Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = traditional Chinese medicine injections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2092 KiB  
Article
Predicting Adsorption Performance Based on the Properties of Activated Carbon: A Case Study of Shenqi Fuzheng System
by Zhilong Tang, Bo Chen, Wenhua Huang, Xuehua Liu, Xinyu Wang and Xingchu Gong
Chemosensors 2025, 13(8), 279; https://doi.org/10.3390/chemosensors13080279 - 1 Aug 2025
Viewed by 132
Abstract
This work aims to solve the problem of product quality fluctuations caused by batch-to-batch variations in the adsorption capacity of activated carbon during the production of traditional Chinese medicine (TCM) injections. In this work, Shenqi Fuzheng injection was selected as an example. Diluted [...] Read more.
This work aims to solve the problem of product quality fluctuations caused by batch-to-batch variations in the adsorption capacity of activated carbon during the production of traditional Chinese medicine (TCM) injections. In this work, Shenqi Fuzheng injection was selected as an example. Diluted Shenqi Extract (DSE), an intermediate in the production process of Shenqi Fuzheng injection, was adsorbed with different batches of activated carbon. The adsorption capacities of adenine, adenosine, calycosin-7-glucoside, and astragaloside IV in DSE were selected as evaluation indices for activated carbon absorption. Characterization methods such as nitrogen adsorption, X-ray photoelectron spectrum (XPS), and Fourier transform infrared (FTIR) were chosen to explore the quantitative relationships between the properties of activated carbon (i.e., specific surface area, pore volume, surface elements, and spectrum) and the adsorption capacities of these four components. It was found that the characteristic wavelengths from FTIR characterization, i.e., 1560 cm−1, 2325 cm−1, 3050 cm−1, and 3442 cm−1, etc., showed the strongest correlation with the adsorption capacities of these four components. Prediction models based on the transmittance at characteristic wavelengths were successfully established via multiple linear regression. In validation experiments of models, the relative errors of predicted adsorption capacities of activated carbon were mostly within 5%, indicating good predictive ability of the models. The results of this work suggest that the prediction method of adsorption capacity based on the mid-infrared spectrum can provide a new way for the quality control of activated carbon. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Figure 1

18 pages, 2761 KiB  
Article
Transcriptomic Profiling of Misgurnus anguillicaudatus Reveals the Anti-Inflammatory Action of Lonicera japonica Extract in Response to Lipopolysaccharide Challenge
by Yue Zhao, Chen Wang and Qiuning Liu
Fishes 2025, 10(7), 333; https://doi.org/10.3390/fishes10070333 - 7 Jul 2025
Viewed by 287
Abstract
Honeysuckle, derived from the dried flower buds or blossoms of Lonicera japonica Thunb, is a traditional Chinese medicine known for its properties in eliminating heat and toxins, reducing inflammation, and alleviating swelling. In this study, we investigated the potential therapeutic and preventive benefits [...] Read more.
Honeysuckle, derived from the dried flower buds or blossoms of Lonicera japonica Thunb, is a traditional Chinese medicine known for its properties in eliminating heat and toxins, reducing inflammation, and alleviating swelling. In this study, we investigated the potential therapeutic and preventive benefits of L. japonica extract on inflammatory diseases induced by lipopolysaccharide (LPS) using Misgurnus anguillicaudatus as a model organism. The fish were fed a diet supplemented with L. japonica extract, followed by LPS injection to induce inflammation. We then analyzed the transcriptional profile to identify differentially expressed genes (DEGs). A total of 6611 DEGs were identified through comprehensive analysis, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Our results revealed significant enrichment of DEGs in pathways associated with proteasome function, immune system regulation, and infectious disease response. These findings suggest a strong correlation between L. japonica and immune defense mechanisms, providing valuable insights into the potential anti-inflammatory effects of this plant, particularly in the context of LPS-induced inflammation. This study highlights the potential use of L. japonica in treating inflammatory diseases and underscores its role in immune regulation. Full article
(This article belongs to the Special Issue Molecular Mechanism of Fish Immune Response to Pathogens)
Show Figures

