrossRef]
- Gallie, J.; Libby, E.; Bertels, F.; Remigi, P.; Jendresen, C.B.; Ferguson, G.C.; Desprat, N.; Buffing, M.F.; Sauer, U.; Beaumont, H.J.E.; et al. Bistabil-ity in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas Fluorescens. PLoS Biol. 2015, 13, e1002109. [Google Scholar] [CrossRef]
- Rapacka-zdonczyk, A.; Wozniak, A.; Nakonieczna, J.; Grinholc, M. Development of Antimicrobial Phototreatment Tolerance: Why the Methodology Matters. Int. J. Mol. Sci. 2021, 22, 2224. [Google Scholar] [CrossRef]
- Chevin, L.M.; Gallet, R.; Gomulkiewicz, R.; Holt, R.D.; Fellous, S. Phenotypic Plasticity in Evolutionary Rescue Experiments. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120089. [Google Scholar] [CrossRef]
- Karoui, M.E.; Madrid, I.; Méléard, S. Phenotypic Plasticity Trade-Offs in an Age-Structured Model of Bacterial Growth under Stress. arXiv 2024, arXiv:2403.13415. [Google Scholar] [CrossRef]
- Cong, X.; Hillert, J.; Krolla, P.; Schwartz, T. Cellular Insights into Reactive Oxidative Species (ROS) and Bacterial Stress Responses Induced by Antimicrobial Blue Light (ABL) for Inactivating Antibiotic Resistant Bacteria (ARB) in Wastewater. Sci. Total Environ. 2025, 1005, 180878. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Price-Whelan, A.; Dietrich, L.E.P. Gradients and Consequences of Heterogeneity in Biofilms. Nat. Rev. Microbiol. 2022, 20, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Tonon, C.C.; Ashraf, S.; Alburquerque, J.Q.; de Souza Rastelli, A.N.; Hasan, T.; Lyons, A.M.; Greer, A. Antimicrobial Photodynamic Inactivation Using Topical and Superhydrophobic Sensitizer Techniques: A Perspective from Diffusion in Biofilms. Photochem. Photobiol. 2021, 97, 1266–1277. [Google Scholar] [CrossRef]
- Ackermann, M. A Functional Perspective on Phenotypic Heterogeneity in Microorganisms. Nat. Rev. Microbiol. 2015, 13, 497–508. [Google Scholar] [CrossRef]
- Elowitz, M.B.; Levine, A.J.; Siggia, E.D.; Swain, P.S. Stochastic gene expression in a single cell. Science 2002, 297, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Lopatkin, A.J.; Stokes, J.M.; Zheng, E.J.; Yang, J.H.; Takahashi, M.K.; You, L.; Collins, J.J. Bacterial Metabolic State More Accurately Predicts Antibiotic Lethality than Growth Rate. Nat. Microbiol. 2019, 4, 2109–2117. [Google Scholar] [CrossRef]
- Xiu, W.; Wan, L.; Yang, K.; Li, X.; Yuwen, L.; Dong, H.; Mou, Y.; Yang, D.; Wang, L. Potentiating Hypoxic Microenvironment for Antibiotic Activation by Photodynamic Therapy to Combat Bacterial Biofilm Infections. Nat. Commun. 2022, 13, 3875. [Google Scholar] [CrossRef]
- Blázquez, J.; Couce, A.; Rodríguez-Beltrán, J.; Rodríguez-Rojas, A. Antimicrobials as Promoters of Genetic Variation. Curr. Opin. Microbiol. 2012, 15, 561–569. [Google Scholar] [CrossRef]
- LaSarre, B.; Federle, M.J. Exploiting Quorum Sensing To Confuse Bacterial Pathogens. Microbiol. Mol. Biol. Rev. 2013, 77, 73–111. [Google Scholar] [CrossRef] [PubMed]
- Rupp, M.; Mannala, G.K.; Walter, N.; Mendelsohn, D.; Roupie, C.; Ladam, G.; Labat, B.; Wong, R.M.Y.; Cheung, W.H.; Brochhausen, C.; et al. Nisin-enriched coatings on titanium implants prevent staphylococcus aureus biofilm formation: The Galleria mellonella model as a testing platform. Eur. Cell Mater. 2025, 51, 136–144. [Google Scholar] [CrossRef]
- Verheul, M.; Drijfhout, J.W.; Pijls, B.G.; Nibbering, P.H. Non-Contact Induction Heating and Saap-148 Eliminate Persisters within Mrsa Biofilms Mimicking a Metal Implant Infection. Eur. Cell Mater. 2021, 42, 34–42. [Google Scholar] [CrossRef]
