Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = total ionizing dose (TID) effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1876 KiB  
Article
Total Ionizing Dose Effects on Lifetime of NMOSFETs Due to Hot Carrier-Induced Stress
by Yujuan He, Rui Gao, Teng Ma, Xiaowen Zhang, Xianyu Zhang and Yintang Yang
Electronics 2025, 14(13), 2563; https://doi.org/10.3390/electronics14132563 - 25 Jun 2025
Viewed by 363
Abstract
This study systematically investigates the mechanism by which total ionizing dose (TID) affects the lifetime degradation of NMOS devices induced by hot-carrier injection (HCI). Experiments involved Cobalt-60 (Co-60) gamma-ray irradiation to a cumulative dose of 500 krad (Si), followed by 168 h annealing [...] Read more.
This study systematically investigates the mechanism by which total ionizing dose (TID) affects the lifetime degradation of NMOS devices induced by hot-carrier injection (HCI). Experiments involved Cobalt-60 (Co-60) gamma-ray irradiation to a cumulative dose of 500 krad (Si), followed by 168 h annealing at 100 °C to simulate long-term stability. However, under HCI stress conditions (VD = 2.7 V, VG = 1.8 V), irradiated devices show a 6.93% increase in threshold voltage shift (ΔVth) compared to non-irradiated counterparts. According to the IEC 62416 standard, the lifetime degradation of irradiated devices induced by HCI stress is only 65% of that of non-irradiated devices. Conversely, when the saturation drain current (IDsat) degrades by 10%, the lifetime doubles compared to non-irradiated counterparts. Mechanistic analysis demonstrates that partial neutralization of E’ center positive charges at the gate oxide interface by hot electrons weakens the electric field shielding effect, accelerating ΔVth drift, while interface trap charges contribute minimally to degradation due to annealing-induced self-healing. The saturation drain current shift degradation primarily correlates with electron mobility variations. This work elucidates the multi-physics mechanisms through which TID impacts device reliability and provides critical insights for radiation-hardened design optimization. Full article
Show Figures

Figure 1

11 pages, 4725 KiB  
Article
Total Ionizing Dose Effects in Advanced 28 nm Charge Trapping 3D NAND Flash Memory
by Xuesong Zheng, Yuhang Wang, Rigen Mo, Chaoming Liu, Tianqi Wang, Mingxue Huo and Liyi Xiao
Electronics 2025, 14(3), 473; https://doi.org/10.3390/electronics14030473 - 24 Jan 2025
Cited by 1 | Viewed by 1257
Abstract
The impacts of total ionizing dose (TID) were investigated in 28 nm 3D charge trapping (CT) NAND Flash memories. This study focused on the variations in the raw bit error rate (RBER) of irradiated flash across different operational modes and bias states. It [...] Read more.
The impacts of total ionizing dose (TID) were investigated in 28 nm 3D charge trapping (CT) NAND Flash memories. This study focused on the variations in the raw bit error rate (RBER) of irradiated flash across different operational modes and bias states. It was observed that the data pattern stored in Flash influences the bit error count after irradiation. The experimental findings demonstrated a dose-dependent relationship with standby current, read operation current, and threshold voltage shifts. Additionally, TID was found to affect the time required for erasure and programming operations. These results were then bench-marked against similar NAND Flash devices, revealing superior resistance to TID effects. Full article
(This article belongs to the Special Issue Semiconductors and Memory Technologies)
Show Figures

