Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = transformation of coal to natural gas or electricity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2185 KiB  
Article
A Novel Fractional Order Multivariate Partial Grey Model and Its Application in Natural Gas Production
by Hui Li, Huiming Duan and Hongli Chen
Fractal Fract. 2025, 9(7), 422; https://doi.org/10.3390/fractalfract9070422 - 27 Jun 2025
Viewed by 479
Abstract
Accurate prediction of natural gas production is of great significance for optimizing development strategies, simplifying production management, and promoting decision-making. This paper utilizes partial differentiation to effectively capture the spatiotemporal characteristics of natural gas data and the advantages of grey prediction models. By [...] Read more.
Accurate prediction of natural gas production is of great significance for optimizing development strategies, simplifying production management, and promoting decision-making. This paper utilizes partial differentiation to effectively capture the spatiotemporal characteristics of natural gas data and the advantages of grey prediction models. By introducing the fractional damping accumulation operator, a new fractional order partial grey prediction model is established. The new model utilizes partial capture of details and features in the data, improves model accuracy through fractional order accumulation, and extends the metadata of the classic grey prediction model from time series to matrix series, effectively compensating for the phenomenon of inaccurate results caused by data fluctuations in the model. Meanwhile, the principle of data accumulation is effectively expressed in matrix form, and the least squares method is used to estimate the parameters of the model. The time response equation of the model is obtained through multiplication transformation, and the modelling steps are elaborated in detail. Finally, the new model is applied to the prediction of natural gas production in Qinghai Province, China, selecting energy production related to natural gas production, including raw coal production, oil production, and electricity generation, as relevant variables. To verify the effectiveness of the new model, we started by selecting the number of relevant variables, divided them into three categories for analysis based on the number of relevant variables, and compared them with five other grey prediction models. The results showed that in the seven simulation experiments of the three types of experiments, the average relative error of the new model was less than 2%, indicating that the new model has strong stability. When selecting the other three types of energy production as related variables, the best effect was achieved with an average relative error of 0.3821%, and the natural gas production for the next nine months was successfully predicted. Full article
(This article belongs to the Special Issue Applications of Fractional-Order Grey Models, 2nd Edition)
Show Figures

Figure 1

36 pages, 1130 KiB  
Review
The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry
by Klaus Günter Steinhäuser and Markus Große Ophoff
Sustain. Chem. 2025, 6(2), 16; https://doi.org/10.3390/suschem6020016 - 10 Jun 2025
Viewed by 1470
Abstract
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite [...] Read more.
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite resources. This development exceeds planetary boundaries and calls for a sustainable transformation of the industry. The key transformation areas are as follows: (1) Non-Fossil Energy Supply: The industry must transition away from fossil fuels. Renewable electricity can replace natural gas, while green hydrogen can be used for high-temperature processes. (2) Circularity: Chemical production remains largely linear, with most products ending up as waste. Sustainable product design and improved recycling processes are crucial. (3) Non-Fossil Feedstock: To achieve greenhouse gas neutrality, oil, gas, and coal must be replaced by recycling plastics, renewable biomaterials, or CO2-based processes. (4) Sustainable Chemical Production: Energy and resource savings can be achieved through advancements like catalysis, biotechnology, microreactors, and new separation techniques. (5) Sustainable Chemical Products: Chemicals should be designed to be “Safe and Sustainable by Design” (SSbD), meaning they should not have hazardous properties unless essential to their function. (6) Sufficiency: Beyond efficiency and circularity, reducing overall material flows is essential to stay within planetary boundaries. This shift requires political, economic, and societal efforts. Achieving greenhouse gas neutrality in Europe by 2050 demands swift and decisive action from industry, governments, and society. The speed of transformation is currently too slow to reach this goal. Science can drive innovation, but international agreements are necessary to establish a binding framework for action. Full article
Show Figures

