Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = torque per volume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 13107 KiB  
Article
Ceramic Isolated High-Torque Permanent Magnet Coupling for Deep-Sea Applications
by Liying Sun, Xiaohui Gao and Yongguang Liu
J. Mar. Sci. Eng. 2025, 13(8), 1474; https://doi.org/10.3390/jmse13081474 - 31 Jul 2025
Viewed by 34
Abstract
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This [...] Read more.
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This study presents a novel permanent magnet coupling featuring a ceramic isolation sleeve engineered for deep-sea cryogenic ammonia submersible pumps. The ceramic sleeve eliminates eddy current losses and provides exceptional corrosion resistance in acidic/alkaline environments. To withstand 3.5 MPa hydrostatic pressure, a 6-mm-thick sleeve necessitates a 10 mm operational air gap, challenging magnetic circuit efficiency. To address this limitation, an improved 3D magnetic equivalent circuit (MEC) model was developed that explicitly accounts for flux leakage and axial end-effects, enabling the accurate characterization of large air gap fields. Leveraging this model, a Taguchi method-based optimization framework was implemented by balancing key parameters to maximize the torque density. This co-design strategy achieved a 21% increase in torque density, enabling higher torque transfer per unit volume. Experimental validation demonstrated a maximum torque of 920 Nm, with stable performance under simulated deep-sea conditions. This design establishes a new paradigm for high-power leak-free transmission in corrosive, high-pressure marine environments, advancing applications from deep-sea propulsion to offshore energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 5146 KiB  
Article
Comparative Study of Dual-Stator Permanent Magnet Machines with Different PM Arrangements and Rotor Topologies for Aviation Electric Propulsion
by Minchen Zhu, Lijian Wu, Dongliang Liu, Yiming Shen, Rongdeng Li and Hui Wen
Machines 2025, 13(4), 273; https://doi.org/10.3390/machines13040273 - 26 Mar 2025
Viewed by 551
Abstract
The dual-stator permanent magnet (DSPM) machine has proved to have high space utilization and a redundant structure, which can be beneficial to improving the fault tolerance and torque density performance. In this paper, three types of DSPM machines are proposed and compared, where [...] Read more.
The dual-stator permanent magnet (DSPM) machine has proved to have high space utilization and a redundant structure, which can be beneficial to improving the fault tolerance and torque density performance. In this paper, three types of DSPM machines are proposed and compared, where two sets of armature windings are wound in both inner/outer stators, producing more than one torque component compared with single-stator PM machines. The machine topology and operating principle of three DSPM machines are analyzed first. Next, feasible stator/rotor-pole number combinations are compared and determined. Furthermore, based on the finite-element (FE) method, both the electromagnetic performances of three DSPM machines under open-circuit and rated-load conditions after optimization are compared, aimed at generating maximum torque at fixed copper loss. The FE analyses indicate that the dual-stator consequent-pole permanent magnet (DSCPPM) machine generates maximum torque per PM volume, together with relatively high efficiency, which makes it a potentially hopeful candidate for low-speed and high-torque applications. In addition, a thermal analysis is carried out to confirm the validity of the design scheme. Finally, in order to verify the FE predictions, a prototype DSCPPM machine is manufactured and experimentally tested. Full article
Show Figures

Figure 1

14 pages, 2367 KiB  
Article
Optimization Design of Novel Consequent Pole Motor for Electric Power Steering System
by Sung-Jun Jo, Soo-Whang Baek and Kyu-Yun Hwang
Machines 2024, 12(12), 893; https://doi.org/10.3390/machines12120893 - 6 Dec 2024
Cited by 1 | Viewed by 935
Abstract
This paper proposes a novel consequent pole machine (CPM) to improve cogging torque, torque ripple, and torque per magnet volume compared to a conventional CPM. The proposed structure consists of a consequent pole rotor that reduces permanent magnet (PM) material. Different from conventional [...] Read more.
This paper proposes a novel consequent pole machine (CPM) to improve cogging torque, torque ripple, and torque per magnet volume compared to a conventional CPM. The proposed structure consists of a consequent pole rotor that reduces permanent magnet (PM) material. Different from conventional surface permanent magnet machines (SPMs) and conventional CPMs, the proposed CPM has an additional iron pole (AIP) extension under the magnet. This structure is suggested in order to increase the magnet pole angle while maintaining the magnet volume by partially substituting the magnet with iron. The design of the proposed machine was optimized to achieve higher torque and lower torque ripple. Comparisons of the proposed CPM with a conventional SPM and CPM were conducted to show the superiority of the proposed CPM utilizing AIP. The results showed that the proposed CPM exhibits 68% lower cogging torque, 75% lower torque ripple, and 16% higher torque per magnet volume with the same magnet volume compared with the conventional CPM. Full article
(This article belongs to the Special Issue Dual Winding Motors and Drives)
Show Figures

