Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = traffic congestion zoning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 718 KiB  
Article
State-Aware Graph Dynamics for Urban Transport Systems with Topology-Based Rate Modulation
by Yiwei Shi, Chunyu Li, Wei Wang and Yaowen Hu
Mathematics 2025, 13(16), 2574; https://doi.org/10.3390/math13162574 - 12 Aug 2025
Viewed by 193
Abstract
We introduce a novel optimization method, the Bud Lifecycle Algorithm (BLA), and present a mathematical model for optimizing urban transportation systems, demonstrated through a Baltimore case study. Our approach centers on the Proximity Topology Attribute Model, which integrates topological graph properties with K-means [...] Read more.
We introduce a novel optimization method, the Bud Lifecycle Algorithm (BLA), and present a mathematical model for optimizing urban transportation systems, demonstrated through a Baltimore case study. Our approach centers on the Proximity Topology Attribute Model, which integrates topological graph properties with K-means clustering to partition city nodes and identify key activity areas via betweenness centrality. A simulated bridge collapse reveals significant impacts on insurance companies and transport users. To balance traffic efficiency with construction costs in public transport projects, we propose a multi-objective optimization model prioritizing transit hubs while minimizing expenses in congested zones. We introduce the Bud Lifecycle Algorithm (BLA) to enhance traditional Genetic Algorithm performance, achieving improvements in system coverage, cost-efficiency, and user satisfaction. Our findings suggest that expanding public transport networks and optimizing rail projects could substantially boost employment and tourism in West Baltimore. We propose the Smart Traffic Management System (STMS) and Community Traffic Safety Program (CTSP) to enhance traffic safety, reduce congestion, and improve residents’ quality of life. Full article
Show Figures

Figure 1

29 pages, 16361 KiB  
Article
Urban Subway Station Site Selection Prediction Based on Clustered Demand and Interpretable Machine Learning Models
by Yun Liu, Xin Yao, Hang Lv, Dingjie Zhou, Zhiqiang Xie, Xiaoqing Zhao, Quan Zhu and Cong Chai
Land 2025, 14(8), 1612; https://doi.org/10.3390/land14081612 - 8 Aug 2025
Viewed by 302
Abstract
With accelerating urbanization, the development of rail transit systems—particularly subways—has become a key strategy for alleviating urban traffic congestion. However, existing studies on subway station site selection often lack a spatially continuous evaluation of site suitability across the entire study area. This may [...] Read more.
With accelerating urbanization, the development of rail transit systems—particularly subways—has become a key strategy for alleviating urban traffic congestion. However, existing studies on subway station site selection often lack a spatially continuous evaluation of site suitability across the entire study area. This may lead to a disconnect between planning and actual demand, resulting in issues such as “overbuilt infrastructure” or the “island effect.” To address this issue, this study selects Kunming City, China, as the study area, employs the K-means++ algorithm to cluster existing subway stations based on passenger flow, integrates multi-source spatial data, applies a random forest algorithm for optimal positive sample selection and driving factor identification, and subsequently uses a LightGBM-SHAP explainable machine learning framework to develop a predictive model for station location based on mathematical modeling. The main findings of the study are as follows: (1) Using the random forest model, 20 key drivers influencing site selection were identified. SHAP analysis revealed that the top five contributing factors were connectivity, nighttime lighting, road network density, transportation service, and residence density. Among these, transportation-related factors accounted for three out of five and emerged as the primary determinants of subway station site selection. (2) The site selection prediction model exhibited strong performance, achieving an R2 value of 0.95 on the test set and an average R2 of 0.79 during spatial 5-fold cross-validation, indicating high model reliability. The spatial distribution of predicted suitability indicated that the core urban area within the Second Ring Road exhibited the highest suitability, with suitability gradually declining toward the periphery. High-suitability areas outside the Third Ring Road in suburban regions were primarily aligned along existing subway lines. (3) The cumulative predicted probability within a 300 m buffer zone around each station was positively correlated with passenger flow levels. Overlaying the predicted results with current station locations revealed strong spatial consistency, indicating that the model outputs closely align with the actual spatial layout and passenger usage intensity of existing stations. These findings provide valuable decision-making support for optimizing subway station layouts and planning future transportation infrastructure, offering both theoretical and practical significance for data-driven site selection. Full article
Show Figures