- Verheul, M.; Wagenmakers, A.A.; Nelissen, R.G.H.H.; Nibbering, P.H.; Pijls, B.G. Induction Heating Combined with Antibiotics or SAAP-148 Effectively Reduces Biofilm-Embedded Staphylococcus aureus on a Fracture-Related Implant Mimic. Bone Jt. Res. 2025, 14, 485–494. [Google Scholar] [CrossRef]
- Hall, C.W.; Mah, T.F. Molecular Mechanisms of Biofilm-Based Antibiotic Resistance and Tolerance in Pathogenic Bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef]
- Bjarnsholt, T.; Kirketerp-Møller, K.; Jensen, P.Ø.; Madsen, K.G.; Phipps, R.; Krogfelt, K.; Høiby, N.; Givskov, M. Why Chronic Wounds Will Not Heal: A Novel Hypothesis. Wound Repair Regen. 2008, 16, 2–10. [Google Scholar] [CrossRef]
- El Solh, A.A.; Akinnusi, M.E.; Wiener-Kronish, J.P.; Lynch, S.V.; Pineda, L.A.; Szarpa, K. Persistent Infection with Pseudomonas aeruginosa in Ventilator-Associated Pneumonia. Am. J. Respir. Crit. Care Med. 2008, 178, 513–519. [Google Scholar] [CrossRef]
- Hauser, A.R. Pseudomonas aeruginosa: So Many Virulence Factors, so Little Time. Crit. Care Med. 2011, 39, 2193–2194. [Google Scholar] [CrossRef]
- Goerke, C.; Wolz, C. Regulatory and Genomic Plasticity of Staphylococcus aureus during Persistent Colonization and Infection. Int. J. Med. Microbiol. 2004, 294, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Tuchscherr, L.; Löffler, B.; Proctor, R.A. Persistence of Staphylococcus aureus: Multiple Metabolic Pathways Impact the Expression of Virulence Factors in Small-Colony Variants (SCVs). Front. Microbiol. 2020, 11, 1028. [Google Scholar] [CrossRef]
- Huemer, M.; Mairpady Shambat, S.; Bergada-Pijuan, J.; Söderholm, S.; Boumasmoud, M.; Vulin, C.; Gómez-Mejia, A.; Antelo Varela, M.; Tripathi, V.; Götschi, S.; et al. Molecular Reprogramming and Phenotype Switching in Staphylococcus aureus Lead to High Antibiotic Persistence and Affect Therapy Success. Proc. Natl. Acad. Sci. USA 2021, 118, e2014920118. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, A.; Grinholc, M.; Woźniak, A.; Grinholc, M.; Wozniak, A.; Grinholc, M. Combined Antimicrobial Activity of Photodynamic Inactivation and Antimicrobials–State of the Art. Front. Microbiol. 2018, 9, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, A.; Rapacka-Zdonczyk, A.; Mutters, N.T.N.T.; Grinholc, M. Antimicrobials Are a Photodynamic Inactivation Adjuvant for the Eradication of Extensively Drug-Resistant Acinetobacter baumannii. Front. Microbiol. 2019, 10, 229. [Google Scholar] [CrossRef]
- Woźniak, A.; Burzyńska, N.; Zybała, I.; Empel, J.; Grinholc, M. Priming Effect with Photoinactivation against Extensively Drug-Resistant Enterobacter Cloacae and Klebsiella Pneumoniae. J. Photochem. Photobiol. B 2022, 235, 112554. [Google Scholar] [CrossRef]
- Woźniak, A.; Grinholc, M. Combined Antimicrobial Blue Light and Antibiotics as a Tool for Eradication of Multidrug-Resistant Isolates of Pseudomonas aeruginosa and Staphylococcus aureus: In Vitro and In Vivo Studies. Antioxidants 2022, 11, 1660. [Google Scholar] [CrossRef]





| Concept | Genetic Basis | Reversibility | Population Structure/Response | Typical Timescale | Key Features | References |
|---|---|---|---|---|---|---|
| Genetic resistance | Stable mutations or horizontal gene transfer | No | Entire population resistant | Long-term | Increased MIC; maintained without stress | [1,3,4] |