Figure 1

22 pages, 13635 KiB  
Article
Pericarpium Trichosanthis Injection Protects Isoproterenol-Induced Acute Myocardial Ischemia via Suppressing Inflammatory Damage and Apoptosis Pathways
by Zizheng Wu, Xing Chen, Jiahao Ye, Xiaoyi Wang and Zhixi Hu
Biomolecules 2025, 15(5), 618; https://doi.org/10.3390/biom15050618 - 24 Apr 2025
Viewed by 764
Abstract
This research proposes to systematically investigate the cardioprotective mechanisms of Pericarpium Trichosanthis injection (PTI) against acute myocardial ischemia through an integrated approach combining ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) constituent profiling, UNIFI database-assisted component identification, network pharmacology-guided target prediction, molecular docking [...] Read more.
This research proposes to systematically investigate the cardioprotective mechanisms of Pericarpium Trichosanthis injection (PTI) against acute myocardial ischemia through an integrated approach combining ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) constituent profiling, UNIFI database-assisted component identification, network pharmacology-guided target prediction, molecular docking verification, and in vivo experimental validation. The multimodal methodology is designed to comprehensively uncover the therapeutic benefits and molecular pathways underlying this traditional Chinese medicine formulation. Methods: UPLC-Q-TOF/MS and the UNIFI database were used in conjunction with a literature review to screen and validate the absorbed components of PTI. Using network pharmacology, we constructed protein-protein interaction (PPI) networks for pinpointing prospective therapeutic targets. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify potential signaling pathways. In vivo experiments were conducted to investigate the mechanisms by which PTI ameliorated isoproterenol-induced myocardial injury in rats. All animal experiments have adhered to ARRIVE guidelines. Results: UPLC-Q-TOF/MS revealed 11 core active components in PTI. Network pharmacology prioritization identified pseudoaspidin, ciryneol C, cynanoside M, daurinol, and n-butyl-β-D-fructopyranoside as central bioactive constituents within the compound-target interaction network. Topological analysis of the protein interactome highlighted AKT1, EGFR, MMP9, SRC, PTGS2, STAT3, BCL2, CASP3, and MAPK3 as the most interconnected nodes with the highest betweenness centrality. Pathway enrichment analysis established the PI3K/Akt signaling cascade as the principal mechanistic route for PTI’s cardioprotective effects. Molecular docking simulations demonstrated high-affinity interactions between characteristic components (e.g., cynanoside M, darutigenol) and pivotal targets including PTGS2, MAPK3, CASP3, and BCL2. In vivo investigations showed PTI treatment markedly attenuated myocardial tissue degeneration and collagen deposition (p < 0.05), normalized electrocardiographic ST-segment deviations, and suppressed pro-inflammatory cytokine production (IL-6, TNF-α). The formulation concurrently reduced circulating levels of cardiac injury indicators (LDH, cTnI) and oxidative stress parameters (ROS, MDA), Regarding apoptosis regulation, PTI reduced Bax, caspase-3, and caspase-9, while elevating Bcl-2 (p < 0.05), effectively inhibiting myocardial cell apoptosis with all therapeutic outcomes reaching statistical significance. These findings highlight PTI’s protective effects against myocardial injury through multi-target modulation of inflammation, oxidation, and apoptosis. Conclusions: PTI exerts its therapeutic effects in treating acute myocardial ischemia by regulating and suppressing inflammatory responses, and inhibiting cardiomyocyte apoptosis. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

21 pages, 15451 KiB  
Article
Self-Healing Polymeric Puerarin Hydrogel Dressing Promotes Diabetic Wound Healing Through Synergistic Immunomodulation and Tissue-Regenerative Remodeling
by Shaohui Geng, Li Liu, Mureziya Yimingjiang, Zhimin Lin, Jingyuan Fu, Shasha Yu, Xinxin Li, Aimin Yan, Kai Yuan, Guangrui Huang and Anlong Xu
Bioengineering 2025, 12(4), 427; https://doi.org/10.3390/bioengineering12040427 - 18 Apr 2025
Viewed by 895
Abstract
Chronic wound healing is a significant challenge in diabetes. Puerarin is an active compound extracted from the traditional Chinese medicine Pueraria lobata. Puerarin has been used in the treatment of diabetes and derives benefits from its antioxidant, anti-inflammatory, antibacterial, and pro-angiogenesis properties, [...] Read more.
Chronic wound healing is a significant challenge in diabetes. Puerarin is an active compound extracted from the traditional Chinese medicine Pueraria lobata. Puerarin has been used in the treatment of diabetes and derives benefits from its antioxidant, anti-inflammatory, antibacterial, and pro-angiogenesis properties, but its efficacy is hampered by poor water solubility and bioavailability. In this study, we designed a polyvinyl alcohol (PVA)–borax–puerarin (BP) hydrogel system that self-assembled via boronic ester bonds. The BP hydrogel exhibited exceptional physical characteristics, including adaptability, injectability, plasticity, self-healing capabilities, and robust compressive strength, as well as good biocompatibility. In the chronic wound diabetic rats model, the BP hydrogel significantly accelerated wound healing, as evidenced by hematoxylin and eosin (HE) staining, as well as Masson and picrosirius red (PSR) staining. RNA–sequencing and multiple immunohistochemistry (mIHC) analyses revealed that the BP hydrogel exerts a therapeutic effect by modulating macrophage polarization, promoting angiogenesis, and regulating collagen remodeling. Our findings suggest that the BP hydrogel represents a promising wound dressing and holds great potential for clinical applications in acute and chronic wound management. Full article
Show Figures