Figure 1

29 pages, 3833 KiB  
Review
Sustainable Energy Systems in a Post-Pandemic World: A Taxonomy-Based Analysis of Global Energy-Related Markets Responses and Strategies Following COVID-19
by Tawfiq M. Aljohani, Yasser O. Assolami, Omar Alrumayh, Mohamed A. Mohamed and Abdulaziz Almutairi
Sustainability 2025, 17(5), 2307; https://doi.org/10.3390/su17052307 - 6 Mar 2025
Cited by 1 | Viewed by 1930
Abstract
The global energy sector has been profoundly reshaped by the COVID-19 pandemic, triggering diverse reactions in energy demand patterns, accelerating the transition toward renewable energy sources, and amplifying concerns over global energy security and the digital safety of energy infrastructure. Five years after [...] Read more.
The global energy sector has been profoundly reshaped by the COVID-19 pandemic, triggering diverse reactions in energy demand patterns, accelerating the transition toward renewable energy sources, and amplifying concerns over global energy security and the digital safety of energy infrastructure. Five years after the pandemic’s onset, this study provides a taxonomy-based lesson-learned analysis, offering a comprehensive examination of the pandemic’s enduring effects on energy systems. It employs a detailed analytical framework to map short-, medium-, and long-term transformations across various energy-related sectors. Specifically, the study investigates significant shifts in the global energy landscape, including the electric and conventional vehicle markets, the upstream energy industry (oil, coal, and natural gas), conventional and renewable energy generation, aerial transportation, and the broader implications for global and continental energy security. Additionally, it highlights the growing importance of cybersecurity in the context of digital evolution and remote operations, which became critical during the pandemic. The study is structured to dissect the initial shock to energy supply and demand, the environmental consequences of reduced fossil fuel consumption, and the subsequent pivot toward sustainable recovery pathways. It also evaluates the strategic actions and policy measures implemented globally, providing a comparative analysis of recovery efforts and the evolving patterns of energy consumption. In the face of a global reduction in energy demand, the analysis reveals both spatial and temporal disparities, underscoring the complexity of the pandemic’s impact on the energy sector. Drawing on the lessons of COVID-19, this work emphasizes the need for flexible, forward-thinking strategies and deeper international collaboration to build energy systems that are both resilient and sustainable in the face of uncertainties. Full article
Show Figures

Figure 1

22 pages, 2853 KiB  
Article
Stochastic Optimization Model of Capacity Configuration for Integrated Energy Production System Considering Source-Load Uncertainty
by Ankang Miao, Yue Yuan, Yi Huang, Han Wu and Chao Feng
Sustainability 2023, 15(19), 14247; https://doi.org/10.3390/su151914247 - 26 Sep 2023
Cited by 7 | Viewed by 1770
Abstract
China’s carbon neutrality strategy has expedited a transition towards greener and lower-carbon integrated energy systems. Faced with the problem that the central position of thermal power cannot be transformed quickly, utilizing traditional thermal power units in a low-carbon and efficient manner is the [...] Read more.
China’s carbon neutrality strategy has expedited a transition towards greener and lower-carbon integrated energy systems. Faced with the problem that the central position of thermal power cannot be transformed quickly, utilizing traditional thermal power units in a low-carbon and efficient manner is the premise to guarantee green energy development. This study focuses on the integrated energy production system (IEPS) and a stochastic optimization model for capacity configuration that integrates carbon capture storage and power-to-gas while considering source-load uncertainty. Firstly, carbon capture storage and power-to-gas technologies are introduced, and the architecture and models of the IEPS are established. The carbon and hydrogen storage equipment configuration enhances the system’s flexibility. Also, source-load uncertainty is considered, and a deterministic transformation is applied using the simultaneous backward reduction algorithm combined with K-means clustering. The paper simulates the optimal capacity configuration of the IEPS in a park energy system in Suzhou, China. Furthermore, the research performs a sensitivity analysis on coal, natural gas, and carbon tax prices. Case studies verified that IEPS can realize the recycling of electricity, gas, hydrogen, and carbon, with remarkable characteristics of low-carbon, flexibility, and economical. Stochastic optimized capacity allocation results considering source-load uncertainty are more realistic. Sensitivity intervals for energy prices can reference pricing mechanisms in energy markets. This study can provide ideas for the transition of China’s energy structure and offer directions to the low-carbon sustainable development of the energy system. Full article
Show Figures

