Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = toothed whales

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1771 KiB  
Article
Essential Trace Elements in Three Species of Dolphins Stranded in the Croatian Part of the Adriatic Sea from 1995 to 2013
by Maja Đokić, Nina Bilandžić, Marija Sedak, Tomislav Bolanča, Tomislav Gomerčić, Martina Đuras and Miroslav Benić
Animals 2025, 15(11), 1535; https://doi.org/10.3390/ani15111535 - 23 May 2025
Viewed by 564
Abstract
Trace elements are widely distributed in the environment and are considered essential when their deficiency leads to impaired biological function. This study aimed to quantify concentrations of two essential trace elements—copper (Cu) and zinc (Zn)—in the tissues of three toothed whale (Odontoceti [...] Read more.
Trace elements are widely distributed in the environment and are considered essential when their deficiency leads to impaired biological function. This study aimed to quantify concentrations of two essential trace elements—copper (Cu) and zinc (Zn)—in the tissues of three toothed whale (Odontoceti) species: bottlenose (Tursiops truncatus), striped (Stenella coeruleoalba), and Risso’s dolphins (Grampus griseus) found deceased along the Croatian coast of the Adriatic Sea between 1995 and 2013. A total of 190 individuals were analyzed, comprising 159 bottlenose, 25 striped, and 6 Risso’s dolphins. Concentrations of Cu and Zn were determined in liver, muscle, kidney, skin, lung, spleen, and fat tissues using inductively coupled plasma optical emission spectrometry (ICP-OES). The highest Cu concentrations were observed in the liver and kidneys of bottlenose dolphins, followed by striped and Risso’s dolphins. Zn concentrations were the highest in the skin of bottlenose and striped dolphins, whereas the liver exhibited the highest levels in Risso’s dolphins. In 14 bottlenose and 2 striped dolphins, Cu and Zn concentrations in liver tissue exceeded critical thresholds typically regulated by homeostatic mechanisms. Regression analysis indicated significant relationships between element concentrations, and both body length and body mass. In addition, trace element concentrations were positively correlated across individuals within the same tissue type, as well as among different tissues within the same individual. Overall, Cu and Zn concentrations exhibited a declining trend over the studied period across all tissue types. These findings provide important baseline data for future ecotoxicological investigations and contribute to conservation strategies for cetacean populations inhabiting the Adriatic Sea. Full article
(This article belongs to the Special Issue Recent Progress in Anatomy and Pathology of Marine Mammals)
Show Figures

Graphical abstract

10 pages, 11872 KiB  
Article
Citizen Science Illuminates a City-Dwelling Whale: A Report on the Large Aggregation of Narrow-Ridged Finless Porpoises in Tokyo Bay, Japan
by Gen Nakamura and Ayumi Hirose
Fishes 2025, 10(5), 237; https://doi.org/10.3390/fishes10050237 - 19 May 2025
Viewed by 1133
Abstract
Tokyo Bay is one of the busiest ocean areas for human activity worldwide, characterized by a high density of maritime traffic and industrial development. This area is also recognized as the habitat of the narrow-ridged finless porpoise, an endangered toothed whale. Although the [...] Read more.
Tokyo Bay is one of the busiest ocean areas for human activity worldwide, characterized by a high density of maritime traffic and industrial development. This area is also recognized as the habitat of the narrow-ridged finless porpoise, an endangered toothed whale. Although the existence of this species has been recognized, its scientific data, such as population size and geographic distribution, are limited in the region. Therefore, using social media, we initiated a research project to collect sighting information on this species in Tokyo Bay. As a result, 27 valid pieces of information on the finless porpoises were collected from July 2024 to the end of February 2025. The sightings were reported mainly in the waters north of Futtsu Cape, indicating that this species is localized in the northern part of Tokyo Bay. Also, most of the reported sightings were of groups of wo or more animals. Notably, a school of at least 30 animals was recorded, marking the most prominent school ever observed in the region and the third largest in Japan. This study highlights the importance of the northern region of Tokyo Bay as a habitat for this species. The effective integration of citizen science with scientific and quantitative research will enhance our understanding of the life history of this endangered species, thereby supporting conservation efforts. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Graphical abstract