Figure 1

12 pages, 10804 KiB  
Article
Total Ionizing Dose and Single-Event Effect Response of the AD524CDZ Instrumentation Amplifier
by Jaime Cardenas Chavez, Dave Hiemstra, Adriana Noguera Cundar, Brayden Johnson, David Baik and Li Chen
Energies 2024, 17(18), 4725; https://doi.org/10.3390/en17184725 - 22 Sep 2024
Cited by 1 | Viewed by 1348
Abstract
This manuscript focuses on studying the radiation response of the Commercial-off-the-shelf (COTS) AD524CDZ operational amplifier. Total Ionizing Dose (TID) effects were tested using low-dose 60Co irradiation. Single-Event Effect (SEE) sensitivity was studied on this operational amplifier using a 105 MeV proton beam. [...] Read more.
This manuscript focuses on studying the radiation response of the Commercial-off-the-shelf (COTS) AD524CDZ operational amplifier. Total Ionizing Dose (TID) effects were tested using low-dose 60Co irradiation. Single-Event Effect (SEE) sensitivity was studied on this operational amplifier using a 105 MeV proton beam. Additionally, further study of the SEE response was carried out using a Two-photon absorption laser to scan some sensitive sectors of the die. For this laser experiment, different gain setups and laser energies were employed to determine how the Single Event Transient (SET) response of the device was affected based on the test configuration. The results from the TID experiments revealed that the studied device remained functional after 100 krads (Si). Proton experiments revealed the studied device exhibited a high SET response with a maximum DC offset SET of about 1.5 V. Laser experiments demonstrated that there was a clear SET reduction when using 10× and 1000× gain setups. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 5479 KiB  
Article
Degradation Induced by Total Ionizing Dose and Hot Carrier Injection in SOI FinFET Devices
by Hao Yu, Wei Zhou, Hongxia Liu, Shulong Wang, Shupeng Chen and Chang Liu
Micromachines 2024, 15(8), 1026; https://doi.org/10.3390/mi15081026 - 11 Aug 2024
Cited by 2 | Viewed by 1500
Abstract
The working environment of electronic devices in the aerospace field is harsh. In order to ensure the reliable application of the SOI FinFET, the total ionizing dose (TID) and hot carrier injecting (HCI) reliability of an SOI FinFET were investigated in this study. [...] Read more.
The working environment of electronic devices in the aerospace field is harsh. In order to ensure the reliable application of the SOI FinFET, the total ionizing dose (TID) and hot carrier injecting (HCI) reliability of an SOI FinFET were investigated in this study. First, the influence of TID on the device was simulated. The results show that TID causes the threshold voltage to decrease and the off-state current and subthreshold swing to increase. TID causes more damage to the device at high temperature and also reduces the saturation drain current of the device. HCI causes the device threshold voltage to increase and the saturation drain current to decrease. The HCI is more severe at high temperatures. Finally, the coupling effects of the two were simulated, and the results show that the two effects cancel each other out, and the degradation of various electrical characteristic parameters is different under different coupling modes. Full article
Show Figures

Figure 1

12 pages, 1210 KiB  
Article
Synergistic Effects of Total Ionizing Dose and Single-Event Upset in 130 nm 7T Silicon-on-Insulator Static Random Access Memory
by Zheng Zhang, Gang Guo, Linfei Wang, Shuyan Xiao, Qiming Chen, Linchun Gao, Chunlin Wang, Futang Li, Fuqiang Zhang, Shuyong Zhao and Jiancheng Liu
Electronics 2024, 13(15), 2997; https://doi.org/10.3390/electronics13152997 - 30 Jul 2024
Viewed by 992
Abstract
The exposure of spaceborne devices to high-energy charged particles in space results in the occurrence of both a total ionizing dose (TID) and the single-event effect (SEE). These phenomena present significant challenges for the reliable operation of spacecraft and satellites. The rapid advancement [...] Read more.
The exposure of spaceborne devices to high-energy charged particles in space results in the occurrence of both a total ionizing dose (TID) and the single-event effect (SEE). These phenomena present significant challenges for the reliable operation of spacecraft and satellites. The rapid advancement of semiconductor fabrication processes and the continuous reduction in device feature size have led to an increase in the significance of the synergistic effects of TID and SEE in static random access memory (SRAM). In order to elucidate the involved physical mechanisms, the synergistic effects of TID and single-event upset (SEU) in a new kind of 130 nm 7T silicon-on-insulator (SOI) SRAM were investigated by means of cobalt-60 gamma-ray and heavy ion irradiation experiments. The findings demonstrate that 7T SOI SRAM is capable of maintaining normal reading and writing functionality when subjected to TID irradiation at a total dose of up to 750 krad(Si). In general, the TID was observed to reduce the SEU cross-section of the 7T SOI SRAM. However, the extent of this reduction was influenced by the heavy ion LET value and the specific writing data pattern employed. Based on the available evidence, it can be proposed that TID preirradiation represents a promising avenue for enhancing the resilience of 7T SOI SRAMs to SEU. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

