Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = train–rail–bridge coupling system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2364 KiB  
Article
Braking Performance and Response Analysis of Trains on Bridges Under Seismic Excitation
by Yuanqing Lu, Xiaonan Xie, Hongkai Ma and Ping Xiang
Appl. Sci. 2025, 15(12), 6799; https://doi.org/10.3390/app15126799 - 17 Jun 2025
Viewed by 307
Abstract
Earthquakes can trigger emergency braking in urban rail systems, yet the combined effect of braking and ground motion on train–bridge safety remains poorly quantified. Using the Wuxi Metro Line S1 (160 km/h initial speed) on a ten-span simply supported bridge as a case [...] Read more.
Earthquakes can trigger emergency braking in urban rail systems, yet the combined effect of braking and ground motion on train–bridge safety remains poorly quantified. Using the Wuxi Metro Line S1 (160 km/h initial speed) on a ten-span simply supported bridge as a case study, we build a multi-body dynamic subway model coupled to a finite element track–bridge model with non-linear Hertz wheel–rail contact. Under the design-basis earthquake (PGA ≈ 0.10 g), the train’s derailment coefficient and lateral car body acceleration rise by 37% and 45%, while the bridge’s lateral and vertical accelerations increase by 62% and 30%, respectively. Introducing a constant emergency brake deceleration of 1.2 m/s2 cuts those train-side peaks by 20–25% and lowers the bridge’s lateral acceleration by 18%. The results show that timely braking not only protects passengers but also mitigates seismic demand on the structure, offering quantitative guidance for urban rail emergency protocols in earthquake-prone regions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 12087 KiB  
Article
Experimental and Numerical Study on Dynamic Response of High-Pier Ballastless Continuous Beam Bridge in Mountainous Area
by Wenshuo Liu, Qiong Luo, Gonglian Dai and Xin Tang
Appl. Sci. 2025, 15(8), 4341; https://doi.org/10.3390/app15084341 - 15 Apr 2025
Cited by 1 | Viewed by 432
Abstract
The dynamic performance of a ballastless track on bridges affects the vibration performance of the vehicle–bridge coupling system, which, in turn, will affect safety, the smoothness of operating trains, and passenger comfort. However, in the existing literature, few studies focus on the coupled [...] Read more.
The dynamic performance of a ballastless track on bridges affects the vibration performance of the vehicle–bridge coupling system, which, in turn, will affect safety, the smoothness of operating trains, and passenger comfort. However, in the existing literature, few studies focus on the coupled vibration response analysis of large-span continuous beam bridges for high-speed railways, especially high-pier bridges. Dynamic response tests with multiple measurement points installed on the rail, concrete slab, and bridge deck are conducted. This study investigates the dynamic characteristics of bridges with high piers under train loads. A dynamic system is built by the co-simulation platform of SIMPACK v9 and ANSYS v2022, consisting of several models, a coupling mechanism, etc. The vibration response of a train passing through the bridge at 300 km/h is analyzed, and the influence of operating speed on the motivation performance of the coupled system is further studied. The results indicate that the simulation results are validated against experimental data, showing good agreement; the train–track–continuous beam bridge coupling system meets the specification limits and has some margins for further optimization with an operating speed of 300 km/h. The refined model of train–rail–bridge coupling vibration established in this paper provides theoretical guidance for the design and application of high-speed railways. Full article
Show Figures