Figure 1

23 pages, 1517 KiB  
Article
Examination of the Hungarian Electricity Industry Structure with Special Regard to Renewables
by Norbert Bozsik, András Szeberényi and Nándor Bozsik
Energies 2023, 16(9), 3826; https://doi.org/10.3390/en16093826 - 29 Apr 2023
Cited by 15 | Viewed by 4090
Abstract
The stability of electricity service mainly depends on two main factors. One of them is the country’s power plant capacity and electricity imports. Another factor is the network that delivers electricity to consumers. Recently, consumer electricity production has appeared as a third factor [...] Read more.
The stability of electricity service mainly depends on two main factors. One of them is the country’s power plant capacity and electricity imports. Another factor is the network that delivers electricity to consumers. Recently, consumer electricity production has appeared as a third factor due to the spread of renewable energies. The article focuses on the transformation of the structure of Hungary’s electricity sources between 2010 and 2020. We used the concentration indicator to examine the structure of export–import deliveries with neighboring countries. We also analyzed the centralization of Hungary’s electricity-generating units and the composition of their fuels. In this article, we examined the increasingly widespread renewable energies, which are replacing the traditional—mainly fossil fuel—energy carriers. The relationship between coal, natural gas, nuclear, solar, wind, water, and bioenergy, as well as net imports, were analyzed using a Pearson correlation matrix. This article concludes that renewable energies will cause further transformation in the future, both in the structure of export–import and power plants. In electricity imports, green power is increasingly preferred. Electricity from renewable sources will account for an increasing share of electricity production. In the future, electricity production based on non-renewables will move toward power plants with low carbon dioxide emissions. On the other hand, it is also moving in the direction of fast-reacting power plants due to weather-dependent renewables. Annual system load peaks will continue to increase year after year in the future, thereby posing additional challenges to electricity generation and the electricity grid. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

20 pages, 4067 KiB  
Article
Carbon Footprint Assessment of Hydrogen and Steel
by Julian Suer, Marzia Traverso and Nils Jäger
Energies 2022, 15(24), 9468; https://doi.org/10.3390/en15249468 - 14 Dec 2022
Cited by 26 | Viewed by 6664
Abstract
Hydrogen has the potential to decarbonize a variety of energy-intensive sectors, including steel production. Using the life cycle assessment (LCA) methodology, the state of the art is given for current hydrogen production with a focus on the hydrogen carbon footprint. Beside the state [...] Read more.
Hydrogen has the potential to decarbonize a variety of energy-intensive sectors, including steel production. Using the life cycle assessment (LCA) methodology, the state of the art is given for current hydrogen production with a focus on the hydrogen carbon footprint. Beside the state of the art, the outlook on different European scenarios up to the year 2040 is presented. A case study of the transformation of steel production from coal-based towards hydrogen- and electricity-based metallurgy is presented. Direct reduction plants with integrated electric arc furnaces enable steel production, which is almost exclusively based on hydrogen and electricity or rather on electricity alone, if hydrogen stems from electrolysis. Thus, an integrated steel site has a demand of 4.9 kWh of electric energy per kilogram of steel. The carbon footprint of steel considering a European sustainable development scenario concerning the electricity mix is 0.75 kg CO2eq/kg steel in 2040. From a novel perspective, a break-even analysis is given comparing the use of natural gas and hydrogen using different electricity mixes. The results concerning hydrogen production presented in this paper can also be transferred to application fields other than steel. Full article
Show Figures

Figure 1

28 pages, 10513 KiB  
Article
Repowering a Coal Power Unit with Small Modular Reactors and Thermal Energy Storage
by Łukasz Bartela, Paweł Gładysz, Jakub Ochmann, Staffan Qvist and Lou Martinez Sancho
Energies 2022, 15(16), 5830; https://doi.org/10.3390/en15165830 - 11 Aug 2022
Cited by 26 | Viewed by 4825
Abstract
In the first months of 2022, there was a sharp turn in the energy policy of the European Union, initially spurred by increasing energy prices and further escalated by Russia’s invasion of the Ukraine. Further transformation of the energy system will likely be [...] Read more.
In the first months of 2022, there was a sharp turn in the energy policy of the European Union, initially spurred by increasing energy prices and further escalated by Russia’s invasion of the Ukraine. Further transformation of the energy system will likely be accompanied by the gradual abandonment of natural gas from Russia and an increase of renewable and nuclear energy. Such a transition will not only increase energy security, but also accelerate the pace at which greenhouse gas emissions are reduced in Europe. This could be achieved more effectively if some of the new nuclear energy capacity is optimized to play an increased balancing role in the energy system, thus allowing for deeper market penetration of intermittent renewable energy sources with a reduced need for flexible fossil backup power and storage. A double effect of decarbonization can be achieved by investments in nuclear repowering of coal-fired units, with the replacement of coal boiler islands with nuclear reactor systems. Repowered plants, in turn, operate flexibly via integration with thermal energy storage systems using molten salt. This paper presents the results of a technoeconomic analysis for three cases of nuclear repowering of a 460 MW supercritical coal-fired unit in Poland. The first reference case assumes that three reactors are replacing the existing coal boilers, while the second reference leverages two reactors. The third uses two nuclear reactors equipped with a molten salt thermal energy storage system as a buffer for the heat produced by the reactor system. The analysis of the third case demonstrates how the TES system’s capacity varies from 200 to 1200 MWh, highlighting the possibility of obtaining a high degree of flexibility of the nuclear unit due to TES system without significant drops in the efficiency of electricity production. The economic analysis demonstrates that integration with TES systems may be beneficial if the current levels of daily variation in electricity prices are maintained. For current market conditions, the most attractive investment is a case with two reactors and a TES system capacity of 800 MWh; however, with the increasing price volatility, this grows to a larger capacity of 1000 or 1200 MWh. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage)
Show Figures