Graphical abstract

15 pages, 10998 KiB  
Article
Evaluation of the Anti-Alzheimer Activity of Lycium barbarum Polysaccharide in Aβ1–42-Induced Neurotoxicity in Rat Model
by Qingxin Lu, Yixin Meng, Haichi Feng, Xin Di and Xiaoli Guo
Curr. Issues Mol. Biol. 2025, 47(4), 226; https://doi.org/10.3390/cimb47040226 - 26 Mar 2025
Cited by 1 | Viewed by 599
Abstract
As a common neurodegenerative disorder, Alzheimer’s disease (AD) manifests as progressive memory loss, cognitive deficits, and dementia in older adults. As the basis of the traditional Chinese medicinal herb Goji berries, Lycium barbarum polysaccharide (LBP) has been proven to exhibit multiple pharmacological activities, [...] Read more.
As a common neurodegenerative disorder, Alzheimer’s disease (AD) manifests as progressive memory loss, cognitive deficits, and dementia in older adults. As the basis of the traditional Chinese medicinal herb Goji berries, Lycium barbarum polysaccharide (LBP) has been proven to exhibit multiple pharmacological activities, including antioxidant, neuroprotective, and anti-inflammatory effects. Evidence supports that LBP can enhance cognitive function and holds promise in counteracting AD. In order to determine the neuroprotective effects of LBP, this study was conducted on an AD rat model induced by intracerebroventricular injection of Aβ1–42 peptides. From 24 h after induction until the end of the behavioral experiment, rats were orally administered LBP (150 and 300 mg/kg) once a day. Neurobehavioral parameters were evaluated starting 1 week after administration. After behavioral tests, rats were euthanized, and the whole brain and cortex were isolated to detect the variations in histopathology and biochemical parameters. LBP significantly reversed cognitive impairments, assessed through the Y-maze, Passive Avoidance Test (PAT), and Morris water maze (MWM) test, respectively. Furthermore, LBP not only attenuated NFκB, TNF-α, IL-1β, IL-6, AChE, and oxidative/nitrosative stress levels but also increased IL-4, IL-10, and ACh levels and ChAT activity in the cortex. HE staining also exhibited the neuroprotection of LBP. Our study findings imply that LBP may improve cognitive function through multiple mechanisms and is a potential anti-AD compound. Full article
Show Figures

Graphical abstract

10 pages, 590 KiB  
Article
Fingerprint Profile Analysis of Eupolyphaga steleophaga Polypeptide Based on UHPLC-MS and Its Application
by Xin Lai, Hongwei Song, Guangli Yan, Junling Ren and Xijun Wang
Pharmaceuticals 2025, 18(2), 166; https://doi.org/10.3390/ph18020166 - 26 Jan 2025
Viewed by 1264
Abstract
Background and Objectives: As a medicinal and food homologous substance, Eupolyphaga steleophaga is renowned for its potential health benefits, including anti-tumor effects, immune system support, and anti-inflammatory properties. Eupolyphaga steleophaga polypeptides have demonstrated significant biological activity, including the regulation of coagulation and lipid [...] Read more.
Background and Objectives: As a medicinal and food homologous substance, Eupolyphaga steleophaga is renowned for its potential health benefits, including anti-tumor effects, immune system support, and anti-inflammatory properties. Eupolyphaga steleophaga polypeptides have demonstrated significant biological activity, including the regulation of coagulation and lipid metabolism. However, the peptide composition of Eupolyphaga steleophaga requires further clarification to facilitate quality control improvements and a deeper investigation into its pharmacological effects. Therefore, this study aimed to simulate the digestive absorption process of Eupolyphaga steleophaga following oral administration and identify its enzymatic components to enhance quality control. Methods: The digestive absorption process was simulated using artificial gastric fluid and pepsin. A fingerprinting method based on ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS)(Acquire UPLC-Synapt G2-Si HDMS, Waters Corporation, Milford, MA, USA) was developed to identify 63 enzymatic components. The enzymolysis polypeptide fingerprint detection method was used to analyze 10 batches of Eupolyphaga steleophaga sourced from Harbin No. 4 Traditional Chinese Medicine Factory. Chromatographic collection was performed using an ACQUITY UPLC BHE C18 column. Gradient elution was carried out using a mixture of 0.1% formic acid with acetonitrile and 0.1% formic acid with water, with an average flow rate of 0.3 mL/min, a column temperature of 40 °C, and an injection volume of 2 μL. The mass spectrometry (MS) conditions were set as follows: the ion source was operated in positive electrospray ionization (ESI+) mode, with a capillary voltage of 2.8 kV and a sampling cone voltage of 40 V. The ion-source temperature was maintained at 110 °C, while the desolvation temperature was set to 400 °C. The cone gas flow rate was 50 L/h, and the desolvation gas flow rate was 800 L/h. The range for the collection of mass-to-charge ratios (m/z) was between 50 and 1200. Results: The UHPLC-MS method demonstrated high accuracy, repeatability, and stability, successfully identifying 63 enzymatic components of Eupolyphaga steleophaga. Furthermore, polypeptide markers for 63 selected components were identified in all 10 batches of Eupolyphaga steleophaga medicinal materials. This approach was validated by including numerical values such as retention times and peak areas, confirming its reliability for quality control enhancement. Conclusions: This novel UHPLC-MS approach serves as a powerful tool for advancing quality control strategies in veterinary medicine, particularly for animal-derived medicines. It lays a solid foundation for subsequent pharmacological studies of Eupolyphaga steleophaga polypeptides, offering a more reliable means to explore their biological activities and therapeutic potential. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