14 pages, 26658 KiB  
Article
Retrieving Palaeoecological Information from Historic Fossil Finds: A Taphonomic Cold Case from Orciano Pisano (Central Italy) Reveals a Distinctive Trophic Interaction in the Pliocene Mediterranean Sea
by Edoardo Terranova, Giovanni Bianucci, Marco Merella, Chiara Sorbini and Alberto Collareta
J. Mar. Sci. Eng. 2025, 13(3), 508; https://doi.org/10.3390/jmse13030508 - 5 Mar 2025
Viewed by 1130
Abstract
Evidence of trophic interactions between sharks and cetaceans is rather widespread in the fossil record, consisting as it does of tooth marks on bones and rarer teeth or tooth fragments embedded in (or associated with) skeletal remains. Here, we reappraise a partial mysticete [...] Read more.
Evidence of trophic interactions between sharks and cetaceans is rather widespread in the fossil record, consisting as it does of tooth marks on bones and rarer teeth or tooth fragments embedded in (or associated with) skeletal remains. Here, we reappraise a partial mysticete (baleen whale) forelimb that was collected more than a century ago from Pliocene deposits exposed at the celebrated fossil locality of Orciano Pisano (Tuscany, central Italy). This specimen, which is revealed to originate from an early juvenile individual, features shark tooth marks on both the humerus and radius. Whether these traces are due to active predation or to scavenging cannot be ascertained. During the Pliocene, the Mediterranean Basin was inhabited by a diverse elasmobranch fauna, including a number of mammal-eating forms that no longer inhabit the Mediterranean Sea (e.g., Galeocerdo and some Carcharhinus spp. as well as the extinct Parotodus). Early juvenile mysticetes were also likely more common than today in the Pliocene Mediterranean Sea, which may have contained balaenid and balaenopterid calving grounds, thus providing the Mediterranean mammal-eating sharks with vulnerable, energetically valuable potential prey items. Thus, our results evoke a kind of trophic interaction that was likely common and ecologically relevant in the Pliocene Mediterranean Sea. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

29 pages, 19107 KiB  
Article
Whale Collections and Exhibitions at the Natural History Museum of the University of Pisa (Italy)
by Simone Farina, Chiara Sorbini, Patrizia Scaglia, Marco Merella, Alberto Collareta and Giovanni Bianucci
Heritage 2024, 7(9), 4933-4961; https://doi.org/10.3390/heritage7090233 - 9 Sep 2024
Cited by 1 | Viewed by 3036
Abstract
The Natural History Museum of the University of Pisa hosts the most important osteological collection of extant cetaceans in Italy as well as one of the most relevant all over Europe. Furthermore, it also preserves a significant palaeontological collection that includes several holotypes [...] Read more.
The Natural History Museum of the University of Pisa hosts the most important osteological collection of extant cetaceans in Italy as well as one of the most relevant all over Europe. Furthermore, it also preserves a significant palaeontological collection that includes several holotypes and otherwise unique specimens of Archaeoceti (archaic cetaceans), Mysticeti (baleen whales) and Odontoceti (toothed whales). Here, we provide a historical overview of these collections and the corresponding displays, with special attention paid to the origin, development and design of the ‘Archaeocete Hall’ and ‘Cetacean Gallery’. These comprise what may be the largest exhibition worldwide among those dedicated exclusively to cetaceans—one that includes 28 complete skeletons and one skull belonging to 27 extant species as well as fossils of nine extinct species. Our review also reveals that the museum exhibitions feature the oldest known specimen of Mesoplodon bowdoini and the type specimen of Ziphius savi, the latter being a validly described species that is currently regarded as a junior synonym of Ziphius cavirostris. Also significant is the display of several holotype specimens of fossil species such as the protocetid archaeocete Aegyptocetus tarfa, the balaenid baleen whales Balaena montalionis and Balaenula astensis, and the monodontid Casatia thermophila. The Archaeocete Hall and Cetacean Gallery are highly appreciated by visitors as well as perused by the museum’s educational team. The online archiving of 3D models of many of the MSNUP specimens on the open-access digital repository Sketchfab and their subsequent dissemination through the Wikimedia platforms has led to the creation of a major osteological resource—one that is broadly accessible to internet users worldwide. Full article
Show Figures