Figure 1

17 pages, 6697 KiB  
Article
Reduction of Torque Ripple and Axial Force in a Fully Pitched Axial Flux Switched Reluctance Motor Using a Double Stator Structure
by Cihan Alp Sahin
Appl. Sci. 2024, 14(19), 8658; https://doi.org/10.3390/app14198658 - 25 Sep 2024
Cited by 1 | Viewed by 1729
Abstract
Switched reluctance motors (SRMs) are highly advantageous electric motors for various industrial applications, particularly in electric vehicles (EVs), due to their winding-free rotor, magnet-free design, simplicity, and ease of manufacturing. The growing interest in axial flux SRMs (AFSRMs) is particularly noticeable, as axial [...] Read more.
Switched reluctance motors (SRMs) are highly advantageous electric motors for various industrial applications, particularly in electric vehicles (EVs), due to their winding-free rotor, magnet-free design, simplicity, and ease of manufacturing. The growing interest in axial flux SRMs (AFSRMs) is particularly noticeable, as axial flux electric motors with a flat shape and high aspect ratio have become commonly used in various industrial applications, including in-wheel motors for EVs. Structurally, AFSRMs significantly differ from radial flux SRMs (RFSRMs), but share the same electromagnetic operating principles. When compared to RFSRMs, AFSRMs generate higher torque per unit volume due to their more effective utilization of their air gap. In this study, the axial force on the rotor and torque ripple of a 6/4 pole fully pitched axial flux SRM (FP-AFSRM) were minimized by combining the advantages of “single-stator and single-rotor AFSRM” and “double-stator and single-rotor AFSRM” models. The proposed FP-AFSRM model, which has a “double-stator and single-rotor AFSRM” design and has the operating logic of a “single-stator and single-rotor AFSRM”, was analyzed using 3D finite element analysis. The results show that the torque ripple decreased (Δ % Trip) between (−30.42) and (−41.14), and the axial force on the rotor decreased between 17.61% and 25.4%. Full article
Show Figures

Graphical abstract

18 pages, 2370 KiB  
Article
The Use of Thyme and Lemongrass Essential Oils in Cereal Technology—Effect on Wheat Dough Behavior and Bread Properties
by Lucie Jurkaninová, Ivan Švec, Iva Kučerová, Michaela Havrlentová, Matěj Božik, Pavel Klouček and Olga Leuner
Appl. Sci. 2024, 14(11), 4831; https://doi.org/10.3390/app14114831 - 3 Jun 2024
Cited by 4 | Viewed by 1794
Abstract
Consumers are more interested in replacing commonly used chemical preservatives with natural substances. The effect of 5, 10, 20, 40, and 80 mg of thyme and lemongrass essential oils (THY and LMG, respectively) per 100 g of wheat flour was studied from the [...] Read more.
Consumers are more interested in replacing commonly used chemical preservatives with natural substances. The effect of 5, 10, 20, 40, and 80 mg of thyme and lemongrass essential oils (THY and LMG, respectively) per 100 g of wheat flour was studied from the viewpoints of dough rheology, dough leavening progress, and the results of laboratory baking trial. Changes in dough viscoelastic properties were evaluated by the Mixolab rheometer and the company software. The higher the thyme oil portion, the higher the dough structure destruction by kneading and heat input in torque point C2, and consecutively shorter stability of dough consistency (up to one-half of the values recorded for the control); reversely, the LMG did not affect both features verifiably. In the 90 min leavening test, a dough weight loss was decelerated by both essential oils similarly. During the baking test, the average volume of wheat small breads as control was evaluated on level 167 mL (bread yield 451 mL/100 g flour). Independently of the dose of the THY or LMG, small bread volumes oscillated between 148–168 and 135–161 mL (average bread yields 442 and 443 mL/100 g flour, respectively). The shelf life of the products with a higher portion of essential oil was extended by up to 7 days. Full article
(This article belongs to the Special Issue Trends in Grain Processing for Food Industry)
Show Figures