Figure 1

18 pages, 7007 KiB  
Article
Research on the Dynamic Behavior of “Building-Bridge Integrated” Railway Bridge-Type Station with Setting the Structural Joints on the Mainline
by Xiangrong Guo, Yaolin Liu and Jianghao Liu
Appl. Sci. 2025, 15(8), 4335; https://doi.org/10.3390/app15084335 - 14 Apr 2025
Viewed by 478
Abstract
The prevalence of “building-bridge integrated” structures in station design is increasing. However, in stations where the mainline speed exceeds 160 km/h, structural joints are typically incorporated to ensure the integrity and functionality of the integrated system. The inspection and maintenance of these joints, [...] Read more.
The prevalence of “building-bridge integrated” structures in station design is increasing. However, in stations where the mainline speed exceeds 160 km/h, structural joints are typically incorporated to ensure the integrity and functionality of the integrated system. The inspection and maintenance of these joints, which are critical for the long-term performance of such structures, can be particularly complex. Therefore, it is important to explore the feasibility of designing such stations without structural joints on the mainline. To address this issue, two six-line railway bridge-type stations are selected. The vibration simulation analysis model of the train-track-station coupling system is established, considering two structural types of the “building-bridge integrated” system: the arrival-departure line “building-bridge integrated” and the mainline “building-bridge integrated”. The vibration responses induced by trains passing through two types of “building-bridge integrated” station structures at speeds of 200~350 km/h on the mainline and 80 km/h on the arrival and departure tracks were simulated. The six-line operating conditions were selected as an example, and the influence of setting a structural joint on the mainline on the dynamic response of the “building-bridge integrated” station structure was analyzed. For both types of “building-bridge integrated” station structures, with and without a structural joint on the mainline, the dynamic responses of trains under operational loads show minimal differences. However, the structural joints on the mainline reduce the overall stiffness of the rail bearing floor slab and effectively isolate the train-induced responses transmitted to the platform slab during high-speed operation on the mainline. Therefore, the acceleration response of the platform slab is smaller in station structures with structural joints, while the acceleration and displacement response of the rail bearing floor slab is larger. Additionally, structural joints often lead to issues such as water leakage and seepage. Considering these factors, it is advisable to avoid setting structural joints on the mainline for such station structures. Full article
Show Figures

Figure 1

20 pages, 5402 KiB  
Article
Research on Train-Induced Vibration of High-Speed Railway Station with Different Structural Forms
by Xiangrong Guo, Jianghao Liu and Ruibo Cui
Materials 2024, 17(17), 4387; https://doi.org/10.3390/ma17174387 - 5 Sep 2024
Cited by 3 | Viewed by 1343
Abstract
Elevated stations are integral components of urban rail transit systems, significantly impacting passengers’ travel experience and the operational efficiency of the transportation system. However, current elevated station designs often do not sufficiently consider the structural dynamic response under various operating conditions. This oversight [...] Read more.
Elevated stations are integral components of urban rail transit systems, significantly impacting passengers’ travel experience and the operational efficiency of the transportation system. However, current elevated station designs often do not sufficiently consider the structural dynamic response under various operating conditions. This oversight can limit the operational efficiency of the stations and pose potential safety hazards. Addressing this issue, this study establishes a vehicle-bridge-station spatial coupling vibration simulation model utilizing the self-developed software GSAP V1.0, focusing on integrated station-bridge and combined station-bridge elevated station designs. The simulation results are meticulously compared with field data to ensure the fidelity of the model. Analyzing the dynamic response of the station in relation to train parameters reveals significant insights. Notably, under similar travel conditions, integrated stations exhibit lower vertical acceleration in the rail-bearing layer compared to combined stations, while the vertical acceleration patterns at the platform and hall layers demonstrate contrasting behaviors. At lower speeds, the vertical acceleration at the station concourse level is comparable for both station types, yet integrated stations exhibit notably higher platform-level acceleration. Conversely, under high-speed conditions, integrated stations show increased vertical acceleration at the platform and hall levels compared to combined stations, particularly under unloaded double-line working conditions, indicating a superior dynamic performance of combined stations in complex operational scenarios. However, challenges such as increased station height due to bridge box girder maintenance, track layer waterproofing, and track girder support maintenance exist for combined stations, warranting comprehensive evaluation for station selection. Further analysis of integrated station-bridge structures reveals that adjustments in the floor slab thickness at the rail-bearing and platform levels significantly reduce dynamic responses, whereas increasing the rail beam height notably diminishes displacement responses. Conversely, alterations in the waiting hall floor slab thickness and frame column cross-sections exhibit a minimal impact on the station dynamics. Overall, optimizing structural dimensions can effectively mitigate dynamic responses, offering valuable insights for station design and operation. Full article
Show Figures