Figure 1

16 pages, 8578 KiB  
Article
Energy Production from Biodegradable Waste as an Example of the Circular Economy
by Marta Szyba and Jerzy Mikulik
Energies 2022, 15(4), 1269; https://doi.org/10.3390/en15041269 - 9 Feb 2022
Cited by 21 | Viewed by 6825
Abstract
A growing population, technological progress and economic development result in a constant increase in energy demand. Energy is mostly obtained from fossil energy resources such as coal, natural gas, and crude oil. Burning them leads to air pollution with greenhouse gases (CO2 [...] Read more.
A growing population, technological progress and economic development result in a constant increase in energy demand. Energy is mostly obtained from fossil energy resources such as coal, natural gas, and crude oil. Burning them leads to air pollution with greenhouse gases (CO2, CH4, NH3 and N2O) and dust (PM2.5 and PM10). They are recognized as the cause of global warming and air pollution. Wind, water, solar and biomass energy are used to eliminate harmful emissions. The latter may come from special plant crops or from biodegradable waste from farming, animal husbandry, the agrifood industry and households. These wastes are transformed into biogas in biogas plants, the basic ingredient of which is methane. Most often, biogas is burned in a cogeneration process, providing electricity and heat. After purification of admixtures, it can be injected into the high-methane gas network or converted into hydrogen in the steam reforming process. In this way, environmentally harmful waste becomes a raw material for energy production, which is an example of a circular economy. The article discusses the functioning of biogas plants in selected EU countries. The current biogas production in Poland was assessed and compared with the production potential of dairy farms. The aim of this article was to show that the production of biogas reduces the emission of greenhouse gases into the atmosphere and the electricity produced from it is not burdened with the cost of purchasing CO2 emission allowances applicable in the EU. Full article
Show Figures

Figure 1

26 pages, 2327 KiB  
Article
The Trend and Status of Energy Resources and Greenhouse Gas Emissions in the Malaysia Power Generation Mix
by Siti Norasyiqin Abdul Latif, Meng Soon Chiong, Srithar Rajoo, Asako Takada, Yoon-Young Chun, Kiyotaka Tahara and Yasuyuki Ikegami
Energies 2021, 14(8), 2200; https://doi.org/10.3390/en14082200 - 15 Apr 2021
Cited by 97 | Viewed by 13246
Abstract
Environmental issues in energy policy, especially global warming, have received more attention lately than ever before. Excessive dependence on fossil fuels, deforestation, and land degradation are the three main factors that lead to increased carbon dioxide (CO2) emissions. Consequently, the global [...] Read more.
Environmental issues in energy policy, especially global warming, have received more attention lately than ever before. Excessive dependence on fossil fuels, deforestation, and land degradation are the three main factors that lead to increased carbon dioxide (CO2) emissions. Consequently, the global average temperature has doubled compared to anticipation. Various international protocols and agendas have been established, pledged to restore the global average temperature to the 1990 level. As a result, energy policies worldwide have also undergone various transformations to align with these protocols since then. As a developing nation, Malaysian’s electricity demand has continuously grown in the past two decades. To date, the electricity sector is still dominated by fossil fuels. Government incentives have been the most influential factor in the nation’s energy mix trend. Several energy policies implemented throughout the past 22 years have seen the shift from natural gas to coal power in power plants, and in more recent years, renewable energy resources. Numerous studies in the past have independently outlined the status of various energy source in Malaysia. However, they all fell short in providing the greenhouse gas (GHG) emissions in the Malaysian energy sector. Notably, the question that remains to be answered is how GHG emissions have changed in response to the amendment in the energy mix; hence, the effectiveness of policy change in this aspect remains unknown. This paper analysed the past and present trend of Malaysia electricity generation mix and the resultant GHG emissions. In particular, this paper focused on investigating the variation of combined specific GHG emissions in the Malaysian electricity sector, in response to the policy change within the past 22 years. This provides the insight for Malaysian policymakers to evaluate the effectiveness of past policies in GHG emissions and the measures to be taken in future. The finding of this paper shows the attention on the nation’s GHG emissions has evolved over the years, following the diversification in energy mix driven by the policy change. It was also found that, on average, it took a decade for a significant reduction in specific GHG emission to be visible since the government’s energy policy implementation. Full article
(This article belongs to the Special Issue Life Cycle Assessment of Environmental System)
Show Figures