Figure 1

19 pages, 11123 KiB  
Article
Design of an Axial-Type Magnetic Gear with Auxiliary Flux-Enhancing Structure
by Fang Li, Hang Zhao and Xiangdong Su
Energies 2024, 17(9), 2207; https://doi.org/10.3390/en17092207 - 3 May 2024
Cited by 1 | Viewed by 1679
Abstract
In this paper, a new axial-type magnetic gear with an auxiliary flux-enhancing structure (AFS-AMG) is proposed. Compared to conventional AMGs, it has a higher torque density and higher permanent magnet (PM) utilization factor. Firstly, the design rules and operating principles of the proposed [...] Read more.
In this paper, a new axial-type magnetic gear with an auxiliary flux-enhancing structure (AFS-AMG) is proposed. Compared to conventional AMGs, it has a higher torque density and higher permanent magnet (PM) utilization factor. Firstly, the design rules and operating principles of the proposed AFS-AMG are elaborated. Then, the mapping relation between the radial-type magnetic gears (RMGs) and AMGs are elucidated. Compared to its counterparts in RMGs, the AFS-AMG achieves a small size. Then, the geometrical parameters of the AFS-AMG are optimized to obtain better electromagnetic performance, where the torque density per volume and per PM volume is adopted as the evaluation standard. Finally, three different AMG topologies are constructed in finite element analysis (FEA) software for comparison. It is proven that the AFS-AMG has the largest torque density per volume and per PM volume. Full article
Show Figures

Figure 1

18 pages, 14757 KiB  
Article
Surrogate-Based Multi-Objective Optimization of Flux-Focusing Halbach Coaxial Magnetic Gear
by Aran Shoaei, Farnam Farshbaf-Roomi and Qingsong Wang
Energies 2024, 17(3), 608; https://doi.org/10.3390/en17030608 - 26 Jan 2024
Cited by 6 | Viewed by 1371
Abstract
Due to their contact-free and low-maintenance features, magnetic gears (MGs) have been increasingly investigated to amplify the torque of electric motors in electric vehicles (EVs). In order to meet the requirements of propelling EVs, it is essential to design an MG with a [...] Read more.
Due to their contact-free and low-maintenance features, magnetic gears (MGs) have been increasingly investigated to amplify the torque of electric motors in electric vehicles (EVs). In order to meet the requirements of propelling EVs, it is essential to design an MG with a high torque density. In this paper, a novel flux-focusing Halbach coaxial MG (FFH-CMG) is proposed, which combines the advantages of flux focusing and Halbach permanent magnet (PM) arrays. The proposed structure has a higher torque performance and greater efficiency than conventional structures. A multi-objective design optimization based on a surrogate model is implemented to achieve the maximum volumetric torque density (VTD), torque-per-PM volume (TPMV), and efficiency, as well as the minimum torque ripple, in the proposed FFH-CMG. The employed optimization approach has a higher accuracy and is less time-consuming compared to the conventional optimization methods based on direct finite-element analysis (FEA). The performance of the proposed FFH-CMG is then investigated through 2D-FEA. According to the simulation results, the optimized FFH-CMG can achieve a VTD of 411 kNm/m3, and a TPMV of 830 kNm/m3, which are significantly larger than those of the existing MGs and make the proposed FFH-CMG very suitable for EV applications. Full article
(This article belongs to the Special Issue Advanced Electric Powertrain Technologies for Electric Vehicles)
Show Figures