Figure 1

19 pages, 5994 KiB  
Article
Service Life Evaluation of Curved Intercity Rail Bridges Based on Fatigue Failure
by Hongwei Zhang, Shaolin Chen, Wei Zhang and Xiang Liu
Infrastructures 2024, 9(9), 139; https://doi.org/10.3390/infrastructures9090139 - 23 Aug 2024
Cited by 2 | Viewed by 1025
Abstract
There are curved bridge structures in the intercity rail line. During the operation of bridges, they are subjected to train loads, resulting in stress amplitudes of the construction materials; during operation, when the train interval is short, the fatigue performance of the bridge [...] Read more.
There are curved bridge structures in the intercity rail line. During the operation of bridges, they are subjected to train loads, resulting in stress amplitudes of the construction materials; during operation, when the train interval is short, the fatigue performance of the bridge should be emphasized. Unlike straight bridges, when a train travels on a curved bridge, it tends to move in the original direction, which undoubtedly causes the train to deviate from the track. Therefore, it is necessary to set the track deflection to limit this movement trend, which will also impart radial forces on the track structure, and the reaction force of this force is called centripetal force. Under the action of centripetal force, the train generates a virtual force called centrifugal force. The material stress amplitude caused by centrifugal force and the vertical force both need to be considered. Therefore, a curved train–bridge coupled system was established to simulate the dynamic stress of the train passing through a curved bridge, and the stress amplitude and cycle number of the dynamic stress time–history curve were analyzed based on the rain-flow method. The cumulative damage of the bridge under different curve radii, different train speeds, different lengths of span, and different operation interval times was analyzed, and the fatigue life was calculated. The results show that the influence of centrifugal force at a small curve radius cannot be ignored. In addition, the cumulative damage and service life are greatly affected by the train speed and bridge span; especially when the train speed is close to the resonance speed, the service life is significantly reduced. Finally, the recommended values for the train passing speed for curved bridges with different spans are given. It was suggested that the design speed of a curved bridge with a span of 25 m, 30 m, and 35 m should be set in the range of 70 to 106 km/h, 78 to 86 km/h, and about 75 km/h, respectively. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

21 pages, 5639 KiB  
Article
Study on Vibration and Noise of Railway Steel–Concrete Composite Box Girder Bridge Considering Vehicle–Bridge Coupling Effect
by Jinyan Si, Li Zhu, Weitao Ma, Bowen Meng, Huifeng Dong, Hongyang Ning and Guanyuan Zhao
Buildings 2024, 14(8), 2509; https://doi.org/10.3390/buildings14082509 - 14 Aug 2024
Cited by 3 | Viewed by 1648
Abstract
A steel–concrete composite beam bridge fully exploits the mechanical advantages of the concrete structure and steel structure, and has the advantages of a fast construction speed and large stiffness. It is of certain research value to explore the application of this bridge type [...] Read more.
A steel–concrete composite beam bridge fully exploits the mechanical advantages of the concrete structure and steel structure, and has the advantages of a fast construction speed and large stiffness. It is of certain research value to explore the application of this bridge type in the field of railway bridges. However, with the rapid development of domestic high-speed railway construction, the problem of vibration and noise radiation of high-speed railway bridges caused by train loads is becoming more and more serious. A steel–concrete composite beam bridge combines the tensile characteristics of steel and the compressive characteristics of concrete perfectly. At the same time, it also has the characteristics of a steel bridge and concrete bridge in terms of vibration and noise radiation. This feature makes the study of the vibration and noise of the bridge type more complicated. Therefore, in this paper, the characteristics of vibration and noise radiation of a high-speed railway steel–concrete composite box girder bridge are studied in detail from two aspects: the theoretical basis and a numerical simulation. The main results obtained are as follows: Relying on the idea of vehicle–rail–bridge coupling dynamics, a structural dynamics analysis model of a steel–concrete combined girder bridge for a high-speed railroad was established, and numerical program simulation of the vibration of the vehicle–rail–bridge coupling system was carried out based on the parametric design language of ANSYS 18.0 and the language of MATLAB R2021a, and the structural vibration results were analyzed in both the time domain and frequency domain. By using different time-step loading for the vehicle–rail–bridge coupling vibration analysis, the computational efficiency can be effectively improved under the condition of guaranteeing the accuracy of the result analysis within 100 Hz. Based on the power flow equilibrium equation, a statistical energy method of calculating the high-frequency noise radiation is theoretically derived. Based on the theoretical basis of the statistical energy method, the high-frequency noise in the structure is numerically simulated in the VAONE 2021 software, and the average contribution of the concrete roof plate to the three acoustic field points constructed in this paper is as high as 50%, which is of great significance in the study of noise reduction in steel–concrete composite girders. Full article
(This article belongs to the Special Issue High-Performance Steel–Concrete Composite/Hybrid Structures)
Show Figures

