Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = traffic big data analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3392 KB  
Article
From VTS Monitoring to Smart Warnings: Big Data Applications in Channel Safety Management
by Siang-Hua Syue, Ming-Cheng Tsou and Tzu-Hsun Chen
J. Mar. Sci. Eng. 2025, 13(12), 2324; https://doi.org/10.3390/jmse13122324 - 7 Dec 2025
Viewed by 103
Abstract
With the trend of internationalization, maritime traffic density has gradually increased. Since 2002, the International Maritime Organization (IMO) has required various types of vessels to be equipped with the Automatic Identification System (AIS). Through AIS static and dynamic data, more complete navigational information [...] Read more.
With the trend of internationalization, maritime traffic density has gradually increased. Since 2002, the International Maritime Organization (IMO) has required various types of vessels to be equipped with the Automatic Identification System (AIS). Through AIS static and dynamic data, more complete navigational information of vessels can be obtained. As the Port of Kaohsiung is currently transitioning into a smart port, this study focuses on inbound and outbound vessels of the Second Port of Kaohsiung. It considers both the safety monitoring of the smart port and environmental security, integrating a big data database to provide early warnings for abnormal navigation conditions. This study builds an integrated database based on vessel AIS data, conducts AIS big data analysis to extract useful information, and establishes a random forest model to predict whether a vessel’s course and speed during port navigation deviate from normal patterns, thereby achieving the goal of early warning. This study also helps reduce the risk of collisions caused by abnormal vessel operations and thus prevents marine pollution in the port area due to oil spills or hazardous substance leakage. Through real-time monitoring and early warning of navigation behavior, it not only enhances navigation safety but also serves as the first line of defense against marine pollution, contributing significantly to the protection of the port’s ecological environment and the promotion of sustainable development. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

23 pages, 1745 KB  
Review
Research Review on Traffic Safety for Expressway Maintenance Road Sections
by Jin Ran, Meiling Li, Shiyang Zhan, Dong Tang, Naitian Zhang and Xiaomin Dai
Appl. Sci. 2025, 15(22), 12014; https://doi.org/10.3390/app152212014 - 12 Nov 2025
Viewed by 383
Abstract
With the aging of China’s expressway network, the number of maintenance projects continues to increase, and issues such as construction safety, driving risk, and traffic efficiency have become increasingly prominent. This paper systematically reviews relevant research progress from four aspects: safety characteristics, traffic [...] Read more.
With the aging of China’s expressway network, the number of maintenance projects continues to increase, and issues such as construction safety, driving risk, and traffic efficiency have become increasingly prominent. This paper systematically reviews relevant research progress from four aspects: safety characteristics, traffic capacity, work-zone layout, and speed limit management. The review indicates that Western scholars have made extensive use of rich data resources—such as traffic parameters and accident records from expressway maintenance road sections—and have developed relatively systematic and well-established research frameworks in theoretical analysis, practical application, and evaluation methods. In contrast, Chinese studies have mainly relied on specific maintenance projects, commonly employing on-site investigations and traffic simulations to address particular problems, with limited systematization and generalization. Looking forward, it is essential to further strengthen the standardized collection and statistical analysis of traffic data (including accident data) for expressway maintenance road sections. Meanwhile, for complex scenarios such as multi-lane segments, special road sections, reconstruction and expansion sections, as well as extreme climatic conditions and nighttime operations, comprehensive research should be conducted by leveraging new-generation driving simulation, big data analytics, and artificial intelligence technologies, thereby providing scientific support and methodological foundations for building a systematic theoretical framework for traffic safety in expressway maintenance road sections. Full article
Show Figures