Figure 1

10 pages, 1755 KiB  
Brief Report
Reproductive Cessation and Post-Reproductive Lifespan in Honeybee Workers
by Karolina Kuszewska, Anna Woloszczuk and Michal Woyciechowski
Biology 2024, 13(5), 287; https://doi.org/10.3390/biology13050287 - 24 Apr 2024
Cited by 2 | Viewed by 1899
Abstract
The post-reproductive lifespan is an evolutionary enigma because the cessation of reproduction in animals seems contrary to the maximization of Darwinian fitness. Several theories aim to explain the evolution of menopause, one of which suggests that females of a certain age receive more [...] Read more.
The post-reproductive lifespan is an evolutionary enigma because the cessation of reproduction in animals seems contrary to the maximization of Darwinian fitness. Several theories aim to explain the evolution of menopause, one of which suggests that females of a certain age receive more fitness benefits via indirect selection (kin selection) than they would directly from continuing reproduction. Post-reproductive lifespans are not very common in nature but have been described in humans, nonhuman primates, a few species of toothed whales, guppies, and in some insect societies consisting of clonal colony members, such as aphid and ant societies. Here, we provide evidence that menopause also exists in honeybee societies. Our study shows that workers with a short life expectancy (older and/or injured workers) invest fewer resources and less time in their own reproduction than workers with a long life expectancy (younger and/or uninjured workers), even if their colony is hopelessly queenless. These results are consistent with the kin selection explanation for the evolution of menopause and help us understand the net effects of relatedness and social cooperation in animals. Full article
(This article belongs to the Section Behavioural Biology)
Show Figures

Figure 1

15 pages, 4514 KiB  
Article
Vocalization Pattern and Echolocation Signal Characteristics of Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis) in Captivity
by Jia Chen, Haiying Liang, Danqing Lin, Jialu Zhang, Dong Li, Kun Ye, Wenfei Lu and Kai Liu
Fishes 2024, 9(4), 119; https://doi.org/10.3390/fishes9040119 - 28 Mar 2024
Viewed by 2106
Abstract
The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP) possesses the ability to detect distance through echolocation signals, and its sonar signal signature is adjusted to detect different targets. In order to understand the vocal characteristics of YFPs in different behavioral states [...] Read more.
The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP) possesses the ability to detect distance through echolocation signals, and its sonar signal signature is adjusted to detect different targets. In order to understand the vocal characteristics of YFPs in different behavioral states and their differential performance, we recorded the vocal activities of YFPs in captivity during free-swimming, feeding, and nighttime resting and quantified their signal characteristic parameters for statistical analysis and comparison. The results showed that the number of vocalizations of the YFPs in the daytime free-swimming state was lower than that in the feeding and nighttime resting states, and the echolocation signals emitted in these three states showed significant differences in the −10 dB duration, −3 dB bandwidth, −10 dB bandwidth, and root-mean-square (RMS) bandwidth. Analysis of the resolution of the echolocation signals of the YFPs using the ambiguity function indicated that their distance resolution could reach the millimeter level. These results indicate that the echolocation signal characteristics of YFPs present diurnal differences and that they can be adjusted with changes in their detection targets. The results of this study can provide certain scientific references and foundations for the studies of tooth whale behavioral acoustics, and provide relevant scientific guidance for the conservation and management of YFPs. Full article
(This article belongs to the Special Issue Underwater Acoustic Technologies for Sustainable Fisheries)
Show Figures