| Tolerance | Non-resistance-conferring genetic background and/or regulatory state | Yes | Population-level delayed killing dynamics | Short–medium (can persist across generations) | Reduced killing rate without MIC change | [4,5] |
| Persistence | Non-genetic, stochastic | Yes | Small dormant subpopulation | Transient, recurrent | Rare cells survive lethal stress; regrow upon stress removal | [8,23] |
| Resilience | Non-genetic, population-level | Yes | Post-exposure population response | Post-stress recovery phase | Capacity to regrow after treatment rather than survive exposure | [20,21,24] |
| Phenotypic plasticity | Regulatory, metabolic, physiological | Yes | Heterogeneous, dynamic | Context- dependent | Framework encompassing tolerance, persistence and resilience | [9,25,26,27] |
| Level/Mechanism | Phenotypic Manifestation | Trigger | Implications | References |
|---|---|---|---|---|
| Morphological | Filamentation | β-lactams, quinolones, ROS | SOS-induced elongation; transient tolerance to ROS and immune attack | [9,10,160] |
| SCVs | Aminoglycosides, ROS, aPDI | Slow growth, metabolic rewiring, persistence in host tissues | [41,85,132] | |
| L-forms | β-lactams, oxidative stress | Cell wall-deficient states enable transient survival under cell wall stress | [9,88] | |
| Metabolic | PPP/TCA rewiring → ↑ NADPH | Antibiotics, ROS | Enhanced antioxidant defenses | [59] |
| Priming responses | Sublethal H2O2 | Induction of protective programs; reduced killing | [74] | |
| Adaptation delay → mutagenesis | Sudden H2O2 | Transient window of increased mutagenesis | [75] | |
| Envelope & biofilm | Envelope stress remodeling (RpoS, porins, efflux) | Antibiotics, ROS, aBL | Altered permeability and efflux; transient tolerance | [41,98,161] |
| Biofilm heterogeneity | Antibiotics, ROS, aPDI | Microenvironments generate tolerant/persister subpopulations | [16,32,33,162,163] | |
| Biofilm–planktonic switching | Environmental fluctuations | Plastic transitions favored under variable conditions | [18] | |
| Regulatory | Rap/Phr signaling | Stress, biofilm (Bacillus spp.) | Context-dependent control of sporulation, motility, competence | [109] |
| HRT | Mobility of non-coding regulatory regions | Network rewiring without coding changes | [110] | |
| Mobile elements | Plasmid-dependent plasticity | Antibiotics, environmental stress | Fitness trade-offs; modulation of stress responses | [113,114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rapacka-Zdonczyk, A. Beyond Resistance: Phenotypic Plasticity in Bacterial Responses to Antibiotics, Oxidative Stress and Antimicrobial Photodynamic Inactivation. Molecules 2026, 31, 567. https://doi.org/10.3390/molecules31030567
Rapacka-Zdonczyk A. Beyond Resistance: Phenotypic Plasticity in Bacterial Responses to Antibiotics, Oxidative Stress and Antimicrobial Photodynamic Inactivation. Molecules. 2026; 31(3):567. https://doi.org/10.3390/molecules31030567
Chicago/Turabian StyleRapacka-Zdonczyk, Aleksandra. 2026. "Beyond Resistance: Phenotypic Plasticity in Bacterial Responses to Antibiotics, Oxidative Stress and Antimicrobial Photodynamic Inactivation" Molecules 31, no. 3: 567. https://doi.org/10.3390/molecules31030567
APA StyleRapacka-Zdonczyk, A. (2026). Beyond Resistance: Phenotypic Plasticity in Bacterial Responses to Antibiotics, Oxidative Stress and Antimicrobial Photodynamic Inactivation. Molecules, 31(3), 567. https://doi.org/10.3390/molecules31030567