Figure 1

20 pages, 4600 KB  
Article
Study on the Coupling and Coordination Degree of Virtual and Real Space Heat in Coastal Internet Celebrity Streets
by Yilu Gong, Sijia Han and Jun Yang
ISPRS Int. J. Geo-Inf. 2025, 14(10), 407; https://doi.org/10.3390/ijgi14100407 - 21 Oct 2025
Viewed by 520
Abstract
This study investigates the coupling and coordination mechanisms between virtual and physical spatial heat in coastal internet-famous streets under the influence of social media. Taking Dalian’s coastal internet-famous street as a case study, user interaction data (likes, favorites, shares, and comments) from the [...] Read more.
This study investigates the coupling and coordination mechanisms between virtual and physical spatial heat in coastal internet-famous streets under the influence of social media. Taking Dalian’s coastal internet-famous street as a case study, user interaction data (likes, favorites, shares, and comments) from the Xiaohongshu platform were integrated with multi-source spatio-temporal big data, including Baidu Heat Maps, to construct an “online–offline” heat coupling and coordination evaluation framework. The entropy-weight method was employed to quantify online heat, while nonlinear regression analysis and a coupling coordination degree model were applied to examine interaction mechanisms and spatio-temporal differentiation patterns. The results show that online heat demonstrates significant polarization with strong agglomeration in the Donggang area, while offline heat fluctuates periodically, rising during the day, stabilizing at night, and peaking on holidays at up to 3.5 times weekday levels with marginal diminishing effects. Forwarding behavior is confirmed as the core driver of online popularity, highlighting the central role of cross-circle communication. The coupling coordination model identifies states ranging from high-quality coordination during holidays to discoordination in daily under-conversion or overload scenarios. These findings verify the leading role of algorithmic recommendation in redistributing spatial power and demonstrate that the sustainability of coastal check-in destinations depends on balancing short-term traffic surges with long-term spatial quality, providing practical insights for governance and sustainable urban planning. Full article
Show Figures

Figure 1

14 pages, 1809 KB  
Article
A Novel Convolutional Long Short-Term Memory Approach for Anomaly Detection in Power Monitoring System
by Hao Zhang, Jing Wang, Xuanyuan Wang, Xinyi Feng, Hongda Gao and Yingchun Niu
Energies 2025, 18(18), 4917; https://doi.org/10.3390/en18184917 - 16 Sep 2025
Viewed by 471
Abstract
With the rapid advancement of artificial intelligence, machine learning and big data analytics have become essential tools for enhancing the cybersecurity of power monitoring systems. This study proposes a network traffic anomaly detection model based on Convolutional Long Short-Term Memory (C-LSTM) networks, which [...] Read more.
With the rapid advancement of artificial intelligence, machine learning and big data analytics have become essential tools for enhancing the cybersecurity of power monitoring systems. This study proposes a network traffic anomaly detection model based on Convolutional Long Short-Term Memory (C-LSTM) networks, which integrates convolutional layers to capture spatial features and LSTM layers to model long-term temporal dependencies in network traffic. Incorporated into a cybersecurity situation awareness platform, the model enables comprehensive data collection, intelligent analysis, and rapid response to cybersecurity incidents, significantly enhancing the system’s ability to detect, warn, and mitigate potential threats. Experimental evaluations on the CICIDS2017 dataset demonstrate that the proposed model achieves high accuracy (95.3%) and recall (94.7%), highlighting its effectiveness and potential for practical application in safeguarding critical infrastructure against evolving cybersecurity challenges. Full article
Show Figures

Figure 1

26 pages, 1607 KB  
Article
Analyzing Performance of Data Preprocessing Techniques on CPUs vs. GPUs with and Without the MapReduce Environment
by Sikha S. Bagui, Colin Eller, Rianna Armour, Shivani Singh, Subhash C. Bagui and Dustin Mink
Electronics 2025, 14(18), 3597; https://doi.org/10.3390/electronics14183597 - 10 Sep 2025
Viewed by 988
Abstract
Data preprocessing is usually necessary before running most machine learning classifiers. This work compares three different preprocessing techniques, minimal preprocessing, Principal Components Analysis (PCA), and Linear Discriminant Analysis (LDA). The efficiency of these three preprocessing techniques is measured using the Support Vector Machine [...] Read more.
Data preprocessing is usually necessary before running most machine learning classifiers. This work compares three different preprocessing techniques, minimal preprocessing, Principal Components Analysis (PCA), and Linear Discriminant Analysis (LDA). The efficiency of these three preprocessing techniques is measured using the Support Vector Machine (SVM) classifier. Efficiency is measured in terms of statistical metrics such as accuracy, precision, recall, the F-1 measure, and AUROC. The preprocessing times and the classifier run times are also compared using the three differently preprocessed datasets. Finally, a comparison of performance timings on CPUs vs. GPUs with and without the MapReduce environment is performed. Two newly created Zeek Connection Log datasets, collected using the Security Onion 2 network security monitor and labeled using the MITRE ATT&CK framework, UWF-ZeekData22 and UWF-ZeekDataFall22, are used for this work. Results from this work show that binomial LDA, on average, performs the best in terms of statistical measures as well as timings using GPUs or MapReduce GPUs. Full article
(This article belongs to the Special Issue Hardware Acceleration for Machine Learning)
Show Figures