10 pages, 1476 KiB  
Article
Temperature Dependence of Total Ionizing Dose Effects of β-Ga2O3 Schottky Barrier Diodes
by Weili Fu, Teng Ma, Zhifeng Lei, Chao Peng, Hong Zhang, Zhangang Zhang, Tao Xiao, Hongjia Song, Yuangang Wang, Jinbin Wang, Zhao Fu and Xiangli Zhong
Electronics 2024, 13(11), 2215; https://doi.org/10.3390/electronics13112215 - 6 Jun 2024
Cited by 4 | Viewed by 1498
Abstract
This paper investigates the temperature-dependent effects of gamma-ray irradiation on β-Ga2O3 vertical Schottky barrier diodes (SBDs) under a 100 V reverse bias condition at a total dose of 1 Mrad(Si). As the irradiation dose increased, the radiation damage became more [...] Read more.
This paper investigates the temperature-dependent effects of gamma-ray irradiation on β-Ga2O3 vertical Schottky barrier diodes (SBDs) under a 100 V reverse bias condition at a total dose of 1 Mrad(Si). As the irradiation dose increased, the radiation damage became more severe. The total ionizing dose (TID) degradation behavior and mechanisms were evaluated through DC, capacitance–voltage (C-V), and low-frequency noise (LFN) measurements by varying irradiation, and the test results indicated that TID effects introduced interface defects and altered the carrier concentration within the material. The impact of TID effects was more pronounced at lower temperatures compared to higher temperatures. Additionally, the annealing effect in the high-temperature experimental conditions ameliorated the growth of interface trap defects caused by irradiation. These results suggest that compared to low-temperature testing, the device exhibits higher TID tolerance after high-temperature exposure, providing valuable insights for in-depth radiation reliability studies on subsequent related devices. Full article
Show Figures

Figure 1

13 pages, 11751 KiB  
Article
Research on the Coupling Effect of NBTI and TID for FDSOI pMOSFETs
by Hao Wei, Hongxia Liu, Shulong Wang, Shupeng Chen, Chenyv Yin, Yaolin Chen and Tianzhi Gao
Micromachines 2024, 15(6), 702; https://doi.org/10.3390/mi15060702 - 25 May 2024
Cited by 3 | Viewed by 1118
Abstract
The coupling effect of negative bias temperature instability (NBTI) and total ionizing dose (TID) was investigated by simulation based on the fully depleted silicon on insulator (FDSOI) PMOS. After simulating the situation of irradiation after NBT stress, it was found that the NBTI [...] Read more.
The coupling effect of negative bias temperature instability (NBTI) and total ionizing dose (TID) was investigated by simulation based on the fully depleted silicon on insulator (FDSOI) PMOS. After simulating the situation of irradiation after NBT stress, it was found that the NBTI effect weakens the threshold degradation of FDSOI PMOS under irradiation. Afterward, NBT stress was decomposed into high gate voltage stress and high-temperature stress, which was applied to the device simultaneously with irradiation. The devices under high gate voltage exhibited more severe threshold voltage degradation after irradiation compared to those under low gate voltage. Devices at high temperatures also exhibit more severe threshold degradation after irradiation compared to devices under low temperatures. Finally, the simultaneous effect of high gate voltage, high temperature, and irradiation on the device was investigated, which fully demonstrated the impact of the NBT stress on the TID effect, resulting in far more severe threshold voltage degradation. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