Figure 1

14 pages, 2999 KiB  
Article
Microplastics Prevalence in Different Cetaceans Stranded along the Western Taiwan Strait
by Reyilamu Aierken, Yuke Zhang, Qianhui Zeng, Liming Yong, Jincheng Qu, Haoran Tong, Xianyan Wang and Liyuan Zhao
Animals 2024, 14(4), 641; https://doi.org/10.3390/ani14040641 - 17 Feb 2024
Cited by 2 | Viewed by 1853
Abstract
Microplastics (MPs) pollution is of global concern, which poses serious threats to various marine organisms, including many threatened apex predators. In this study, MPs were investigated from nine cetaceans of four different species, comprising one common dolphin (Delphinus delphis), two pygmy [...] Read more.
Microplastics (MPs) pollution is of global concern, which poses serious threats to various marine organisms, including many threatened apex predators. In this study, MPs were investigated from nine cetaceans of four different species, comprising one common dolphin (Delphinus delphis), two pygmy sperm whales (Kogia breviceps), one ginkgo-toothed beaked whale (Mesoplodon ginkgodens), and five Indo-Pacific humpback dolphins (Sousa chinensis) stranded along the western coast of the Taiwan Strait from the East China Sea based on Fourier transform infrared (FTIR) spectroscopy analysis. Mean abundances of 778 identified MPs items were 86.44 ± 12.22 items individual−1 and 0.43 ± 0.19 items g−1 wet weight of intestine contents, which were found predominantly to be transparent, fiber-shaped polyethylene terephthalate (PET) items usually between 0.5 and 5 mm. The abundance of MPs was found at a slightly higher level and significantly correlated with intestine contents mass (p = 0.0004*). The MPs source was mainly likely from synthetic fibers-laden sewage discharged from intense textile industries. Our report represents the first study of MPs in pelagic and deep-diving cetaceans in China, which not only adds baseline data on MPs for cetaceans in Asian waters but also highlights the further risk assessment of MPs consumption in these threatened species. Full article
(This article belongs to the Topic Livestock and Microplastics)
Show Figures