Figure 1

60 pages, 12559 KB  
Article
A Decade of Studies in Smart Cities and Urban Planning Through Big Data Analytics
by Florin Dobre, Andra Sandu, George-Cristian Tătaru and Liviu-Adrian Cotfas
Systems 2025, 13(9), 780; https://doi.org/10.3390/systems13090780 - 5 Sep 2025
Cited by 2 | Viewed by 1865
Abstract
Smart cities and urban planning have succeeded in gathering the attention of researchers worldwide, especially in the last decade, as a result of a series of technological, social and economic developments that have shaped the need for evolution from the traditional way in [...] Read more.
Smart cities and urban planning have succeeded in gathering the attention of researchers worldwide, especially in the last decade, as a result of a series of technological, social and economic developments that have shaped the need for evolution from the traditional way in which the cities were viewed. Technology has been incorporated in many sectors associated with smart cities, such as communications, transportation, energy, and water, resulting in increasing people’s quality of life and satisfying the needs of a society in continuous change. Furthermore, with the rise in machine learning (ML) and artificial intelligence (AI), as well as Geographic Information Systems (GIS), the applications of big data analytics in the context of smart cities and urban planning have diversified, covering a wide range of applications starting with traffic management, environmental monitoring, public safety, and adjusting power distribution based on consumption patterns. In this context, the present paper brings to the fore the papers written in the 2015–2024 period and indexed in Clarivate Analytics’ Web of Science Core Collection and analyzes them from a bibliometric point of view. As a result, an annual growth rate of 10.72% has been observed, showing an increased interest from the scientific community in this area. Through the use of specific bibliometric analyses, key themes, trends, prominent authors and institutions, preferred journals, and collaboration networks among authors, data are extracted and discussed in depth. Thematic maps and topic discovery through Latent Dirichlet Allocation (LDA) and doubled by a BERTopic analysis, n-gram analysis, factorial analysis, and a review of the most cited papers complete the picture on the research carried on in the last decade in this area. The importance of big data analytics in the area of urban planning and smart cities is underlined, resulting in an increase in their ability to enhance urban living by providing personalized and efficient solutions to everyday life situations. Full article
Show Figures