Figure 1

20 pages, 11454 KiB  
Article
Dynamic Response Study of Overhead Contact System Portal Structure Based on Vehicle–Track–Bridge Coupled Vibration
by Tao Li and Xia Zhao
Energies 2024, 17(11), 2510; https://doi.org/10.3390/en17112510 - 23 May 2024
Cited by 1 | Viewed by 1049
Abstract
In light of the rapid development of electrified railways, the safety and stability of train operations, as well as the catenary’s interaction with current quality, have garnered widespread attention. Electrified train operation with additional track irregularities serves as a principal excitation source within [...] Read more.
In light of the rapid development of electrified railways, the safety and stability of train operations, as well as the catenary’s interaction with current quality, have garnered widespread attention. Electrified train operation with additional track irregularities serves as a principal excitation source within the vehicle–bridge–catenary system, significantly influencing the vibration characteristics of the system. Addressing the aforementioned issues, we first established the vehicle–track dynamics model and the bridge–catenary finite element model based on the principles of coupled dynamics of the vehicle–track system. These models are interconnected using dynamic forces between the wheel and rail. Subsequently, within the vehicle–track coupled system, track random irregularities are introduced as input excitations for the coupled model, and the dynamic response of the system is simulated and solved. Then, the obtained wheel–rail forces are applied to the bridge–catenary coupled system finite element model in the form of time-varying moving load forces. Finally, the dynamic response characteristics of the catenary portal structure under different conditions are determined. Meanwhile, a study on the vibration characteristics of the truss-type pillar portal structure was conducted, and the results were compared with those of existing models. The results indicate that the vertical and lateral forces between the vehicle and track are positively correlated with the speed and irregularity amplitude. Response values such as the derailment coefficient and wheel load reduction rate are within the specified range of relevant standards. The low-order natural resonant frequency of the truss-type pillar structure has, on average, increased by 0.86 compared to the existing pillar structure, which signifies improved stability. Furthermore, under various conditions, the average reductions in maximum displacement and stress response of this pillar structure are 13.2% and 14.19%, respectively, in comparison to the existing pillar structure, rendering it more suitable for practical engineering applications. Full article
Show Figures