15 pages, 6556 KiB  
Article
Simple Modeling and Analysis of Total Ionizing Dose Effects on Radio-Frequency Low-Noise Amplifiers
by Taeyeong Kim, Gyungtae Ryu, Jongho Lee, Moon-Kyu Cho, Daniel M. Fleetwood, John. D. Cressler and Ickhyun Song
Electronics 2024, 13(8), 1445; https://doi.org/10.3390/electronics13081445 - 11 Apr 2024
Cited by 1 | Viewed by 1979
Abstract
In this study, the degradation characteristics of radio frequency (RF)-low-noise amplifiers (LNA) due to a total ionizing dose (TID) is investigated. As a device-under-test (DUT), sample LNAs were prepared using silicon–germanium (SiGe) heterojunction bipolar transistors (HBTs) as core elements. The LNA was based [...] Read more.
In this study, the degradation characteristics of radio frequency (RF)-low-noise amplifiers (LNA) due to a total ionizing dose (TID) is investigated. As a device-under-test (DUT), sample LNAs were prepared using silicon–germanium (SiGe) heterojunction bipolar transistors (HBTs) as core elements. The LNA was based on a cascode stage with emitter degeneration for narrowband applications. By using a simplified small-signal model of a SiGe HBT, design equations such as gain, impedance matching, and noise figure (NF) were derived for analyzing TID-induced degradations in the circuit-level performance. To study radiation effects in circuits, the SiGe-RF-LNAs fabricated in a commercial 350 nm SiGe technology were exposed to 10-keV X-rays to a total ionizing dose of up to 3 Mrad(SiO2). The TID-induced performance changes of the LNA were modeled by applying degradation to device parameters. In the modeling process, new parameter values after irradiation were estimated based on information in the literature, without direct measurements of SiGe HBTs used in the LNA chip. As a result, the relative contributions of parameters on the circuit metrics were compared, identifying dominant parameters for degradation modeling. For the TID effects on input matching (S11) and NF, the base resistance (RB) and the base-to-emitter capacitance (Cπ) of the input transistor were mostly responsible, whereas the transconductances (gm) played a key role in the output matching (S22) and gain (S21). To validate the proposed approach, it has been applied to a different LNA in the literature and the modeling results predicted the TID-induced degradations within reasonable ranges. Full article
(This article belongs to the Special Issue Low-Power CMOS and Beyond-CMOS Front-End Circuits and Systems)
Show Figures

Figure 1

13 pages, 5629 KiB  
Communication
The Effects of a Gate Bias Condition on 1.2 kV SiC MOSFETs during Irradiating Gamma-Radiation
by Chaeyun Kim, Hyowon Yoon, Yeongeun Park, Sangyeob Kim, Gyuhyeok Kang, Dong-Seok Kim and Ogyun Seok
Micromachines 2024, 15(4), 496; https://doi.org/10.3390/mi15040496 - 4 Apr 2024
Viewed by 1504
Abstract
We investigated the effects of gate bias regarding the degradation of electrical characteristics during gamma irradiation. Moreover, we observed the punch through failure of 1.2 kV rated commercial Silicon Carbide (SiC) Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) due to the influence of [...] Read more.
We investigated the effects of gate bias regarding the degradation of electrical characteristics during gamma irradiation. Moreover, we observed the punch through failure of 1.2 kV rated commercial Silicon Carbide (SiC) Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) due to the influence of gate bias. In addition, the threshold voltage (VT) and on-resistance (Ron) of the SiC MOSFETs decreased significantly by the influence of gate bias during gamma irradiation. We extracted the concentration of carriers and fixed charge (QF) in oxide using N-type SiC MOS capacitors and Transmission Line Measurement (TLM) patterns to analyze the effects of gamma irradiation. The Total Ionizing Dose (TID) effect caused by high-energy gamma-ray irradiation resulted in an increase in the concentration of holes and QF in both SiC and oxide. To analyze the phenomenon for increment of hole concentration in the device under gate bias, we extracted the subthreshold swing of SiC MOSFETs and verified the origin of TID effects accelerated by the gate bias. The QF and doping concentration of p-well values extracted from the experiments were used in TCAD simulations (version 2022.03) of the planar SiC MOSFET. As a result of analyzing the energy band diagram at the channel region of 1.2 kV SiC MOSFETs, it was verified that punch-through can occur in 1.2 kV SiC MOSFETs when the gate bias is applied, as the TID effect is accelerated by the gate bias. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