Figure 1

14 pages, 1721 KB  
Article
Informational and Topological Characterization of CO and O3 Hourly Time Series in the Mexico City Metropolitan Area During the 2019–2023 Period: Insights into the Impact of the COVID-19 Pandemic
by Alejandro Ramirez-Rojas, Paulina Rebeca Cárdenas-Moreno, Israel Reyes-Ramírez, Michele Lovallo and Luciano Telesca
Appl. Sci. 2025, 15(16), 8775; https://doi.org/10.3390/app15168775 - 8 Aug 2025
Viewed by 458
Abstract
The main anthropogenic sources of air pollution in big cities are vehicular traffic and industrial activities. The emissions of primary pollutants are produced directly from the combustion of fossil fuels of vehicles and industry, whilst the secondary pollutants, such as tropospheric ozone ( [...] Read more.
The main anthropogenic sources of air pollution in big cities are vehicular traffic and industrial activities. The emissions of primary pollutants are produced directly from the combustion of fossil fuels of vehicles and industry, whilst the secondary pollutants, such as tropospheric ozone (O3), are produced from precursors like Carbon monoxide (CO), among others, and meteorological factors such as radiation. In this study, we analyze the time series of CO and O3 concentrations monitored by the RAMA program between 2019 and 2023 in the southwest of the Mexico City Metropolitan Area, encompassing the COVID-19 lockdown period declared from March to September–October 2020. After removing cyclic patterns and normalizing the data, we applied informational and topological methods to investigate variability changes in the concentration time series, particularly in response to the lockdown. Following the onset of lockdown measures in March 2020—which led to a significant reduction in industrial activity and vehicular traffic—the informational quantities NX and Fisher Information Measure (FIM) for CO revealed significant shifts during the lockdown, while these metrics remained stable for O3. Also, the coefficient of variation of the degree CVk, which was defined for the network constructed for each series by the Visibility Graph, showed marked changes for CO but not for O3. The combined informational and topological analysis highlighted distinct underlying structures: CO exhibited localized, intermittent emission patterns leading to greater structural complexity, while O3 displayed smoother, less organized variability. Also, the temporal variation of the FIM and NX provides a means to monitor the evolving statistical behavior of the CO and O3 time series over time. Finally, the Visibility Graph (VG) method shows a behavioral trend similar to that shown by the informational quantifiers, revealing a significant change during the lockdown for CO, although remaining almost stable for O3. Full article
Show Figures

Figure 1

38 pages, 2159 KB  
Review
Leveraging Big Data and AI for Sustainable Urban Mobility Solutions
by Oluwaleke Yusuf, Adil Rasheed and Frank Lindseth
Urban Sci. 2025, 9(8), 301; https://doi.org/10.3390/urbansci9080301 - 4 Aug 2025
Cited by 2 | Viewed by 3107
Abstract
Urban population growth is intensifying pressure on mobility systems, with road transportation contributing to environmental and sustainability challenges. Policymakers must navigate complex uncertainties in addressing rising mobility demand while pursuing sustainability goals. Advanced technologies offer promise, but their real-world effectiveness in urban contexts [...] Read more.
Urban population growth is intensifying pressure on mobility systems, with road transportation contributing to environmental and sustainability challenges. Policymakers must navigate complex uncertainties in addressing rising mobility demand while pursuing sustainability goals. Advanced technologies offer promise, but their real-world effectiveness in urban contexts remains underexplored. This meta-review comprised three complementary studies: a broad analysis of sustainable mobility with Norwegian case studies, and systematic literature reviews on digital twins and Big Data/AI applications in urban mobility, covering the period of 2019–2024. Using structured criteria, we synthesised findings from 72 relevant articles to identify major trends, limitations, and opportunities. The findings show that mobility policies often prioritise technocentric solutions that unintentionally hinder sustainability goals. Digital twins show potential for traffic simulation, urban planning, and public engagement, while machine learning techniques support traffic forecasting and multimodal integration. However, persistent challenges include data interoperability, model validation, and insufficient stakeholder engagement. We identify a hierarchy of mobility modes where public transit and active mobility outperform private vehicles in sustainability and user satisfaction. Integrating electrification and automation and sharing models with data-informed governance can enhance urban liveability. We propose actionable pathways leveraging Big Data and AI, outlining the roles of various stakeholders in advancing sustainable urban mobility futures. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

11 pages, 1161 KB  
Proceeding Paper
Spatio-Temporal PM2.5 Forecasting Using Machine Learning and Low-Cost Sensors: An Urban Perspective
by Mateusz Zareba, Szymon Cogiel and Tomasz Danek
Eng. Proc. 2025, 101(1), 6; https://doi.org/10.3390/engproc2025101006 - 25 Jul 2025
Viewed by 896
Abstract
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and [...] Read more.
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and generating nearly 20,000 observations per month. The network captured both spatial and temporal variability. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test confirmed trend-based non-stationarity, which was addressed through differencing, revealing distinct daily and 12 h cycles linked to traffic and temperature variations. Additive seasonal decomposition exhibited time-inconsistent residuals, leading to the adoption of multiplicative decomposition, which better captured pollution outliers associated with agricultural burning. Machine learning models—Ridge Regression, XGBoost, and LSTM (Long Short-Term Memory) neural networks—were evaluated under high spatial and temporal variability (winter) and low variability (summer) conditions. Ridge Regression showed the best performance, achieving the highest R2 (0.97 in winter, 0.93 in summer) and the lowest mean squared errors. XGBoost showed strong predictive capabilities but tended to overestimate moderate pollution events, while LSTM systematically underestimated PM2.5 levels in December. The residual analysis confirmed that Ridge Regression provided the most stable predictions, capturing extreme pollution episodes effectively, whereas XGBoost exhibited larger outliers. The study proved the potential of low-cost sensor networks and machine learning in urban air quality forecasting focused on rare smog episodes (RSEs). Full article
(This article belongs to the Proceedings of The 11th International Conference on Time Series and Forecasting)
Show Figures