22 pages, 7534 KiB  
Article
Baicalin Mitigates Cardiac Hypertrophy and Fibrosis by Inhibiting the p85a Subunit of PI3K
by Lu He, Min Zhu, Rui Yin, Liangli Dai, Juan Chen and Jie Zhou
Biomedicines 2025, 13(1), 232; https://doi.org/10.3390/biomedicines13010232 - 19 Jan 2025
Cited by 3 | Viewed by 1123
Abstract
Background: Heart failure (HF) is a serious public health concern. Baicalin is one of the major active ingredients of a traditional Chinese herbal medicine, Huang Qin, which is used to treat patients with chest pain or cardiac discomfort. However, the underlying mechanism(s) of [...] Read more.
Background: Heart failure (HF) is a serious public health concern. Baicalin is one of the major active ingredients of a traditional Chinese herbal medicine, Huang Qin, which is used to treat patients with chest pain or cardiac discomfort. However, the underlying mechanism(s) of the cardioprotective effect of baicalin are still not fully understood. Methods: Isoprenaline injection or transverse aortic constriction-induced animal models and isoprenaline or angiotensin 2 administration-induced cell models of heart failure were established. Baicalin (15 mg/kg/day or 25 mg/kg/day) was administered in vivo, and 10 μM baicalin was administered in vitro. Potential pharmacological targets of baicalin and genes related to heart failure were identified via different databases, which suggested that PI3K–Akt may be involved in the effects of baicalin. Molecular docking was carried out to reveal the effect of baicalin on p85a. Results: We observed significant antihypertrophic and antifibrotic effects of baicalin both in vivo and in vitro. The mean cross-sectional area of cardiomyocytes recovered from 390 μm2 in the HF group to 195 μm2 in the baicalin-treated group. The area of fibrosis was reduced from 2.8-fold in the HF group to 1.62-fold in the baicalin-treated group. Baicalin displayed a significant cardioprotective effect via the inhibition of the PI3K signaling pathway by binding with five amino acid residues of the p85a regulatory subunit of PI3K. The combination treatment of baicalin and an inhibitor of PI3K p110 demonstrated a stronger cardioprotective effect. The mean ejection fraction increased from 54% in the baicalin-treated group to 67% in the combination treatment group. Conclusions: Our work identified baicalin as a new active herbal ingredient that is able to treat isoprenaline-induced heart dysfunction and suggests that p85a is a pharmacological target. These findings reveal the significant potential of baicalin combined with an inhibitor of PI3K p110 for the treatment of heart failure and support more clinical trials in the future. Full article
Show Figures