Figure 1

29 pages, 8706 KiB  
Article
An Integrated Risk Assessment of Rockfalls Along Highway Networks in Mountainous Regions: The Case of Guizhou, China
by Jinchen Yang, Zhiwen Xu, Mei Gong, Suhua Zhou and Minghua Huang
Appl. Sci. 2025, 15(15), 8212; https://doi.org/10.3390/app15158212 - 23 Jul 2025
Viewed by 322
Abstract
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is [...] Read more.
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is crucial for safeguarding the lives and travel of residents. This study evaluates highway rockfall risk through three key components: susceptibility, hazard, and vulnerability. Susceptibility was assessed using information content and logistic regression methods, considering factors such as elevation, slope, normalized difference vegetation index (NDVI), aspect, distance from fault, relief amplitude, lithology, and rock weathering index (RWI). Hazard assessment utilized a fuzzy analytic hierarchy process (AHP), focusing on average annual rainfall and daily maximum rainfall. Socioeconomic factors, including GDP, population density, and land use type, were incorporated to gauge vulnerability. Integration of these assessments via a risk matrix yielded comprehensive highway rockfall risk profiles. Results indicate a predominantly high risk across Guizhou Province, with high-risk zones covering 41.19% of the area. Spatially, the western regions exhibit higher risk levels compared to eastern areas. Notably, the Bijie region features over 70% of its highway mileage categorized as high risk or above. Logistic regression identified distance from fault lines as the most negatively correlated factor affecting highway rockfall susceptibility, whereas elevation gradient demonstrated a minimal influence. This research provides valuable insights for decision-makers in formulating highway rockfall prevention and control strategies. Full article
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Sustainable IoT-Enabled Parking Management: A Multiagent Simulation Framework for Smart Urban Mobility
by Ibrahim Mutambik
Sustainability 2025, 17(14), 6382; https://doi.org/10.3390/su17146382 - 11 Jul 2025
Cited by 1 | Viewed by 533
Abstract
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic [...] Read more.
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic goals of smart city planning, this study presents a sustainability-driven, multiagent simulation-based framework to model, analyze, and optimize smart parking dynamics in congested urban settings. The system architecture integrates ground-level IoT sensors installed in parking spaces, enabling real-time occupancy detection and communication with a centralized system using low-power wide-area communication protocols (LPWAN). This study introduces an intelligent parking guidance mechanism that dynamically directs drivers to the nearest available slots based on location, historical traffic flow, and predicted availability. To manage real-time data flow, the framework incorporates message queuing telemetry transport (MQTT) protocols and edge processing units for low-latency updates. A predictive algorithm, combining spatial data, usage patterns, and time-series forecasting, supports decision-making for future slot allocation and dynamic pricing policies. Field simulations, calibrated with sensor data in a representative high-density urban district, assess system performance under peak and off-peak conditions. A comparative evaluation against traditional first-come-first-served and static parking systems highlights significant gains: average parking search time is reduced by 42%, vehicular congestion near parking zones declines by 35%, and emissions from circling vehicles drop by 27%. The system also improves user satisfaction by enabling mobile app-based reservation and payment options. These findings contribute to broader sustainability goals by supporting efficient land use, reducing environmental impacts, and enhancing urban livability—key dimensions emphasized in sustainable smart city strategies. The proposed framework offers a scalable, interdisciplinary solution for urban planners and policymakers striving to design inclusive, resilient, and environmentally responsible urban mobility systems. Full article
Show Figures