Figure 1

19 pages, 1951 KB  
Article
System for the Acquisition and Analysis of Maintenance Data of Railway Traffic Control Devices
by Mieczysław Kornaszewski, Waldemar Nowakowski and Roman Pniewski
Appl. Sci. 2025, 15(15), 8305; https://doi.org/10.3390/app15158305 - 25 Jul 2025
Viewed by 610
Abstract
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, [...] Read more.
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, parameter measurements, and analysis of the working environment, followed by comparing the obtained information with the required parameters or permissible conditions. This activity also enables the formulation of a technical diagnosis regarding the current ability of the devices to perform its intended functions, taking into account the impact of its technical condition on railway traffic safety. This is especially important in the case of railway traffic control devices, as these devices are largely responsible for ensuring railway traffic safety. The collection of data on the condition of railway traffic control devices in the form of Big Data sets and diagnostic inference is an effective factor in making operational decisions for such devices. It enables the acquisition of complete information about the actual course of the exploitation process and allows for obtaining reliable information necessary to manage this process, particularly in the areas of diagnostics forecasting of devices conditions, renewal, and organization of maintenance and repair facilities. To support this, a service data acquisition and analysis system for railway traffic control devices (SADEK) was developed. This system can serve as a software platform for maintenance needs in the railway sector. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

23 pages, 3906 KB  
Article
Model Retraining upon Concept Drift Detection in Network Traffic Big Data
by Sikha S. Bagui, Mohammad Pale Khan, Chedlyne Valmyr, Subhash C. Bagui and Dustin Mink
Future Internet 2025, 17(8), 328; https://doi.org/10.3390/fi17080328 - 24 Jul 2025
Cited by 1 | Viewed by 2705
Abstract
This paper presents a comprehensive model for detecting and addressing concept drift in network security data using the Isolation Forest algorithm. The approach leverages Isolation Forest’s inherent ability to efficiently isolate anomalies in high-dimensional data, making it suitable for adapting to shifting data [...] Read more.
This paper presents a comprehensive model for detecting and addressing concept drift in network security data using the Isolation Forest algorithm. The approach leverages Isolation Forest’s inherent ability to efficiently isolate anomalies in high-dimensional data, making it suitable for adapting to shifting data distributions in dynamic environments.Anomalies in network attack data may not occur in large numbers, so it is important to be able to detect anomalies even with small batch sizes. The novelty of this work lies in successfully detecting anomalies even with small batch sizes and identifying the point at which incremental retraining needs to be started. Triggering retraining early also keeps the model in sync with the latest data, reducing the chance for attacks to be successfully conducted. Our methodology implements an end-to-end workflow that continuously monitors incoming data and detects distribution changes using Isolation Forest, then manages model retraining using Random Forest to maintain optimal performance. We evaluate our approach using UWF-ZeekDataFall22, a newly created dataset that analyzes Zeek’s Connection Logs collected through Security Onion 2 network security monitor and labeled using the MITRE ATT&CK framework. Incremental as well as full retraining are analyzed using Random Forest. There was a steady increase in the model’s performance with incremental retraining and a positive impact on the model’s performance with full model retraining. Full article
(This article belongs to the Special Issue DDoS Attack Detection for Cyber–Physical Systems)
Show Figures