Graphical abstract

21 pages, 8794 KiB  
Article
Preparation of Ethosome Gel with Total Flavonoids from Vernonia anthelmintica (L.) Willd. for the Treatment of Vitiligo
by Dongmei Qin, Yongjie Cui, Mengyue Zheng, Zhiguo Yang and Xinbing Wang
Gels 2025, 11(1), 73; https://doi.org/10.3390/gels11010073 - 17 Jan 2025
Cited by 4 | Viewed by 1435
Abstract
Vernonia anthelmintica (L.) Willd. is a traditional medicinal herb in Chinese medicine, extensively used by various ethnic groups due to the numerous advantages derived from its total flavonoids. These benefits encompass anti-inflammatory and antioxidant effects, and the promotion of melanin production, showcasing its [...] Read more.
Vernonia anthelmintica (L.) Willd. is a traditional medicinal herb in Chinese medicine, extensively used by various ethnic groups due to the numerous advantages derived from its total flavonoids. These benefits encompass anti-inflammatory and antioxidant effects, and the promotion of melanin production, showcasing its significant efficacy in addressing vitiligo. To improve transdermal absorption and enhance the antioxidant effectiveness of the treatment, ethosome containing total flavonoids were prepared utilizing the ultrasound injection technique. The resulting ethosome was then carefully mixed with 0.7% Carbomer 934 gel in equal parts, yielding a gel concentration of 0.302 mg/g. This formulation produced small, consistent ethosome that exhibited high encapsulation efficiency and notable stability. In vitro analyses demonstrated sustained release characteristics of the gel and considerable therapeutic effectiveness against vitiligo resulting from hydroquinone exposure. Histological examinations performed through hematoxylin and eosin (H&E) staining of mouse skin revealed increased melanin production and increased activities of tyrosinase (TYR), cholinesterase (CHE), and mouse monoamine oxidase (MAO), while levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were reduced. These findings underscore the promising effectiveness of this treatment strategy and validate the efficacy of the dosage form. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

19 pages, 7960 KiB  
Article
The Astragalus Membranaceus Herb Attenuates Leukemia by Inhibiting the FLI1 Oncogene and Enhancing Anti-Tumor Immunity
by Kunlin Yu, Yao Tang, Chunlin Wang, Wuling Liu, Maoting Hu, Anling Hu, Yi Kuang, Eldad Zacksenhaus, Xue-Zhong Yu, Xiao Xiao and Yaacov Ben-David
Int. J. Mol. Sci. 2024, 25(24), 13426; https://doi.org/10.3390/ijms252413426 - 14 Dec 2024
Cited by 1 | Viewed by 2109
Abstract
Astragalus membranaceus (AM) herb is a component of traditional Chinese medicine used to treat various cancers. Herein, we demonstrate a strong anti-leukemic effect of AM injected (Ai) into the mouse model of erythroleukemia induced by Friend virus. Chemical analysis combined with mass spectrometry [...] Read more.
Astragalus membranaceus (AM) herb is a component of traditional Chinese medicine used to treat various cancers. Herein, we demonstrate a strong anti-leukemic effect of AM injected (Ai) into the mouse model of erythroleukemia induced by Friend virus. Chemical analysis combined with mass spectrometry of AM/Ai identified the compounds Betulinic acid, Kaempferol, Hederagenin, and formononetin, all major mediators of leukemia inhibition in culture and in vivo. Docking analysis demonstrated binding of these four compounds to FLI1, resulting in downregulation of its targets, induction of apoptosis, differentiation, and suppression of cell proliferation. Chemical composition analysis identified other compounds previously known having anti-tumor activity independent of the FLI1 blockade. Among these, Astragaloside-A (As-A) has marginal effect on cells in culture, but strongly inhibits leukemogenesis in vivo, likely through improvement of anti-tumor immunity. Indeed, both IDO1 and TDO2 were identified as targets of As-A, leading to suppression of tryptophane-mediated Kyn production and leukemia suppression. Moreover, As-A interacts with histamine decarboxylase (HDC), leading to suppression of anti-inflammatory genes TNF, IL1B/IL1A, TNFAIP3, and CXCR2, but not IL6. These results implicate HDC as a novel immune checkpoint mediator, induced in the tumor microenvironment to promote leukemia. Functional analysis of AM components may allow development of combination therapy with optimal anti-leukemia effect. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