Figure 1

19 pages, 6049 KiB  
Article
Performance Analysis of Conventional IPMSM and NCPM Based IPMSM
by Vijaya Kumar Jonnalagadda, Narasimhulu Tammminana, Raja Rao Guntu and Surender Reddy Salkuti
Clean Technol. 2023, 5(3), 1140-1158; https://doi.org/10.3390/cleantechnol5030057 - 21 Sep 2023
Viewed by 2349
Abstract
This paper proposes a NCPM (Nano-composite coated permanent magnets)-based IPMSM (Interior Permanent Magnet Synchronous Motor) electric drive system, especially applicable for electric vehicles (EV). For an EV, an increase in the “T/A (torque per ampere)” condition is highly recommended, as it directly affects [...] Read more.
This paper proposes a NCPM (Nano-composite coated permanent magnets)-based IPMSM (Interior Permanent Magnet Synchronous Motor) electric drive system, especially applicable for electric vehicles (EV). For an EV, an increase in the “T/A (torque per ampere)” condition is highly recommended, as it directly affects the maximum distance run by EV on a single charge. Due to NCPM, a substantial increase in magnetic flux intensity, resistance to corrosion and Curie temperature are observed. As a result, the proposed drive clearly exhibits a higher power to weight ratio. Also, it is capable of delivering higher T/A to the drive system without any considerable change in two important factors of EV: (1) mass and volume of the drive system (2) battery capacity of the drive system. Moreover, NCPM performance is less susceptible to temperature variation, which makes it an appropriate candidate for vehicular applications, where temperature inconsistency could be a common issue during working conditions. Also, NCPM-based IPMSM offers a quicker speed response than conventional IPMSM, thus providing higher acceleration, which is one of the important performance factors for vehicular applications. A vector controlled mathematical model of IPMSM and NCPM-based IPMSM is tested for various speed commands. Also, the NCPM-based IPMSM, in the proposed configuration, is fed from a three-level DCMLI (diode clamped multi-level inverter), as the drive system is considered for medium to high power applications. A comparative performance analysis is carried out between the proposed drive system and a conventional IPMSM-based drive system using MATLAB/SIMULINK to indicate the efficacy of the proposed configuration. Full article
Show Figures

Figure 1

13 pages, 6502 KiB  
Article
A Novel Brushless PM-Assisted DC Motor with Compound-Excited Circular Winding
by Mingyuan Jiang, Kangshuo Zhao, Weiyu Wang and Shuangxia Niu
Sustainability 2023, 15(18), 13924; https://doi.org/10.3390/su151813924 - 19 Sep 2023
Viewed by 1851
Abstract
A novel compound-excited brushless DC motor with polygonal circular winding is proposed in this paper. The key is that DC excitation is effectively coupled with PM excitation, significantly improving the torque density per PM volume and improving the machine flux weakening performance in [...] Read more.
A novel compound-excited brushless DC motor with polygonal circular winding is proposed in this paper. The key is that DC excitation is effectively coupled with PM excitation, significantly improving the torque density per PM volume and improving the machine flux weakening performance in the proposed design. This proposed design provides simplified control characteristics similar to a compound-excited DC motor. Further, the flux weakening of the proposed machine can be smoothly achieved using polygonal closed-loop circular winding and a lagging slot winding shifting method. Full article
Show Figures