Figure 1

15 pages, 5125 KiB  
Article
Spatio-Temporal Variations of Multiple Primary Air Pollutants Emissions in Beijing of China, 2006–2015
by Yifeng Xue, Shihao Zhang, Zhen Zhou, Kun Wang, Kaiyun Liu, Xiaoyan Wang, Aijun Shi, Kangli Xu and Hezhong Tian
Atmosphere 2019, 10(9), 494; https://doi.org/10.3390/atmos10090494 - 26 Aug 2019
Cited by 15 | Viewed by 4363
Abstract
Air pollution in Beijing, China has attracted continuous worldwide public attention along with the rapid urbanization of the city. By implementing a set of air pollution mitigation measures, the air quality of Beijing has been gradually improved in recent years. In this study, [...] Read more.
Air pollution in Beijing, China has attracted continuous worldwide public attention along with the rapid urbanization of the city. By implementing a set of air pollution mitigation measures, the air quality of Beijing has been gradually improved in recent years. In this study, the intrinsic factors leading to air quality improvement in Beijing are studied via a quantitative evaluation of the temporal and spatial changes in emissions of primary air pollutants over the past ten years. Based on detailed activity levels of each economic sector and a localized database containing source and pollutant specific emission factors, an integrated emissions inventory of primary air pollutants discharged from various sources between 2006 and 2015 is established. With the implementation of phased air pollution mitigation measures, and the Clean Air Action Plan, the original coal-dominated energy structure in Beijing has undergone tremendous changes, resulting in the substantial reduction of multiple air pollutants. The total of emissions of six major atmospheric pollutants (PM10, PM2.5, SO2, NOX, VOCs and NH3) in Beijing decreased by 35% in 2015 compared to 2006—this noticeable decrease was well consistent with the declining trend of ambient concentration of criterion air pollutants (SO2, PM10, PM2.5 and NO2) and air quality improvement, thus showing a good correlation between the emission of air pollutants and the outcome of air quality. SO2 emission declined the most, at about 71.7%, which was related to the vigorous promotion of combustion source control, such as the shutdown of coal-fired facilities and domestic stoves and transition to clean energy, like natural gas or electricity. Emissions of PM decreased considerably (by 48%) due to energy structure optimization, industrial structure adjustments, and end-of-pipe PM source control. In general, NOX, NH3, and VOCs decreased relatively slightly, by 25%, 14%, and 2%, respectively, and accordingly, they represented the limiting factors for improving air quality and the key points of air pollution mitigation in Beijing for the future. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

20 pages, 2779 KiB  
Article
Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030
by Muhammad Faizan Tahir, Haoyong Chen, Muhammad Sufyan Javed, Irfan Jameel, Asad Khan and Saifullah Adnan
Energies 2019, 12(11), 2083; https://doi.org/10.3390/en12112083 - 31 May 2019
Cited by 22 | Viewed by 4418
Abstract
Traditional energy supply infrastructures are on the brink of facing a major transformation due to energy security concerns, environment pollution, renewable energy intermittency and fossil fuel scarcity. A hybrid energy system constitutes the integration of different energy carriers like electricity, heat and fuel [...] Read more.
Traditional energy supply infrastructures are on the brink of facing a major transformation due to energy security concerns, environment pollution, renewable energy intermittency and fossil fuel scarcity. A hybrid energy system constitutes the integration of different energy carriers like electricity, heat and fuel which play a vital role in addressing the above challenges. Various technological options like combined heat and power, heat pumps, electrolysers and energy storages ease out multiple carrier integration in an energy hub to increase system flexibility and efficiency. This work models the hybrid energy system of China for the year 2030 by using EnergyPLAN. Atmosphere decarbonization is achieved by replacing conventional coal and natural gas boilers with alternative individual heating sources like hydrogen operated micro combined heat and power natural gas micro combined heat and power and heat pumps. Moreover, rockbed storage as well as single and double penstock pumped hydro storages are added in the proposed system in order to cope with the stochastic nature of intermittent renewable energy such as wind and solar photovoltaic. The technical simulation strategy is employed to analyze the optimal combination of energy producing components by determining annual costs, fuel consumption and CO2 emissions. The results substantiate that a heat pump and double penstock pumped hydro storage addition to the individual heating and electricity network not only proves to be an economically viable option but also reduces fuel consumption and emissions. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

Back to TopTop