18 pages, 4971 KiB  
Article
Triptolide Causes Spermatogenic Disorders by Inducing Apoptosis in the Mitochondrial Pathway of Mouse Testicular Spermatocytes
by Jiantao Zhao, Maosheng Cao, Haisheng Yi, Guitian He, Tong Chen, Lingyun Liu, Kaimin Guo, Yin Cao, Chunjin Li, Xu Zhou, Boqi Zhang and Hongliang Wang
Toxics 2024, 12(12), 896; https://doi.org/10.3390/toxics12120896 - 10 Dec 2024
Viewed by 1240
Abstract
Triptolide (TP) is a diterpenoid compound extracted from the traditional Chinese medicinal herb Tripterygium wilfordii. It has antitumor and anti-inflammatory effects and stimulates immunity. However, its serious side effects, especially reproductive toxicity, limit its clinical application. This study employed a testicular injury model [...] Read more.
Triptolide (TP) is a diterpenoid compound extracted from the traditional Chinese medicinal herb Tripterygium wilfordii. It has antitumor and anti-inflammatory effects and stimulates immunity. However, its serious side effects, especially reproductive toxicity, limit its clinical application. This study employed a testicular injury model established by intraperitoneally injecting TP (0.2 mg/kg) in C57BL/6J male mice (age = 7–8 weeks) for 14 days. The control and TP mice’s testicular tissues were subjected to transcriptome sequencing to assess potential testicular damage mechanisms. Based on the transcriptome sequencing results and relevant literature reports, further experiments were performed. In addition, to alleviate triptolide-induced testicular damage, we treated the mice with N-acetyl-L-cysteine (NAC). The acquired data revealed that compared with the control mice, the TP-treated mice’s testes indicated severe damage. Transcriptome sequencing identified differentially expressed genes that showed enrichment in cell differentiation, apoptotic process, cell cycle, glutathione (GSH) metabolism, and the p53 signaling pathway. Furthermore, TUNEL assays and Western blot analysis showed that in the TP mice’s testicular tissues, the spermatocytes had mitochondrial pathway apoptosis as well as abnormal mitochondrial morphology and structure. Triptolide induces oxidative stress in testicular tissue by enhancing pro-oxidative systems and inhibiting antioxidant systems. NAC reduced testicular damage and apoptosis by alleviating TP-induced oxidative stress. This study also employed a GC2 cell line for in-vitro analyses, and the results were consistent with the in vivo experiments. This study provides evidence for alleviating TP’s adverse effects on the male reproductive system for better clinical application. Full article
Show Figures

Graphical abstract

14 pages, 5239 KiB  
Article
Unveiling the Mechanism of Compound Ku-Shen Injection in Liver Cancer Treatment through an Ingredient–Target Network Analysis
by Wenkui Zou, Jiazhen Liu, Zexing Wei, Chunhua Peng, Ying Zhao, Yue Ding, Jifan Shi and Juan Zhao
Genes 2024, 15(10), 1278; https://doi.org/10.3390/genes15101278 - 29 Sep 2024
Cited by 1 | Viewed by 2034
Abstract
Background: Compound Ku-Shen Injection (CKI) is a traditional Chinese medicine preparation derived from Ku-Shen and Bai-Tu-Ling, commonly used in the adjunctive treatment of advanced cancers, including liver cancer. However, the underlying mechanisms of CKI’s effectiveness in cancer treatment are not well defined. Methods: [...] Read more.
Background: Compound Ku-Shen Injection (CKI) is a traditional Chinese medicine preparation derived from Ku-Shen and Bai-Tu-Ling, commonly used in the adjunctive treatment of advanced cancers, including liver cancer. However, the underlying mechanisms of CKI’s effectiveness in cancer treatment are not well defined. Methods: This study employs network pharmacology to investigate the traditional Chinese medicine (TCM) compatibility theory underlying CKI’s action in treating liver cancer, with findings substantiated by molecular docking and in vitro experiments. Sixteen active components were identified from CKI, along with 193 potential targets for treating liver cancer. Key therapeutic target proteins, including EGFR and ESR1, were also identified. KEGG enrichment results showed that the neuroactive ligand–receptor interaction, cAMP signaling pathway, and serotonergic synapses make up the key pathway of CKI in the treatment of liver cancer. Molecular docking results confirmed that the key active ingredients effectively bind to the core targets. CCK-8 cytotoxic experiment results show that the CKI key components of oxymatrine and matrine can inhibit the growth of HepG2 liver cancer cell proliferation. A Western blot analysis revealed that oxymatrine suppresses the expression of EGFR, contributing to its therapeutic efficacy against liver cancer. Conclusion: our study elucidated the therapeutic mechanism of CKI in treating liver cancer and unveiled the underlying principles of its TCM compatibility through its mode of action. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