Figure 1

17 pages, 5113 KiB  
Article
Research on the Dynamic Response of the Multi-Line Elevated Station with “Integral Station-Bridge System”
by Xiangrong Guo and Shipeng Wang
Buildings 2024, 14(3), 758; https://doi.org/10.3390/buildings14030758 - 11 Mar 2024
Cited by 3 | Viewed by 1498
Abstract
Elevated stations serve as critical hubs in urban rail transit engineering. The structure of multi-line “building-bridge integrated” elevated stations is unique, with intricate force transfer paths and challenges to clarify dynamic coupling from train vibrations, necessitating the study of such stations’ train-induced dynamic [...] Read more.
Elevated stations serve as critical hubs in urban rail transit engineering. The structure of multi-line “building-bridge integrated” elevated stations is unique, with intricate force transfer paths and challenges to clarify dynamic coupling from train vibrations, necessitating the study of such stations’ train-induced dynamic responses. This paper presents a case study of a typical “building-bridge integrated” elevated station, utilizing the self-developed finite element software GSAP-V2024 to establish a simulation model of a coupled train–track–station system. It analyzed the station’s dynamic response under various single-track operating conditions and the pattern of the vibration response as the speed changes. Additionally, the study examined lateral vibration response changes in the station under double, quadruple, and sextuple train operations at the same speed. Findings reveal that the station’s vertical responses generally increase with speed, significantly outpacing lateral responses. Under single-track operations, dynamic responses vary across different types of track-bearing floors and frame structures with different spans. With an increase in the number of operating train lines, the station’s vertical response grows, with lateral responses being neutralized in the mid-span of the triple-span frame structure and amplified at the edges. These results provide a reference for the structural design of multi-line “building-bridge integrated” elevated stations. Full article
(This article belongs to the Special Issue Building Vibration and Soil Dynamics)
Show Figures

Figure 1

16 pages, 7118 KiB  
Article
Research on Environmental Vibration Induced by High-Speed Maglev Transportation
by Ziping Han, Guofeng Zeng and Feng Ye
Appl. Sci. 2024, 14(1), 413; https://doi.org/10.3390/app14010413 - 2 Jan 2024
Cited by 2 | Viewed by 1906
Abstract
As a novel form of railway transportation, maglev transportation has the advantages of a better curve negotiation ability and grade ability and lower noise and vibration than traditional urban wheel–rail transportation. Thus, it is suitable for use in urban public transportation. However, the [...] Read more.
As a novel form of railway transportation, maglev transportation has the advantages of a better curve negotiation ability and grade ability and lower noise and vibration than traditional urban wheel–rail transportation. Thus, it is suitable for use in urban public transportation. However, the levitation of the widely utilized electromagnet suspension (EMS) system relies on continuously active suspension force adjustment, which gives it vehicle–track-coupled vibration characteristics different to those of the traditional wheel–track transportation system. Despite many research studies focusing on maglev vehicle–track coupling vibration, the environmental vibration influences associated with the running of maglev trains are still unclear. When the vibration propagates to the surroundings beyond certain thresholds, it may lead to various vibration serviceability problems. Practical test results on the environmental vibration induced by maglev transportation are still not enough to generate convincing vibration propagation and attenuation laws. In this research, a series of in situ tests were carried out around the Shanghai maglev line; the results show that the viaduct bridge is helpful in reducing environmental vibration, and an empirical formula was proposed to predict the effect of viaduct column height. Due to the ground wave superposition, a vibration-amplifying zone was also found about 10 m away from the maglev line, in which the vibration magnitude was strong enough to be perceived by the surrounding occupants. Full article
Show Figures