Figure 1

26 pages, 2098 KiB  
Article
Length Requirements for Urban Expressway Work Zones’ Warning and Transition Areas Based on Driving Safety and Comfort
by Aixiu Hu, Ruiyun Huang, Yanqun Yang, Ibrahim El-Dimeery and Said M. Easa
Systems 2025, 13(7), 525; https://doi.org/10.3390/systems13070525 - 30 Jun 2025
Viewed by 345
Abstract
As aging urban expressways become more pronounced, maintenance and construction work on these roadways is increasingly necessary. Some lanes may need to be closed during maintenance and construction, decreasing driving safety and comfort in the work zone. This situation often leads to traffic [...] Read more.
As aging urban expressways become more pronounced, maintenance and construction work on these roadways is increasingly necessary. Some lanes may need to be closed during maintenance and construction, decreasing driving safety and comfort in the work zone. This situation often leads to traffic congestion and a higher risk of traffic accidents. Notably, 80% of work zone traffic accidents occur in the warning and upstream transition areas (or simply warning and transition areas). Therefore, it is crucial to appropriately determine the lengths of these areas to enhance both safety and comfort for drivers. In this study, we examined three different warning lengths (1800 m, 2000 m, and 2200 m) and three transition lengths (120 m, 140 m, and 160 m) using the entropy weighting method to create nine simulation scenarios on a two-way, six-lane urban expressway. We selected various metrics for driving safety and comfort, including drivers’ eye movement, electroencephalogram, and driving behavior indicators. A total of 45 participants (mean age = 23.9 years, standard deviation = 1.8) were recruited for the driving simulation experiment, and each participant completed all 9 simulation scenarios. After eliminating 5 invalid datasets, we obtained valid data from 40 participants. We employed a combination of the analytic network process and entropy weighting method to calculate the comprehensive weights of the eight evaluation indicators. Additionally, we introduced the fuzzy theory, utilizing a trapezoidal membership function to evaluate the membership matrix values of the indicators and the comprehensive evaluation grade eigenvalues. The ranking of the experimental scenarios was determined using these eigenvalues. The results indicated that more extended warning lengths correlated with increased safety and comfort. Specifically, the best driver safety and comfort levels were observed in Scenario I, which featured a 2200 m warning length × 160 m transition length. However, the difference in safety and comfort across different transition lengths diminished as the warning length increased. Therefore, when road space is limited, a thoughtful combination of reasonable lengths can still provide high driving safety and comfort. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

15 pages, 6013 KiB  
Article
Urban Air Mobility Vertiport’s Capacity Simulation and Analysis
by Antoni Kopyt and Sebastian Dylicki
Aerospace 2025, 12(6), 560; https://doi.org/10.3390/aerospace12060560 - 19 Jun 2025
Viewed by 785
Abstract
This study shows a comprehensive simulation to assess and enhance the throughput capacity of unmanned air system vertiports, one of the most essential elements of urban air mobility ecosystems. The framework integrates dynamic grid-based spatial management, probabilistic mission duration algorithms, and EASA-compliant operational [...] Read more.
This study shows a comprehensive simulation to assess and enhance the throughput capacity of unmanned air system vertiports, one of the most essential elements of urban air mobility ecosystems. The framework integrates dynamic grid-based spatial management, probabilistic mission duration algorithms, and EASA-compliant operational protocols to address the infrastructural and logistical demands of high-density UAS operations. It was focused on two use cases—high-frequency food delivery utilizing small UASs and extended-range package logistics with larger UASs—and the model incorporates adaptive vertiport zoning strategies, segregating operations into dedicated sectors for battery charging, swapping, and cargo handling to enable parallel processing and mitigate congestion. The simulation evaluates critical variables such as vertiport dimensions, UAS fleet composition, and mission duration ranges while emphasizing scalability, safety, and compliance with evolving regulatory standards. By examining the interplay between infrastructure design, operational workflows, and resource allocation, the research provides a versatile tool for urban planners and policymakers to optimize vertiport layouts and traffic management protocols. Its modular architecture supports future extensions. This work underscores the necessity of adaptive, data-driven planning to harmonize vertiport functionality with the dynamic demands of urban air mobility, ensuring interoperability, safety, and long-term scalability. Full article
(This article belongs to the Special Issue Operational Requirements for Urban Air Traffic Management)
Show Figures