14 pages, 2338 KiB  
Article
Comparison of Proton and Gamma Irradiation on Single-Photon Avalanche Diodes
by Mingzhu Xun, Yudong Li and Mingyu Liu
Electronics 2024, 13(6), 1086; https://doi.org/10.3390/electronics13061086 - 15 Mar 2024
Viewed by 1467
Abstract
In this paper, the effects of proton and gamma irradiation on reach-through single-photon avalanche diodes (SPADs) are investigated. The I–V characteristics, gain and spectral response of SPAD devices under proton and gamma irradiation were measured at different proton energies and irradiation bias conditions. [...] Read more.
In this paper, the effects of proton and gamma irradiation on reach-through single-photon avalanche diodes (SPADs) are investigated. The I–V characteristics, gain and spectral response of SPAD devices under proton and gamma irradiation were measured at different proton energies and irradiation bias conditions. Comparison experiments of proton and gamma irradiation were performed in the radiation environment of geosynchronous transfer orbit (GTO) with two different radiation shielding designs at the same total ionizing dose (TID). The results show that after 30 MeV and 60 MeV proton irradiation, the leakage current and gain increase, while the spectral response decreases slightly. The leakage current degradation is more severe under the “ON”-bias condition compared to the “OFF”-bias condition, and it is more sensitive to the displacement radiation damage caused by protons compared to gamma rays under the same TID. Further analysis reveals that the non-elastic and elastic cross-section of protons in silicon is 1.05 × 105 times greater than that of gamma rays. This results in SPAD devices being more sensitive to displacement radiation damage than ionizing radiation damage. Under the designed shielding conditions, the leakage current, gain and spectral response parameters of SPADs do not show significant performance degradation in the orbit. Full article
Show Figures

Figure 1

13 pages, 3475 KiB  
Article
Synergistic Radiation Effects in PPD CMOS Image Sensors Induced by Neutron Displacement Damage and Gamma Ionization Damage
by Zu-Jun Wang, Yuan-Yuan Xue, Ning Tang, Gang Huang, Xu Nie, Shan-Kun Lai, Bao-Ping He, Wu-Ying Ma, Jiang-Kun Sheng and Shi-Long Gou
Sensors 2024, 24(5), 1441; https://doi.org/10.3390/s24051441 - 23 Feb 2024
Cited by 2 | Viewed by 1583
Abstract
The synergistic effects on the 0.18 µm PPD CISs induced by neutron displacement damage and gamma ionization damage are investigated. The typical characterizations of the CISs induced by the neutron displacement damage and gamma ionization damage are presented separately. The CISs are irradiated [...] Read more.
The synergistic effects on the 0.18 µm PPD CISs induced by neutron displacement damage and gamma ionization damage are investigated. The typical characterizations of the CISs induced by the neutron displacement damage and gamma ionization damage are presented separately. The CISs are irradiated by reactor neutron beams up to 1 × 1011 n/cm2 (1 MeV neutron equivalent fluence) and 60Co γ-rays up to the total ionizing dose level of 200 krad(Si) with different sequential order. The experimental results show that the mean dark signal increase in the CISs induced by reactor neutron radiation has not been influenced by previous 60Co γ-ray radiation. However, the mean dark signal increase in the CISs induced by 60Co γ-ray radiation has been remarkably influenced by previous reactor neutron radiation. The synergistic effects on the PPD CISs are discussed by combining the experimental results and the TCAD simulation results of radiation damage. Full article
(This article belongs to the Special Issue Advanced CMOS Integrated Circuit Design and Application II)
Show Figures