Figure 1

14 pages, 3837 KiB  
Article
Influence of Fastener Stiffness and Damping on Vibration Transfer Characteristics of Urban Railway Bridge Lines Using Vibration Power Flow Method
by Xingxiao Cao, Li Yang, Peixuan Li, Jiangang Xu and Xiaoyun Zhang
Appl. Sci. 2023, 13(23), 12543; https://doi.org/10.3390/app132312543 - 21 Nov 2023
Cited by 2 | Viewed by 1614
Abstract
The problem of vibration in urban rail transportation has become a current research hotspot. When a train passes through a bridge line at high speed, it interacts with the rail, leading to vibration energy transfer and causing issues such as vibration and noise [...] Read more.
The problem of vibration in urban rail transportation has become a current research hotspot. When a train passes through a bridge line at high speed, it interacts with the rail, leading to vibration energy transfer and causing issues such as vibration and noise in the line infrastructure. To propose a more targeted vibration-damping track structure, it is necessary to explore the vibration characteristics of urban rail transit bridge lines and understand the regulations governing the distribution of vibration energy. This paper employs the theory of vehicle–rail–bridge interaction to establish a coupled dynamics model for a subway A-type vehicle–integral ballast bed–box girder bridge. Based on the proposed model, the transmission characteristics and distribution of vibration energy in the rail–bridge system are systematically analyzed and the influence of the parameters of the track structural components on the power flow of the system are investigated. The results of this study indicate that low-frequency vibration energy in the track system of urban rail transit bridges is primarily concentrated within the track structure, whereas high-frequency vibration energy is mainly focused on the rail. The fastener, as a component connecting the rail and the overall roadbed, has different effects on the peak value of the power flow and the accumulation of vibration energy in various components such as the rail, the overall roadbed, the top plate of the box girder bridge, and the bottom plate in different frequency bands due to its own stiffness and damping. An appropriate increase in fastener damping is beneficial for reducing the accumulation of low-frequency vibration energy in the track structure. Full article
(This article belongs to the Special Issue Railway Structure and Track Engineering)
Show Figures

Figure 1

18 pages, 9500 KiB  
Article
Analysis of Train–Track–Bridge Coupling Vibration Characteristics for Heavy-Haul Railway Based on Virtual Work Principle
by Nanhao Wu, Hongyin Yang, Haleem Afsar, Bo Wang and Jianfeng Fan
Sensors 2023, 23(20), 8550; https://doi.org/10.3390/s23208550 - 18 Oct 2023
Cited by 6 | Viewed by 1732
Abstract
This paper introduces an innovative model for heavy-haul train–track–bridge interaction, utilizing a coupling matrix representation based on the virtual work principle. This model establishes the relationship between the wheel–rail contact surface and the bridge–rail interface concerning internal forces and geometric constraints. In this [...] Read more.
This paper introduces an innovative model for heavy-haul train–track–bridge interaction, utilizing a coupling matrix representation based on the virtual work principle. This model establishes the relationship between the wheel–rail contact surface and the bridge–rail interface concerning internal forces and geometric constraints. In this coupled system’s motion equation, the degrees of freedom (DOFs) of the wheelsets in a heavy-haul train lacking primary suspension are interdependent. Additionally, the vertical and nodding DOFs of the bogie frame are linked with the rail element. A practical application, a Yellow River Bridge with a heavy-haul railway line, is used to examine the accuracy of the proposed model with regard to discrepancy between the simulated and measured displacement ranging from 1% to 11%. A comprehensive parametric analysis is conducted, exploring the impacts of track irregularities of varying wavelengths, axle load lifting, and the degradation of bridge stiffness and damping on the dynamic responses of the coupled system. The results reveal that the bridge’s dynamic responses are particularly sensitive to track irregularities within the wavelength range of 1 to 20 m, especially those within 1 to 10 m. The vertical displacement of the bridge demonstrates a nearly linear increase with heavier axle loads of the heavy-haul trains and the reduction in bridge stiffness. However, there is no significant rise in vertical acceleration under these conditions. Full article
Show Figures