Figure 1

27 pages, 1880 KiB  
Article
UAV-Enabled Video Streaming Architecture for Urban Air Mobility: A 6G-Based Approach Toward Low-Altitude 3D Transportation
by Liang-Chun Chen, Chenn-Jung Huang, Yu-Sen Cheng, Ken-Wen Hu and Mei-En Jian
Drones 2025, 9(6), 448; https://doi.org/10.3390/drones9060448 - 18 Jun 2025
Viewed by 765
Abstract
As urban populations expand and congestion intensifies, traditional ground transportation struggles to satisfy escalating mobility demands. Unmanned Electric Vertical Take-Off and Landing (eVTOL) aircraft, as a key enabler of Urban Air Mobility (UAM), leverage low-altitude airspace to alleviate ground traffic while offering environmentally [...] Read more.
As urban populations expand and congestion intensifies, traditional ground transportation struggles to satisfy escalating mobility demands. Unmanned Electric Vertical Take-Off and Landing (eVTOL) aircraft, as a key enabler of Urban Air Mobility (UAM), leverage low-altitude airspace to alleviate ground traffic while offering environmentally sustainable solutions. However, supporting high bandwidth, real-time video applications, such as Virtual Reality (VR), Augmented Reality (AR), and 360° streaming, remains a major challenge, particularly within bandwidth-constrained metropolitan regions. This study proposes a novel Unmanned Aerial Vehicle (UAV)-enabled video streaming architecture that integrates 6G wireless technologies with intelligent routing strategies across cooperative airborne nodes, including unmanned eVTOLs and High-Altitude Platform Systems (HAPS). By relaying video data from low-congestion ground base stations to high-demand urban zones via autonomous aerial relays, the proposed system enhances spectrum utilization and improves streaming stability. Simulation results validate the framework’s capability to support immersive media applications in next-generation autonomous air mobility systems, aligning with the vision of scalable, resilient 3D transportation infrastructure. Full article
Show Figures

Figure 1

17 pages, 5707 KiB  
Article
AI-Enabled Digital Twin Framework for Safe and Sustainable Intelligent Transportation
by Keke Long, Chengyuan Ma, Hangyu Li, Zheng Li, Heye Huang, Haotian Shi, Zilin Huang, Zihao Sheng, Lei Shi, Pei Li, Sikai Chen and Xiaopeng Li
Sustainability 2025, 17(10), 4391; https://doi.org/10.3390/su17104391 - 12 May 2025
Viewed by 1285
Abstract
This study proposes an AI-powered digital twin (DT) platform designed to support real-time traffic risk prediction, decision-making, and sustainable mobility in smart cities. The system integrates multi-source data—including static infrastructure maps, historical traffic records, telematics data, and camera feeds—into a unified cyber–physical platform. [...] Read more.
This study proposes an AI-powered digital twin (DT) platform designed to support real-time traffic risk prediction, decision-making, and sustainable mobility in smart cities. The system integrates multi-source data—including static infrastructure maps, historical traffic records, telematics data, and camera feeds—into a unified cyber–physical platform. AI models are employed for data fusion, anomaly detection, and predictive analytics. In particular, the platform incorporates telematics–video fusion for enhanced trajectory accuracy and LiDAR–camera fusion for high-definition work-zone mapping. These capabilities support dynamic safety heatmaps, congestion forecasts, and scenario-based decision support. A pilot deployment on Madison’s Flex Lane corridor demonstrates real-time data processing, traffic incident reconstruction, crash-risk forecasting, and eco-driving control using a validated Vehicle-in-the-Loop setup. The modular API design enables integration with existing Advanced Traffic Management Systems (ATMSs) and supports scalable implementation. By combining predictive analytics with real-world deployment, this research offers a practical approach to improving urban traffic safety, resilience, and sustainability. Full article
Show Figures