21 pages, 3865 KiB  
Systematic Review
The Effectiveness and Safety of Wu Tou Decoction on Rheumatoid Arthritis—A Systematic Review and Meta-Analysis
by Jeong-Hyun Moon, Gyoungeun Park, Chan-Young Kwon, Joo-Hee Kim, Eun-Jung Kim, Byung-Kwan Seo, Seung-Deok Lee, Seung-Ug Hong and Won-Suk Sung
Healthcare 2024, 12(17), 1739; https://doi.org/10.3390/healthcare12171739 - 31 Aug 2024
Cited by 1 | Viewed by 1431
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease primarily affecting the joints and requires various treatments, including medication, injection, and physiotherapy. Wu tou decoction (WTD) is a traditional Chinese medicine prescribed for RA, with several articles documenting its effectiveness in RA treatment. This systematic [...] Read more.
Rheumatoid arthritis (RA) is an autoimmune disease primarily affecting the joints and requires various treatments, including medication, injection, and physiotherapy. Wu tou decoction (WTD) is a traditional Chinese medicine prescribed for RA, with several articles documenting its effectiveness in RA treatment. This systematic review and meta-analysis aimed to evaluate the efficacy and safety of WTD for RA. We searched for randomized controlled trials (RCTs) comparing WTD with conventional treatments (including medication, injection, and physiotherapy) from its inception to May 2024. Primary outcomes were disease activity scores, including effective rate, tender joint count, and morning stiffness. Secondary outcomes comprised blood test results (erythrocyte sedimentation rate, C-reactive protein, and rheumatoid factor) and adverse events. Nineteen RCTs involving 1794 patients were included. Statistically, WTD demonstrated better improvement than conventional treatments (18 medications and 1 injection) across the effective rate, joint scale, and blood tests, regardless of the treatment type (monotherapy or combination therapy). Adverse events were reported in 11 studies, with no statistical differences observed between them. The numerical results showed that WTD may offer potential benefits for managing RA. However, the significant discrepancy between clinical practice and the low quality of the RCTs remains a limitation. Therefore, further well-designed studies with larger patient cohorts are needed to draw definitive conclusions. Full article
Show Figures

Figure 1

13 pages, 4985 KiB  
Article
Isolation and Characterization of an Anti-Osteoporotic Compound from Melia toosendan Fructus
by Seong Cheol Kim, Dong Ryun Gu, Hyun Yang, Sung-Ju Lee, Jin Ah Ryuk and Hyunil Ha
Pharmaceutics 2023, 15(10), 2454; https://doi.org/10.3390/pharmaceutics15102454 - 13 Oct 2023
Cited by 2 | Viewed by 1670
Abstract
Melia toosendan fructus, traditionally employed in traditional Chinese and Korean herbal medicine, exhibits diverse biological properties encompassing anti-tumor, anti-inflammatory, and anti-viral effects. However, its influence on bone metabolism remains largely unexplored. In this study, we investigated the impact of an ethanolic extract of [...] Read more.
Melia toosendan fructus, traditionally employed in traditional Chinese and Korean herbal medicine, exhibits diverse biological properties encompassing anti-tumor, anti-inflammatory, and anti-viral effects. However, its influence on bone metabolism remains largely unexplored. In this study, we investigated the impact of an ethanolic extract of Melia toosendan fructus (MTE) on osteoclast differentiation and characterized its principal active constituent in osteoclast differentiation and function, as well as its effects on bone protection. Our findings demonstrate that MTE effectively inhibits the differentiation of osteoclast precursors induced by receptor activator of nuclear factor κB ligand (RANKL). Utilizing a bioassay-guided fractionation approach coupled with UHPLC-MS/MS analysis, we isolated and identified the triterpenoid compound toosendanin (TSN) as the active constituent responsible for MTE’s anti-osteoclastogenic activity. TSN treatment downregulated the expression of nuclear factor of activated T cells c1, a pivotal osteoclastogenic transcription factor, along with molecules implicated in osteoclast-mediated bone resorption, including tumor necrosis factor receptor-associated factor 6, carbonic anhydrase II, integrin beta-3, and cathepsin K. Furthermore, treatment of mature osteoclasts with TSN impaired actin ring formation, acidification, and resorptive function. Consistent with our in vitro findings, TSN administration mitigated trabecular bone loss and reduced serum levels of the bone resorption marker, C-terminal cross-linked telopeptides of type I collagen, in a mouse bone loss model induced by intraperitoneal injections of RANKL. These results suggest that TSN, as the principal active constituent of MTE with inhibitory effects on osteoclastogenesis, exhibits bone-protective properties by suppressing both osteoclast differentiation and function. These findings imply the potential utility of TSN in the treatment of diseases characterized by excessive bone resorption. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Plant Extracts, 2nd Edition)
Show Figures