Figure 1

11 pages, 1906 KiB  
Article
Dynamic Responses of Train-Symmetry-Bridge System Considering Concrete Creep and the Creep-Induced Track Irregularity
by Wenfeng Li, Hongkai Ma, Minglong Wei, Ping Xiang, Fang Tang, Binwei Gao and Qishi Zhou
Symmetry 2023, 15(10), 1846; https://doi.org/10.3390/sym15101846 - 29 Sep 2023
Cited by 3 | Viewed by 1328
Abstract
This work considers the influence of concrete creep on track irregularities and establishes the dynamic motion equation of the train-track-bridge coupling system. The track irregularity is obtained by superposition of the initial geometric irregularity and additional geometric irregularity of the steel rail caused [...] Read more.
This work considers the influence of concrete creep on track irregularities and establishes the dynamic motion equation of the train-track-bridge coupling system. The track irregularity is obtained by superposition of the initial geometric irregularity and additional geometric irregularity of the steel rail caused by creep. When high-speed railway trains pass through bridges; the vertical acceleration and vertical displacement of continuous beam bridges are related to the train’s operating speed, and the influence of creep camber is relatively small. At the same time, considering the randomness of track irregularities, the dynamic responses of the train track bridge coupling system under the action of random track irregularities are analyzed, and the dynamic responses of trains at different operating speeds are obtained. The deterministic and uncertain dynamic responses of the train track bridge system were compared and analyzed to verify the accuracy of the Karhunen Loéve expansion (KLE)-Point estimate method (PEM) calculation results. The results indicate that the random characteristics of track irregularities have a significant impact on train dynamic response. Based on the random system vibration analysis and considering the safety and comfort indicators of high-speed railway trains, the creep deformation limit of a continuous beam bridge with a length of 48 m + 80 m + 48 m is obtained to be 19 mm. This is the first time that the dynamic responses of train-symmetry-bridge system are calculated by considering concrete creep and the creep-induced track irregularity, which has certain significance for understanding the dynamics of train -bridge system. In addition, the proposed creep threshold is also of great significance to ensure the safety of traveling. Full article
Show Figures

Figure 1

22 pages, 4975 KiB  
Article
Fatigue Characteristics of Long-Span Bridge-Double Block Ballastless Track System
by Bin Yan, Jianghao Tian, Jie Huang and Ping Lou
Mathematics 2023, 11(8), 1792; https://doi.org/10.3390/math11081792 - 9 Apr 2023
Cited by 8 | Viewed by 2167
Abstract
The key issues in designing ballastless track for high-speed railway bridges are to reduce maintenance and improve track smoothness by understanding fatigue damage characteristics. This paper is based on the principle of bridge-rail interaction and train-track-bridge coupling dynamics, the refined simulation model of [...] Read more.
The key issues in designing ballastless track for high-speed railway bridges are to reduce maintenance and improve track smoothness by understanding fatigue damage characteristics. This paper is based on the principle of bridge-rail interaction and train-track-bridge coupling dynamics, the refined simulation model of bridge-CRTS I Bi-block ballastless track system is established by using the finite element method. The longitudinal force distribution law of CWR (Continuously Welded Rail) and the dynamic response characteristics of coupling systems are studied, based on the Miner rule and S-N curve. The fatigue characteristics of ballastless track system laying on long-span bridge under the dynamic train load and the effect of ballastless track system design parameters changes on fatigue characteristics are discussed. The results show that the extreme values of longitudinal force of CWR all appear in the middle of the bridge span or near the bridge bearing, and attention should be paid to the strength checking of CRW laying on long-span bridge. Under the dynamic train load, the fatigue life curve of rail on the bridge is relatively smooth and the minimum life of rail which is laying on continuous bridge decreases from 27.1 years to 17 years that which is laying on cable-stayed bridge. The life curve of track plate laying on continuous bridge is relatively smooth, and the life curve of track plate laying on cable-stayed bridge is related to the stiffness of elastic cushion, which decreases in a stepped manner, and there will be no fatigue failure on the track plate during service. The life curve of the baseplate is related to the type of bridge, the minimum life value of the baseplate appears near the bridge bearing, and there will be no fatigue failure on the baseplate during service. Increasing the stiffness of elastic cushion can effectively improve the fatigue life of track plate, and increasing the vertical stiffness of fasteners can enhance the connection between rail and track plate and improve the fatigue life of rail. The increase in train speed will increase the dynamic stress amplitude of track structure and reduce the fatigue life of the rail. Full article
(This article belongs to the Special Issue Systems Modeling, Analysis and Optimization)
Show Figures