Figure 1

27 pages, 3865 KiB  
Article
Service Management of Employee Shuttle Service Under Inhomogeneous Fleet Constraints Using Dynamic Linear Programming: A Case Study
by Metin Mutlu Aydin, Edgar Sokolovskij, Piotr Jaskowski and Jonas Matijošius
Appl. Sci. 2025, 15(9), 4604; https://doi.org/10.3390/app15094604 - 22 Apr 2025
Viewed by 879
Abstract
Traffic congestion is becoming an increasing problem due to the rapid growth of the population. In the current situation, the mode choice of the people has a direct impact on traffic density. For this reason, many studies have been carried out by researchers [...] Read more.
Traffic congestion is becoming an increasing problem due to the rapid growth of the population. In the current situation, the mode choice of the people has a direct impact on traffic density. For this reason, many studies have been carried out by researchers and planners to reduce the number of vehicles on the road. Various strategies have been proposed, such as incentives for public transport, parking restrictions, parking pricing and car sharing. It is very important that these strategies are implemented by the institutions in order to reduce traffic during the commuting hours, which coincide with the rush hour. Especially in areas such as shipyards and industrial zones, which are far from the city center and relatively difficult to reach but which provide employment opportunities for thousands of people, a shuttle service is one of the most preferred strategies to discourage employees from using private cars. However, in companies with thousands of employees, this situation generates costs that cannot be ignored. The examined case study similarly needs to optimize and reduce operational costs related to fuel consumption, maintenance and tax expenses by optimizing the number of two different types of service vehicles required for employee transportation at the Yalova Shipyard. For this aim, a dynamic linear programming (DLP) model was used to achieve a cost-effective, sustainable and demand-responsive shuttle service. According to the analysis results, it was concluded that the annual fuel cost of the vehicles will be reduced by 33.9%, the maintenance cost by 35.2% and the annual tax cost by 49.3% by disposing of the unneeded vehicles (27%) in the studied Yalova Shipyard. Taking all these positive improvements into account, it is clear that the optimization study significantly reduces the costs incurred by the service. Full article
Show Figures

Figure 1

24 pages, 4412 KiB  
Article
Integrating Vehicle-to-Infrastructure Communication for Safer Lane Changes in Smart Work Zones
by Mariam Nour, Mayar Nour and Mohamed H. Zaki
World Electr. Veh. J. 2025, 16(4), 215; https://doi.org/10.3390/wevj16040215 - 4 Apr 2025
Viewed by 980
Abstract
As transportation systems evolve, ensuring safe and efficient mobility in Intelligent Transportation Systems remains a priority. Work zones, in particular, pose significant safety challenges due to lane closures, which can lead to abrupt braking and sudden lane changes. Most previous research on Connected [...] Read more.
As transportation systems evolve, ensuring safe and efficient mobility in Intelligent Transportation Systems remains a priority. Work zones, in particular, pose significant safety challenges due to lane closures, which can lead to abrupt braking and sudden lane changes. Most previous research on Connected and Autonomous Vehicles (CAVs) assumes ideal communication conditions, overlooking the effects of message loss and network unreliability. This study presents a comprehensive smart work zone (SWZ) framework that enhances lane-change safety by the integration of both Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication. Sensor-equipped SWZ barrels and Roadside Units (RSUs) collect and transmit real-time hazard alerts to approaching CAVs, ensuring coverage of critical roadway segments. In this study, a co-simulation framework combining VEINS, OMNeT++, and SUMO is implemented to assess lane-change safety and communication performance under realistic network conditions. Findings indicate that higher Market Penetration Rates (MPRs) of CAVs can lead to improved lane-change safety, with time-to-collision (TTC) values shifting toward safer time ranges. While lower transmission thresholds allow more frequent communication, they contribute to earlier network congestion, whereas higher thresholds maintain efficiency despite increased packet loss at high MPRs. These insights highlight the importance of incorporating realistic communication models when evaluating traffic safety in connected vehicle environments. Full article
(This article belongs to the Special Issue Vehicle Safe Motion in Mixed Vehicle Technologies Environment)
Show Figures