Figure 1

22 pages, 13826 KiB  
Article
Genome-Wide Analysis of the bHLH Gene Family in Loropetalum chinense var. rubrum: Identification, Classification, Evolution, and Diversity of Expression Patterns under Cultivation
by Yang Liu, Ling Lin, Yang Liu, Qiong Mo, Damao Zhang, Weidong Li, Xingyao Xiong, Xiaoying Yu and Yanlin Li
Plants 2023, 12(19), 3392; https://doi.org/10.3390/plants12193392 - 26 Sep 2023
Cited by 6 | Viewed by 1973
Abstract
The basic helix–loop–helix (bHLH) transcription factor family is the second-largest transcription factor family in plants. Members of this family are involved in the processes of growth and development, secondary metabolic biosynthesis, signal transduction, and plant resistance. Loropetalum chinense var. rubrum is a critical [...] Read more.
The basic helix–loop–helix (bHLH) transcription factor family is the second-largest transcription factor family in plants. Members of this family are involved in the processes of growth and development, secondary metabolic biosynthesis, signal transduction, and plant resistance. Loropetalum chinense var. rubrum is a critical woody plant with higher ornamental and economic values, which has been used as ornamental architecture and traditional Chinese herbal medicine plants. However, the bHLH transcription factors in Loropetalum chinense var. rubrum (L. chinense var. rubrum) have not yet been systematically demonstrated, and their role in the biosynthesis of anthocyanin is still unclear. Here, we identified 165 potential LcbHLHs genes by using two methods, and they were unequally distributed on chromosomes 1 to 12 of the genome of L. chinense var. rubrum. Based on an evolutionary comparison with proteins from Arabidopsis and Oryza sativa, these bHLH proteins were categorized into 21 subfamilies. Most LcbHLHs in a particular subfamily had similar gene structures and conserved motifs. The Gene Ontology annotation and Cis-elements predicted that LcbHLHs had many molecular functions and were involved in processes of plant growth, including the biosynthesis of flavonoids and anthocyanins. Transcriptomic analysis revealed different expression patterns among different tissues and cultivars of L. chinense var. rubrum. Many LcbHLHs were expressed in the leaves, and only a few genes were highly expressed in the flowers. Six LcbHLHs candidate genes were identified by bioinformatics analysis and expression analysis. Further Real-time quantitative PCR analysis and protein interaction network analysis showed that LcbHLH156, which is one of the candidate proteins belonging to the IIIf subfamily, could interact with proteins related to anthocyanin synthesis. Therefore, LcbHLH156 was transiently expressed in L. chinense var. rubrum to verify its function in regulating anthocyanin synthesis. Compared with the control group, red pigment accumulation appeared at the wound after injection, and the total anthocyanin content increased at the wound of leaves. These results lay a foundation for the research of the regulation mechanism of leaf colors in L. chinense var. rubrum and also provide a basis for the function of the LcbHLH family. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

14 pages, 10195 KiB  
Article
The Pathophysiological Changes and Clinical Effects of Tetramethylpyrazine in ICR Mice with Fluoride-Induced Hepatopathy
by Shuai Zhang, Yilei Zheng, Hong Du, Wei Zhang, Haohuan Li, Yangping Ou, Funeng Xu, Juchun Lin, Hualin Fu, Xueqing Ni, Li-Jen Chang and Gang Shu
Molecules 2023, 28(12), 4849; https://doi.org/10.3390/molecules28124849 - 19 Jun 2023
Cited by 1 | Viewed by 1789
Abstract
The excessive intake of fluoride, one of the trace elements required to maintain health, leads to liver injury. Tetramethylpyrazine (TMP) is a kind of traditional Chinese medicine monomer with a good antioxidant and hepatoprotective function. The aim of this study was to investigate [...] Read more.
The excessive intake of fluoride, one of the trace elements required to maintain health, leads to liver injury. Tetramethylpyrazine (TMP) is a kind of traditional Chinese medicine monomer with a good antioxidant and hepatoprotective function. The aim of this study was to investigate the effect of TMP on liver injury induced by acute fluorosis. A total of 60 1-month-old male ICR mice were selected. All mice were randomly divided into five groups: a control (K) group, a model (F) group, a low-dose (LT) group, a medium-dose (MT) group, and a high-dose (HT) group. The control and model groups were given distilled water, while 40 mg/kg (LT), 80 mg/kg (MT), or 160 mg/kg (HT) of TMP was fed by gavage for two weeks, with a maximum gavage volume for the mice of 0.2 mL/10 g/d. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study showed that, compared with the model group, TMP alleviated the pathological changes in the liver induced by the fluoride and improved the ultrastructure of liver cells; TMP significantly decreased the levels of ALT, AST, and MDA (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection showed that TMP significantly increased the mRNA expression levels of Nrf2, HO-1, CAT, GSH-Px, and SOD in the liver compared with the model group (p < 0.05). In conclusion, TMP can inhibit oxidative stress by activating the Nrf2 pathway and alleviate the liver injury induced by fluoride. Full article
Show Figures

Graphical abstract

Back to TopTop