Figure 1

24 pages, 8140 KiB  
Article
Vibration Response Analysis of Overhead System Regarding Train-Track-Bridge Dynamic Interaction
by Xiangyan Fan, Laijun Liu, Xiaodan Wang, Jincheng Cao and Wenjie Cheng
Appl. Sci. 2022, 12(18), 9053; https://doi.org/10.3390/app12189053 - 8 Sep 2022
Cited by 2 | Viewed by 2253
Abstract
Based on the paucity of studies on the analysis of the coupled vibration response of the train-track-overhead System, in this article, finite element software ABAQUS was integrated with multi-body dynamics software, Universal Mechanism (UM), to construct a joint simulation model of the train-track [...] Read more.
Based on the paucity of studies on the analysis of the coupled vibration response of the train-track-overhead System, in this article, finite element software ABAQUS was integrated with multi-body dynamics software, Universal Mechanism (UM), to construct a joint simulation model of the train-track overhead system under a railway line, with the focus on the investigation of the influence of different track irregularity levels, speeds and damping coefficients on the coupled vibration response of the vehicle-track-overhead system. The findings demonstrate that the response of the train body is sensitive to track irregularity, which primarily impacts the safety index of train operation. The results also suggest that the level of track irregularity should be rigorously regulated above AAR5 during construction. The train-track-overhead system functions well and satisfies the overhead system’s design requirements when the train travels through the reinforced line at a speed of no more than 60 km/h. When the train speed is 100 km/h, the vertical acceleration exceeds the limit for the “I” overhead system. There is a possibility of excessive lateral acceleration of the train body and excessive lateral force of the wheel and rail when the train speed is greater than 60 km/h, which endangers the safety of the driver. While it has little effect on the mid-span and vertical displacements, the damping factor of the bridge has a substantial impact on the vertical acceleration and mid-span acceleration of the vertical and horizontal beams. The study’s findings provide useful guidance. Full article
Show Figures

Figure 1

21 pages, 25983 KiB  
Article
Structural Damage Identification Based on Variable-Length Elements and an Improved Genetic Algorithm for Railway Bridges
by Hongyin Yang, Wei Zhang, Aixin Zhang, Nanhao Wu and Zhangjun Liu
Appl. Sci. 2022, 12(11), 5706; https://doi.org/10.3390/app12115706 - 3 Jun 2022
Cited by 7 | Viewed by 1962
Abstract
A new damage identification method is proposed to solve the problem of no correspondence between the element division form of the finite element model and the actual damage location. The three basic operators in the traditional genetic algorithm are improved, and the catastrophe [...] Read more.
A new damage identification method is proposed to solve the problem of no correspondence between the element division form of the finite element model and the actual damage location. The three basic operators in the traditional genetic algorithm are improved, and the catastrophe and neighborhood search processes are introduced to enhance the local optimization ability of the algorithm. The train–rail–bridge coupling time-varying equation is established. Based on the dynamic response of the bridge under trainload, the damage index is constructed, and the corresponding objective function is given. Through a numerical example, the stability and convergence rate of the algorithm are statistically analyzed. The effects of noise, the number of measuring points, and train speed on the recognition results are discussed. The research results indicate that, even if the damage location is different from the element division form of the finite element model, this method can accurately locate the damage location, but it will affect the quantitative results to a certain extent. In addition, the convergence speed of this method is fast, and the computing efficiency is about 6.7 times that of the conventional one-time recognition method. Full article
(This article belongs to the Special Issue Design of Track System and Railway Vehicle Dynamics Analysis)
Show Figures

Figure 1

Back to TopTop