Figure 1

19 pages, 8578 KiB  
Article
A Study of the Influencing Mechanism of Travel Mode Choice for Primary School Students: A Case Study in Wuhan
by Shuting Chen, Mengyao Hong and Wei Wei
Buildings 2025, 15(5), 700; https://doi.org/10.3390/buildings15050700 - 23 Feb 2025
Viewed by 661
Abstract
The motorization of school commutes reduces the physical activity of children and causes a series of urban traffic and social problems, such as traffic congestion in school districts and parents becoming necessary for transportation. To alleviate traffic jams and related social problems, as [...] Read more.
The motorization of school commutes reduces the physical activity of children and causes a series of urban traffic and social problems, such as traffic congestion in school districts and parents becoming necessary for transportation. To alleviate traffic jams and related social problems, as well as to encourage physical activity amongst students, we advocate non-motorized travel modes for students, such as walking and cycling. Based on a case study of the Wuhan East Lake High-Tech Development Zone, we use a multiple linear regression model to analyze the relationship between influence factors and student travel mode choices. The results show that built environment factors (the built environment factors are divided into density, diversity, accessibility, and destination) have a significant impact on school travel mode choices, especially accessibility and diversity. Furthermore, the study highlights the pivotal role of travel perceptions, particularly perceptions of safety, comfort, and convenience. Through a questionnaire survey, we collect students’ travel perceptions and their actual school travel modes, which offer valuable insights for urban planners and policymakers. The findings indicate the complex interplay between student commuting and the built environment. Additionally, these findings can be valuable, both in academia and for policymakers. We provide strategies that could be beneficial for reducing motor vehicle activities (especially driving). Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 12444 KiB  
Article
Spatiotemporal Influence Analysis Through Traffic Speed Pattern Analysis Using Spatial Classification
by Kyusoo Chong
Appl. Sci. 2025, 15(1), 196; https://doi.org/10.3390/app15010196 - 29 Dec 2024
Cited by 1 | Viewed by 1124
Abstract
This study introduces a method for classifying traffic flow segments on expressways to estimate impact zones in merging/diverging sections and accident-prone sites. I propose a spatiotemporal dynamic segmentation approach that enables real-time identification of traffic hazard sections, reflecting changes in traffic flow, as [...] Read more.
This study introduces a method for classifying traffic flow segments on expressways to estimate impact zones in merging/diverging sections and accident-prone sites. I propose a spatiotemporal dynamic segmentation approach that enables real-time identification of traffic hazard sections, reflecting changes in traffic flow, as opposed to traditional traffic analysis based on predefined segments in a node–link network. This methodology uses high-resolution vehicle trajectory data to precisely identify unstable and low-speed traffic sections. Using the geohash algorithm, the area is hierarchically segmented based on the standard deviation of speed in general traffic flow, facilitating the identification of unstable traffic flow patterns. For eight expressway routes, traffic flow was categorized into stable or minimum-size spaces. From a total of 1207 segments, 943 unstable flow segments were identified. The impact zones of the merging and diverging sections on Expressway 50 were analyzed using the results of spatial segmentation. Furthermore, by comparing traffic data before and after accidents, I assessed the short- and long-term effects of accidents on traffic flow. The proposed methodology provides precise data essential for reducing the likelihood of traffic accidents and for predicting post-accident congestion and duration. The patterns of such accident impact zones can contribute to preventing secondary accidents by providing advance information to following vehicles through various communication methods, including those involving autonomous vehicles. This enables effective traffic management strategies and rapid responses to accidents. Full article
Show Figures

Figure 1

22 pages, 4313 KiB  
Article
Investigating Autonomous Vehicle Driving Strategies in Highway Ramp Merging Zones
by Zhimian Chen, Yizeng Wang, Hao Hu, Zhipeng Zhang, Chengwei Zhang and Shukun Zhou
Mathematics 2024, 12(23), 3859; https://doi.org/10.3390/math12233859 - 8 Dec 2024
Cited by 2 | Viewed by 1752
Abstract
The rapid development of autonomous driving technology is widely regarded as a potential solution to current traffic congestion challenges and the future evolution of intelligent vehicles. Effective driving strategies for autonomous vehicles should balance traffic efficiency with safety and comfort. However, the complex [...] Read more.
The rapid development of autonomous driving technology is widely regarded as a potential solution to current traffic congestion challenges and the future evolution of intelligent vehicles. Effective driving strategies for autonomous vehicles should balance traffic efficiency with safety and comfort. However, the complex driving environment at highway entrance ramp merging areas presents a significant challenge. This study constructed a typical highway ramp merging scenario and utilized deep reinforcement learning (DRL) to develop and regulate autonomous vehicles with diverse driving strategies. The SUMO platform was employed as a simulation tool to conduct a series of simulations, evaluating the efficacy of various driving strategies and different autonomous vehicle penetration rates. The quantitative results and findings indicated that DRL-regulated autonomous vehicles maintain optimal speed stability during ramp merging, ensuring safe and comfortable driving. Additionally, DRL-controlled autonomous vehicles did not compromise speed during lane changes, effectively balancing efficiency, safety, and comfort. Ultimately, this study provides a comprehensive analysis of the potential applications of autonomous driving technology in highway ramp merging zones under complex traffic scenarios, offering valuable insights for addressing these challenges effectively. Full article
Show Figures