Figure 1

37 pages, 412 KB  
Systematic Review
Road Crash Analysis and Modeling: A Systematic Review of Methods, Data, and Emerging Technologies
by Lars Skaug, Mehrdad Nojoumian, Nolan Dang and Amy Yap
Appl. Sci. 2025, 15(13), 7115; https://doi.org/10.3390/app15137115 - 24 Jun 2025
Cited by 2 | Viewed by 6466
Abstract
Traffic crashes are a leading cause of death and injury worldwide, with far-reaching societal and economic consequences. To effectively address this global health crisis, researchers and practitioners rely on the analysis of crash data to identify risk factors, evaluate countermeasures, and inform road [...] Read more.
Traffic crashes are a leading cause of death and injury worldwide, with far-reaching societal and economic consequences. To effectively address this global health crisis, researchers and practitioners rely on the analysis of crash data to identify risk factors, evaluate countermeasures, and inform road safety policies. This systematic review synthesizes the state of the art in road crash data analysis methodologies, focusing on the application of statistical and machine learning techniques to extract insights from crash databases. We systematically searched for peer-reviewed studies on quantitative crash data analysis methods and synthesized findings by using narrative synthesis due to methodological diversity. Our review included studies spanning traditional statistical approaches, Bayesian methods, and machine learning techniques, as well as emerging AI applications. We review traditional and emerging crash data sources, discuss the evolution of analysis methodologies, and highlight key methodological issues specific to crash data, such as unobserved heterogeneity, endogeneity, and spatial–temporal correlations. Key findings demonstrate the superiority of random-parameter models over fixed-parameter approaches in handling unobserved heterogeneity, the effectiveness of Bayesian hierarchical models for spatial–temporal analysis, and promising results from machine learning approaches for real-time crash prediction. This survey also explores emerging research frontiers, including the use of big data analytics, deep learning, and real-time crash prediction, and their potential to revolutionize road safety management. Limitations include methodological heterogeneity across studies and geographic bias toward high-income countries. By providing a taxonomy of crash data analysis methodologies and discussing their strengths, limitations, and practical implications, this paper serves as a comprehensive reference for researchers and practitioners seeking to leverage crash data to advance road safety. Full article
Show Figures

Figure 1

35 pages, 3235 KB  
Article
Applying Big Data for Maritime Accident Risk Assessment: Insights, Predictive Insights and Challenges
by Vicky Zampeta, Gregory Chondrokoukis and Dimosthenis Kyriazis
Big Data Cogn. Comput. 2025, 9(5), 135; https://doi.org/10.3390/bdcc9050135 - 19 May 2025
Viewed by 1553
Abstract
Maritime safety is a critical concern for the transport sector and remains a key challenge for the international shipping industry. Recognizing that maritime accidents pose significant risks to both safety and operational efficiency, this study explores the application of big data analysis techniques [...] Read more.
Maritime safety is a critical concern for the transport sector and remains a key challenge for the international shipping industry. Recognizing that maritime accidents pose significant risks to both safety and operational efficiency, this study explores the application of big data analysis techniques to understand the factors influencing maritime transport accidents (MTA). Specifically, using extensive datasets derived from vessel performance measurements, environmental conditions, and accident reports, it seeks to identify the key intrinsic and extrinsic factors contributing to maritime accidents. The research examines more than 90 thousand incidents for the period 2014–2022. Leveraging big data analytics and advanced statistical techniques, the findings reveal significant correlations between vessel size, speed, and specific environmental factors. Furthermore, the study highlights the potential of big data analytics in enhancing predictive modeling, real-time risk assessment, and decision-making processes for maritime traffic management. The integration of big data with intelligent transportation systems (ITSs) can optimize safety strategies, improve accident prevention mechanisms, and enhance the resilience of ocean-going transportation systems. By bridging the gap between big data applications and maritime safety research, this work contributes to the literature by emphasizing the importance of examining both intrinsic and extrinsic factors in predicting maritime accident risks. Additionally, it underscores the transformative role of big data in shaping safer and more efficient waterway transportation systems. Full article
Show Figures