Figure 1

21 pages, 11567 KiB  
Article
Performance Evaluation of Stator/Rotor-PM Flux-Switching Machines and Interior Rotor-PM Machine for Hybrid Electric Vehicles
by Wenfei Yu, Zhongze Wu and Wei Hua
World Electr. Veh. J. 2023, 14(6), 139; https://doi.org/10.3390/wevj14060139 - 26 May 2023
Cited by 4 | Viewed by 2763
Abstract
A three-phase interior permanent magnet (IPM) machine with 18-stator-slots/12-rotor-poles and concentrated armature winding is commercially employed as a 10 kW integrated-starter-generator in a commercial hybrid electric vehicle. For comprehensive and fair evaluation, a pair of flux-switching permanent magnet (FSPM) brushless machines, namely one [...] Read more.
A three-phase interior permanent magnet (IPM) machine with 18-stator-slots/12-rotor-poles and concentrated armature winding is commercially employed as a 10 kW integrated-starter-generator in a commercial hybrid electric vehicle. For comprehensive and fair evaluation, a pair of flux-switching permanent magnet (FSPM) brushless machines, namely one stator permanent magnet flux-switching (SPM-FS) machine, and one rotor permanent magnet flux-switching (RPM-FS) machine, are designed and compared under the same DC-link voltage and armature current density. Firstly, a SPM-FS machine is designed and compared with an IPM machine under the same torque requirement, and the performance indicates that they exhibit similar torque density; however, the former suffers from magnetic saturation and low utilization of permanent magnets (PMs). Thus, to eliminate significant stator iron saturation and improve the ratio of torque per PM mass, an RPM-machine is designed with the same overall volume of the IPM machine, where the PMs are moved from stator to rotor and a multi-objective optimization algorithm is applied in the machine optimization. Then, the electromagnetic performance of the three machines, considering end-effect, is compared, including air-gap flux density, torque ripple, overload capacity and flux-weakening ability. The predicted results indicate that the RPM-FS machine exhibits the best performance as a promising candidate for hybrid electric vehicles. Experimental results of both the IPM and SPM-FS machines are provided for validation. Full article
Show Figures

Figure 1

15 pages, 8056 KiB  
Article
Design of Spoke-Type Permanent Magnet Synchronous Generator for Low Capacity Wind Turbine Considering Magnetization and Cogging Torques
by Dong-Ho Kim, Hyun-Jo Pyo, Won-Ho Kim, Ju Lee and Ki-Doek Lee
Machines 2023, 11(2), 301; https://doi.org/10.3390/machines11020301 - 17 Feb 2023
Cited by 4 | Viewed by 3806
Abstract
Permanent magnet synchronous generators (PMSGs) with high output density per unit volume are becoming widespread in wind-power generation systems. Among them, spoke-type PMSGs are more challenging to magnetize than other PMSGs, owing to their structural characteristics. Magnetization performance is critical because it is [...] Read more.
Permanent magnet synchronous generators (PMSGs) with high output density per unit volume are becoming widespread in wind-power generation systems. Among them, spoke-type PMSGs are more challenging to magnetize than other PMSGs, owing to their structural characteristics. Magnetization performance is critical because it is directly related to the demagnetization and mass productivity of permanent magnets, and load performance is reduced when non-magnetization occurs due to the low magnetization performance. Additionally, the starting performance is crucial in wind turbines and is influenced by the cogging torque of the PMSG. This is because starting a wind turbine with a large cogging torque is more challenging. Therefore, this study proposes a spoke-type PMSG rotor shape design for low capacity wind turbines that considers magnetization and cogging torques. We analyzed the principle of magnetization and the factors influencing magnetization performance, and designed a rotor shape with improved magnetization performance. Additionally, we applied an asymmetric rotor barrier structure to reduce the cogging torque and analyze the performance of the final model using finite element analysis. We analyzed the temperature saturation during the operation of the final model using a thermal network method and validated the irreversible demagnetization accordingly. Full article
Show Figures