Figure 1

17 pages, 3501 KiB  
Article
The Impact of Offshore Wind Farm Construction on Maritime Traffic Complexity: An Empirical Analysis of the Yangtze River Estuary
by Jian Liu, Wenbo Yu, Zhongyi Sui and Chunhui Zhou
J. Mar. Sci. Eng. 2024, 12(12), 2232; https://doi.org/10.3390/jmse12122232 - 5 Dec 2024
Cited by 1 | Viewed by 1603
Abstract
The rapid growth of offshore wind farms (OWFs) as renewable energy sources has heightened concerns about maritime traffic safety and management in high-density traffic zones. These areas, characterized by complex interactions among diverse ship types and spatial constraints, require advanced situational awareness to [...] Read more.
The rapid growth of offshore wind farms (OWFs) as renewable energy sources has heightened concerns about maritime traffic safety and management in high-density traffic zones. These areas, characterized by complex interactions among diverse ship types and spatial constraints, require advanced situational awareness to prevent collisions and ensure efficient operations. Traditional maritime traffic systems often lack the granularity to assess the multifaceted risks around OWFs. Existing research has explored local traffic patterns and collision risks but lacks comprehensive frameworks for evaluating traffic complexity at both micro and macro levels. This study proposes a new complexity assessment model tailored to OWF areas, integrating micro-level ship interactions and macro-level traffic flow conditions to capture a holistic view of traffic dynamics. Using extensive historical AIS data from the Yangtze River Estuary, the model evaluates the impact of the proposed OWF on existing traffic complexity. The results demonstrate that OWFs increase navigational complexity, particularly in route congestion, course adjustments, and encounter rates between ships. Different ship types and sizes were also found to experience varying levels of impact, with larger ships and tankers facing greater challenges. By providing a quantitative framework for assessing traffic complexity, this research advances the field’s ability to understand and manage the risks associated with OWFs. The findings offer actionable insights for maritime authorities and OWF operators, supporting more effective traffic management strategies that prioritize safety and operational efficiency in high-density maritime areas. Full article
Show Figures

Figure 1

15 pages, 5371 KiB  
Article
Impact of In-Cab Alerts on Connected Truck Speed Reductions in Indiana
by Jairaj Desai, Enrique D. Saldivar-Carranza, Rahul Suryakant Sakhare, Jijo K. Mathew and Darcy M. Bullock
Vehicles 2024, 6(4), 1857-1871; https://doi.org/10.3390/vehicles6040090 - 31 Oct 2024
Cited by 1 | Viewed by 1291
Abstract
Connected vehicle data have the potential to warn motorists of impending slowdowns and congestion in real time. Multiple data providers have recently begun providing in-cab alerts to commercial vehicle drivers. This study reports on one such deployment of in-cab alerts on 44 corridors [...] Read more.
Connected vehicle data have the potential to warn motorists of impending slowdowns and congestion in real time. Multiple data providers have recently begun providing in-cab alerts to commercial vehicle drivers. This study reports on one such deployment of in-cab alerts on 44 corridors in Indiana from April–June 2024. Approximately 20,000 alerts were analyzed, with 92% being Congestion alerts and 8% being Dangerous Slowdown alerts. Observations showed that 15% of trucks lowered their speeds by at least 5 mph 30 s after receiving a Congestion alert, while 21% of trucks reduced their speeds by at least 5 mph 30 s after receiving a Dangerous Slowdown alert. The analysis also showed that a majority of Congestion alerted trucks encountered slow-speed traffic about 3 min after receiving an alert, while a majority of Dangerous Slowdown alerted drivers had traveled through the zone of slow speeds 2 min after receiving the alert. Although these results are encouraging, the study also found that 8.1% of Congestion alerts and 8.3% of Dangerous Slowdown alerts were received by trucks when they were operating at speeds of less than or equal to 45 mph, indicating they were already in congested conditions. The study reports that 43% of trucks that received Dangerous Slowdown alerts never reduced their speed below 45 mph. The paper concludes that it is important to converge on a shared vision for these performance measures so that public agencies, in-cab alert providers, and trucking companies can agilely improve these systems and increase driver confidence in the alerts. Full article
Show Figures

Figure 1

Back to TopTop