Figure 1

26 pages, 724 KB  
Article
The Role of Intelligent Transport Systems and Smart Technologies in Urban Traffic Management in Polish Smart Cities
by Ewa Puzio, Wojciech Drożdż and Maciej Kolon
Energies 2025, 18(10), 2580; https://doi.org/10.3390/en18102580 - 16 May 2025
Cited by 3 | Viewed by 4751
Abstract
Today’s cities are facing the challenges of increasing traffic congestion, emissions, and the need to improve road safety. The solution to these problems is the use of artificial intelligence (AI) and the Internet of Things (IoT) in intelligent traffic management. The purpose of [...] Read more.
Today’s cities are facing the challenges of increasing traffic congestion, emissions, and the need to improve road safety. The solution to these problems is the use of artificial intelligence (AI) and the Internet of Things (IoT) in intelligent traffic management. The purpose of the article is to analyze and evaluate AI- and IoT-based solutions implemented in Polish cities and to identify innovative proposals that can improve traffic management. The study uses a mixed-method approach, including the analysis of crowdsourced mobility data (from GPS, smartphones, and municipal reports), GIS tools for mapping congestion, big data analytics, and machine learning algorithms, to evaluate trends and predict traffic scenarios. The evaluation focused on seven major Polish cities—Warsaw, Krakow, Wroclaw, Gdansk, Poznan, Katowice, and Lodz—where intelligent transportation systems such as dynamic traffic lights, intelligent pedestrian crossings, accident prediction systems, and parking space management have been implemented. The effectiveness of these solutions was assessed using the following six key indicators: waiting time at intersections, travel time, congestion level, CO2 emissions, energy consumption, and number of traffic incidents. The article provides a comprehensive analysis of these solutions’ impacts on traffic flow, emissions, energy efficiency, and road safety. A key contribution of the paper is the presentation of new proposals for improvements, such as the inclusion of behavioral data in traffic modeling, integration with GPS navigation, and dynamic emergency and public transport priority management. The article also discusses further digitization and interoperability needs. The findings show that the implementation of intelligent transportation systems not only improves urban mobility and safety but also enhances environmental sustainability and residents’ quality of life. Full article
(This article belongs to the Section G1: Smart Cities and Urban Management)
Show Figures

Figure 1

19 pages, 10454 KB  
Article
Transport Carbon Emission Measurement Models and Spatial Patterns Under the Perspective of Land–Sea Integration–Take Tianjin as an Example
by Lina Ke, Zhiyu Ren, Quanming Wang, Lei Wang, Qingli Jiang, Yao Lu, Yu Zhao and Qin Tan
Sustainability 2025, 17(7), 3095; https://doi.org/10.3390/su17073095 - 31 Mar 2025
Cited by 2 | Viewed by 1184
Abstract
The goal of “double carbon” puts forward higher requirements for the control of transport carbon emissions, and the exploration of transport carbon emission modelling driven by big data is an important attempt to reduce carbon accurately. Based on the land Vehicle Miles Traveled [...] Read more.
The goal of “double carbon” puts forward higher requirements for the control of transport carbon emissions, and the exploration of transport carbon emission modelling driven by big data is an important attempt to reduce carbon accurately. Based on the land Vehicle Miles Traveled data (VMT) and the sea Automatic Identification System (AIS) data, this study establishes a refined, high-resolution carbon emission measurement model that incorporates the use of motor vehicles and ships from a bottom-up approach and analyzes the spatial distribution characteristics of land and sea transport carbon emissions in Tianjin using geospatial analysis. The results of the study show that (1) the transportation carbon emissions in Tianjin mainly come from land road traffic, with small passenger cars contributing the most to the emissions; (2) high carbon emission zones are concentrated in economically developed, densely populated, and high road network density areas, such as the urban center Binhai New Area, and the marine functional zone of Tianjin; (3) carbon emission values are generally higher in the segments where ports, airports, and interchanges are connected. The transportation carbon emission measurement model developed in this study provides practical, replicable, and scalable insights for other coastal cities. Full article
Show Figures

Figure 1

Back to TopTop