Figure 1

14 pages, 4420 KiB  
Article
Design and Analysis of 15 MW SPM Vernier Generator for Direct-Drive Wind Turbine Applications
by Abdur Rehman and Byungtaek Kim
Energies 2023, 16(3), 1094; https://doi.org/10.3390/en16031094 - 19 Jan 2023
Cited by 6 | Viewed by 2278
Abstract
This paper presents the design and an analysis of a surface PM vernier generator (SPMVG) for MW-scale direct-drive (DD) wind turbine application. An SPMVG has the advantage of higher torque density; however, especially at higher power ratings with increased electrical loadings, the power [...] Read more.
This paper presents the design and an analysis of a surface PM vernier generator (SPMVG) for MW-scale direct-drive (DD) wind turbine application. An SPMVG has the advantage of higher torque density; however, especially at higher power ratings with increased electrical loadings, the power factor worsens and there are some serious concerns including magnetic saturation of cores and PM demagnetization. These issues are directly related to machine design parameters such as PM dimensions, applied electrical loading, slot geometry and the choice of slot–pole combination. It is determined that depending on the PM thickness and a few other design variables, each slot–pole combination has an optimal value of specific electrical loading. The use of the optimal value of specific electrical loading ensures that the machine is not saturated, the performance is optimum and the power factor is not unnecessarily degraded. Moreover, under certain design constraints, design criteria are developed that ensure the proper choice of various entailed design variables. By using the developed design criteria, the trends of various electromagnetic performances with variation in the slot–pole combination are discussed. The obtained trends clearly show that each slot–pole combination offers a certain torque density and power factor; thus, it serves as a guide for the selection of the slot–pole combination considering the required torque density and/or certain power factor limit. Finally, by using the developed design approach, an SPMVG for rated power of 15 MW is designed; the design objectives are to maximize torque per volume with a power factor limit of 0.4. Moreover, the various aspects of the performances of the designed SPMVG are comprehensively compared against a conventional PM DD 15 MW generator. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

9 pages, 1922 KiB  
Article
Possibilities for the Development of an Electric Hybrid Skidder Based on Energy Consumption Measurement in Real Terrain Conditions
by Marijan Šušnjar, Zdravko Pandur, Marin Bačić, Kruno Lepoglavec, Hrvoje Nevečerel and Hrvoje Kopseak
Forests 2023, 14(1), 58; https://doi.org/10.3390/f14010058 - 28 Dec 2022
Cited by 1 | Viewed by 1797
Abstract
Growing demand for forest machines that cost less to operate than current compared to traditional hydraulic and mechanical ones, along with regulatory pressures for lower emissions, is increasing manufacturers’ interest in developing electric and hybrid drives. While purely electric drives of forest machines [...] Read more.
Growing demand for forest machines that cost less to operate than current compared to traditional hydraulic and mechanical ones, along with regulatory pressures for lower emissions, is increasing manufacturers’ interest in developing electric and hybrid drives. While purely electric drives of forest machines meet a lot of bottlenecks (costs of the electric components, battery durability, duration of charging, access to the electrical grid, size of batteries that can ensure enough energy for 8 h working time), electric hybrid drives offer a favorable solution for the propulsion of forestry machinery in terms of lower fuel consumption and improved efficiency. Among all forest vehicles, specialized forest tractors (skidders), so far, have not been considered for forest vehicles with hybrid drive capabilities. A skidder is a forest-articulated self-propelled vehicle for pulling trees or parts of trees. In most countries in southern Europe, the use of skidders equipped with forest winches is the most common technique for timber extraction. The first goal of the research is to develop methods for measuring the energy consumption of skidders at different operating tasks and under different field conditions. Research was performed on the skidder Ecotrac 140V (from Croatian producer Hittner Ltd.) during timber extraction in mountainous terrains in Lika–Senj County. The skidder was equipped with a measuring device WIGO-E (Telematic Data collector) gateway with an integrated GPS system, which ensured data were collected from sensors and motor and stored in a computer via CANBUS and data transfer with GSM to Web platforms. Additionally, a fuel-flow meter was installed on the skidder. Data on fuel consumption (mL), position (traveling route), detection of winch work, engine rpm (min−1), engine torque (% of max), throttle position (%), and engine temperature were measured with a sampling frequency of 5 s. Furthermore, skidder load volumes per cycles and slopes of tractor paths were constantly measured. The paper shows the skidder’s energy consumption per day, work cycle, and individual work procedure with regard to the size of the load, the slope of the tractor path, and the direction of movement based on overlapping and merging all measurement data. Using mathematical and simulation models of the drive with defined operating cycles obtained by measurement, the possibilities of the hybrid drive and the dimensions of the elements of the hybrid drive (internal combustion engine, electric motor, batteries, control unit) were determined and are presented in this paper. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