Figure 1

13 pages, 368 KiB  
Article
Toward the Use of Electronic Commercial Off-the-Shelf Devices in Space: Assessment of the True Radiation Environment in Low Earth Orbit (LEO)
by Oscar Gutiérrez, Manuel Prieto, Alvaro Perales-Eceiza, Ali Ravanbakhsh, Mario Basile and David Guzmán
Electronics 2023, 12(19), 4058; https://doi.org/10.3390/electronics12194058 - 27 Sep 2023
Cited by 11 | Viewed by 7618
Abstract
Low Earth orbit missions have become crucial for a variety of applications, from scientific research to commercial purposes. Exposure to ionizing radiation in Low Earth Orbit (LEO) poses a significant risk to both spacecraft and astronauts. In this article, we analyze radiation data [...] Read more.
Low Earth orbit missions have become crucial for a variety of applications, from scientific research to commercial purposes. Exposure to ionizing radiation in Low Earth Orbit (LEO) poses a significant risk to both spacecraft and astronauts. In this article, we analyze radiation data obtained from different LEO missions to evaluate the potential of using electronic commercial off-the-shelf (COTS) devices in space missions. This study is focused on the total ionizing dose (TID). Our results demonstrate that COTS technology can effectively provide cost-effective and reliable solutions for space applications. Furthermore, we compare the data obtained from actual missions with computational models and tools, such as SPENVIS, to evaluate the accuracy of these models and enhance radiation exposure prediction. This comparison provides valuable insights into the true radiation environment in space and helps us to better understand the potential of COTS technology in reducing costs and development times by utilizing technology previously used in other areas. In light of the results, we can see that the radiation values observed experimentally in space missions versus the computer simulations used present variations up to a factor of 30 depending on the model used in the analysis. Full article
(This article belongs to the Special Issue Radiation Tolerant Electronics, Volume III)
Show Figures

Figure 1

9 pages, 1940 KiB  
Article
Total Ionizing Dose Effects on the Threshold Voltage of GaN Cascode Devices
by Hao Wu, Xiaojun Fu, Jun Luo, Manlin Yang, Xiaoyu Yang, Wei Huang, Huan Zhang, Fan Xiang, Yang Pu and Ziwei Wang
Micromachines 2023, 14(10), 1832; https://doi.org/10.3390/mi14101832 - 26 Sep 2023
Cited by 3 | Viewed by 1608
Abstract
GaN devices are nowadays attracting global attention due to their outstanding performance in high voltage, high frequency, and anti-radiation ability. Research on total ionizing dose and annealing effects on E-mode GaN Cascode devices has been carried out. The Cascode device consists of a [...] Read more.
GaN devices are nowadays attracting global attention due to their outstanding performance in high voltage, high frequency, and anti-radiation ability. Research on total ionizing dose and annealing effects on E-mode GaN Cascode devices has been carried out. The Cascode device consists of a low-voltage MOSFET and a high-voltage depletion-mode GaN MISHEMT. Cascode devices of both conventional processed MOSFET and radiation-hardened MOSFET devices are fabricated to observe the TID effects. Experiment results indicate that, for the Cascode device with conventional processed MOSFET, the VTH shifts to negative values at 100 krad(Si). For the Cascode device with radiation-hardened MOSFET, the VTH shifts by −0.5 V at 100 krad(Si), while shifts to negative values are 500 krad(Si). The annealing process, after the TID experiment, shows that it can release trapped charges and help VTH recover. On one hand, the VTH shift and recover trends are similar to those of a single MOSFET device, suggesting that the MOSFET is the vulnerable part in the Cascode which determines the anti-TID ability of the device. On the other hand, the VTH shift amount of the Cascode device is much larger than that of a previously reported p-GaN HEMT device, indicating that GaN material shows a better anti-TID ability than Si. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