14 pages, 7850 KiB  
Article
Novel Multi-Physics Computational Simulation of a 10 kW Permanent Magnet Motor for Podded Propulsion
by Jang-Hyun Park, Tae-Woo Lee, Yeon-Ho Jeong and Do-Kwan Hong
Energies 2022, 15(18), 6607; https://doi.org/10.3390/en15186607 - 9 Sep 2022
Cited by 5 | Viewed by 2294
Abstract
This paper presents a 10 kW, 12-slot 10-pole surface-mounted permanent magnet synchronous motor (SPMSM) design with fractional-slot concentrated winding for a podded propulsion system. Its load is a propeller that is proportional to the square of the rotational speed and the fifth power [...] Read more.
This paper presents a 10 kW, 12-slot 10-pole surface-mounted permanent magnet synchronous motor (SPMSM) design with fractional-slot concentrated winding for a podded propulsion system. Its load is a propeller that is proportional to the square of the rotational speed and the fifth power of the propeller diameter. Taking this into account, three SPMSMs with rated rotational speeds of 600, 1200, and 1800 rpm with the same rated output power of 10 kW were analyzed. These were designed under the same conditions (i.e., torque per rotor volume, air-gap length, current density, power factor, fill-factor, and supply voltage). Based on the SPMSMs designed by electromagnetic analysis, the housing of a podded propulsor for each SPMSM was modeled for mechanical analysis, including such parameters as forced vibration, radiated noise, and modal acoustics analysis in air and water. From the modal acoustics analysis, it is confirmed that the natural frequencies of a structure in water are lower than those in air because of the added mass effect of water. Full article
(This article belongs to the Special Issue Regulations and Advances in High Performance Electric Motor and Drive)
Show Figures

Figure 1

13 pages, 3605 KiB  
Article
A Multimethod Assessment of a New Customized Heat-Treated Nickel–Titanium Rotary File System
by Emmanuel J. N. L. Silva, Jorge N. R. Martins, Natasha C. Ajuz, Henrique S. Antunes, Victor T. L. Vieira, Francisco M. Braz Fernandes, Felipe G. Belladonna and Marco A. Versiani
Materials 2022, 15(15), 5288; https://doi.org/10.3390/ma15155288 - 31 Jul 2022
Cited by 15 | Viewed by 2805
Abstract
This study aimed to compare three endodontic rotary systems. The new Genius Proflex (25/0.04), Vortex Blue (25/0.04), and TruNatomy (26/0.04v) instruments (n = 41 per group) were analyzed regarding design, metallurgy, and mechanical performance, while shaping ability (untouched canal walls, volume of removed [...] Read more.
This study aimed to compare three endodontic rotary systems. The new Genius Proflex (25/0.04), Vortex Blue (25/0.04), and TruNatomy (26/0.04v) instruments (n = 41 per group) were analyzed regarding design, metallurgy, and mechanical performance, while shaping ability (untouched canal walls, volume of removed dentin and hard tissue debris) was tested in 36 anatomically matched root canals of mandibular molars. The results were compared using one-way ANOVA, post hoc Tukey, and Kruskal–Wallis tests, with a significance level set at 5%. All instruments showed symmetrical cross-sections, with asymmetrical blades, no radial lands, no major defects, and almost equiatomic nickel–titanium ratios. Differences were noted in the number of blades, helical angles, cross-sectional design, and tip geometry. The Genius Proflex and the TruNatomy instruments had the highest and lowest R-phase start and finish temperatures, as well as the highest and lowest time and cycles to fracture (p < 0.05), respectively. The TruNatomy had the highest flexibility (p < 0.05), while no differences were observed between the Genius Proflex and the Vortex Blue (p > 0.05). No differences among tested systems were observed regarding the maximum torque, angle of rotation prior to fracture, and shaping ability (p > 0.05). The instruments showed similarities and differences in their design, metallurgy, and mechanical properties. However, their shaping ability was similar, without any clinically significant errors. Understanding these characteristics may help clinicians to make decisions regarding which instrument to choose for a particular clinical situation. Full article
(This article belongs to the Special Issue Advances and Applications of Nickel-Titanium Alloys in Medical Fields)
Show Figures

Figure 1

Back to TopTop