12 pages, 9362 KiB  
Article
Design and Validation of a V-Gate n-MOSFET-Based RH CMOS Logic Circuit with Tolerance to the TID Effect
by Donghan Ki, Minwoong Lee, Namho Lee and Seongik Cho
Electronics 2023, 12(15), 3331; https://doi.org/10.3390/electronics12153331 - 3 Aug 2023
Viewed by 2386
Abstract
This study designed a radiation-hardened (RH) complementary metal oxide semiconductor (CMOS) logic circuit based on an RH variable-gate (V-gate) n-MOSFET that was resistant to the total ionizing dose (TID) effect and evaluated its tolerance to radiation. Among the different CMOS logic circuits, NOT, [...] Read more.
This study designed a radiation-hardened (RH) complementary metal oxide semiconductor (CMOS) logic circuit based on an RH variable-gate (V-gate) n-MOSFET that was resistant to the total ionizing dose (TID) effect and evaluated its tolerance to radiation. Among the different CMOS logic circuits, NOT, NAND, and NOR gates were designed using V-gate n-MOSFETs by employing layout transformation techniques and standard p-MOSFETs. Before the process design, we predicted the radiation damage using modeling and simulation techniques and validated the tolerance by conducting actual radiation tests after the process design. Furthermore, we implemented the CMOS logic circuit process design in a 0.18 µm CMOS bulk process. The actual radiation test applied a total cumulative radiation dose of 25 kGy at 5 kGy per hour in a high-level gamma-ray irradiation facility. Consequently, the resistance of the RH CMOS logic circuit based on the RH V-gate n-MOSFET to the TID effect was validated through experiments. Full article
(This article belongs to the Special Issue Advanced CMOS Devices)
Show Figures

Figure 1

13 pages, 4293 KiB  
Article
Simulation of Total Ionizing Dose Effects Technique for CMOS Inverter Circuit
by Tianzhi Gao, Chenyu Yin, Yaolin Chen, Ruibo Chen, Cong Yan and Hongxia Liu
Micromachines 2023, 14(7), 1438; https://doi.org/10.3390/mi14071438 - 18 Jul 2023
Cited by 4 | Viewed by 2738
Abstract
The total ionizing dose (TID) effect significantly impacts the electrical parameters of fully depleted silicon on insulator (FDSOI) devices and even invalidates the on–off function of devices. At present, most of the irradiation research on the circuit level is focused on the single [...] Read more.
The total ionizing dose (TID) effect significantly impacts the electrical parameters of fully depleted silicon on insulator (FDSOI) devices and even invalidates the on–off function of devices. At present, most of the irradiation research on the circuit level is focused on the single event effect, and there is very little research on the total ionizing dose effect. Therefore, this study mainly analyzes the influence of TID effects on a CMOS inverter circuit based on 22 nm FDSOI transistors. First, we constructed and calibrated an N-type FDSOI metal-oxide semiconductor (NMOS) structure and P-type FDSOI metal-oxide semiconductor (PMOS) structure. The transfer characteristics and trapped charge distribution of these devices were studied under different irradiation doses. Next, we studied the TID effect on an inverter circuit composed of these two MOS transistors. The simulation results show that when the radiation dose was 400 krad (Si), the logic threshold drift of the inverter was approximately 0.052 V. These results help further investigate the impact on integrated circuits in an irradiation environment. Full article
(This article belongs to the Special Issue High-Reliability Semiconductor Devices and Integrated Circuits)
Show Figures

Figure 1

Back to TopTop