Figure 1

28 pages, 5678 KiB  
Article
Molecular Evidence for Relaxed Selection on the Enamel Genes of Toothed Whales (Odontoceti) with Degenerative Enamel Phenotypes
by Jason G. Randall, John Gatesy, Michael R. McGowen and Mark S. Springer
Genes 2024, 15(2), 228; https://doi.org/10.3390/genes15020228 - 10 Feb 2024
Cited by 2 | Viewed by 2450
Abstract
Different species of toothed whales (Odontoceti) exhibit a variety of tooth forms and enamel types. Some odontocetes have highly prismatic enamel with Hunter-Schreger bands, whereas enamel is vestigial or entirely lacking in other species. Different tooth forms and enamel types are associated with [...] Read more.
Different species of toothed whales (Odontoceti) exhibit a variety of tooth forms and enamel types. Some odontocetes have highly prismatic enamel with Hunter-Schreger bands, whereas enamel is vestigial or entirely lacking in other species. Different tooth forms and enamel types are associated with alternate feeding strategies that range from biting and grasping prey with teeth in most oceanic and river dolphins to the suction feeding of softer prey items without the use of teeth in many beaked whales. At the molecular level, previous studies have documented inactivating mutations in the enamel-specific genes of some odontocete species that lack complex enamel. At a broader scale, however, it is unclear whether enamel complexity across the full diversity of extant Odontoceti correlates with the relative strength of purifying selection on enamel-specific genes. Here, we employ sequence alignments for seven enamel-specific genes (ACP4, AMBN, AMELX, AMTN, ENAM, KLK4, MMP20) in 62 odontocete species that are representative of all extant families. The sequences for 33 odontocete species were obtained from databases, and sequences for the remaining 29 species were newly generated for this study. We screened these alignments for inactivating mutations (e.g., frameshift indels) and provide a comprehensive catalog of these mutations in species with one or more inactivated enamel genes. Inactivating mutations are rare in Delphinidae (oceanic dolphins) and Platanistidae/Inioidea (river dolphins) that have higher enamel complexity scores. By contrast, mutations are much more numerous in clades such as Monodontidae (narwhal, beluga), Ziphiidae (beaked whales), Physeteroidea (sperm whales), and Phocoenidae (porpoises) that are characterized by simpler enamel or even enamelless teeth. Further, several higher-level taxa (e.g., Hyperoodon, Kogiidae, Monodontidae) possess shared inactivating mutations in one or more enamel genes, which suggests loss of function of these genes in the common ancestor of each clade. We also performed selection (dN/dS) analyses on a concatenation of these genes and used linear regression and Spearman’s rank-order correlation to test for correlations between enamel complexity and two different measures of selection intensity (# of inactivating mutations per million years, dN/dS values). Selection analyses revealed that relaxed purifying selection is especially prominent in physeteroids, monodontids, and phocoenids. Linear regressions and correlation analyses revealed a strong negative correlation between selective pressure (dN/dS values) and enamel complexity. Stronger purifying selection (low dN/dS) is found on branches with more complex enamel and weaker purifying selection (higher dN/dS) occurs on branches with less complex enamel or enamelless teeth. As odontocetes diversified into a variety of feeding modes, in particular, the suction capture of prey, a reduced reliance on the dentition for prey capture resulted in the relaxed selection of genes that are critical to enamel development. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1745 KiB  
Article
TDP-43 and Alzheimer’s Disease Pathology in the Brain of a Harbor Porpoise Exposed to the Cyanobacterial Toxin BMAA
by Susanna P. Garamszegi, Daniel J. Brzostowicki, Thomas M. Coyne, Regina T. Vontell and David A. Davis
Toxins 2024, 16(1), 42; https://doi.org/10.3390/toxins16010042 - 12 Jan 2024
Cited by 11 | Viewed by 3832
Abstract
Cetaceans are well-regarded as sentinels for toxin exposure. Emerging studies suggest that cetaceans can also develop neuropathological changes associated with neurodegenerative disease. The occurrence of neuropathology makes cetaceans an ideal species for examining the impact of marine toxins on the brain across the [...] Read more.
Cetaceans are well-regarded as sentinels for toxin exposure. Emerging studies suggest that cetaceans can also develop neuropathological changes associated with neurodegenerative disease. The occurrence of neuropathology makes cetaceans an ideal species for examining the impact of marine toxins on the brain across the lifespan. Here, we describe TAR DNA-binding protein 43 (TDP-43) proteinopathy and Alzheimer’s disease (AD) neuropathological changes in a beached harbor porpoise (Phocoena phocoena) that was exposed to a toxin produced by cyanobacteria called β-N-methylamino-L-alanine (BMAA). We found pathogenic TDP-43 cytoplasmic inclusions in neurons throughout the cerebral cortex, midbrain and brainstem. P62/sequestosome-1, responsible for the autophagy of misfolded proteins, was observed in the amygdala, hippocampus and frontal cortex. Genes implicated in AD and TDP-43 neuropathology such as APP and TARDBP were expressed in the brain. AD neuropathological changes such as amyloid-β plaques, neurofibrillary tangles, granulovacuolar degeneration and Hirano bodies were present in the hippocampus. These findings further support the development of progressive neurodegenerative disease in cetaceans and a potential causative link to cyanobacterial toxins. Climate change, nutrient pollution and industrial waste are increasing the frequency of harmful cyanobacterial blooms. Cyanotoxins like BMAA that are associated with neurodegenerative disease pose an increasing public health risk. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

164 pages, 259734 KiB  
Article
New Skeletons of the Ancient Dolphin Xenorophus sloanii and Xenorophus simplicidens sp. nov. (Mammalia, Cetacea) from the Oligocene of South Carolina and the Ontogeny, Functional Anatomy, Asymmetry, Pathology, and Evolution of the Earliest Odontoceti
by Robert W. Boessenecker and Jonathan H. Geisler
Diversity 2023, 15(11), 1154; https://doi.org/10.3390/d15111154 - 20 Nov 2023
Cited by 11 | Viewed by 9433
Abstract
The early diverging, dolphin-sized, cetacean clade Xenorophidae are a short-lived radiation of toothed whales (Odontoceti) that independently evolved two features long thought to be odontocete synapomorphies: the craniofacial and cochlear morphology underlying echolocation and retrograde cranial telescoping (i.e., posterior migration of the viscerocranium). [...] Read more.
The early diverging, dolphin-sized, cetacean clade Xenorophidae are a short-lived radiation of toothed whales (Odontoceti) that independently evolved two features long thought to be odontocete synapomorphies: the craniofacial and cochlear morphology underlying echolocation and retrograde cranial telescoping (i.e., posterior migration of the viscerocranium). This family was based on Xenorophus sloanii, which, for the past century, has been known only by a partial skull lacking a braincase and tympanoperiotics, collected around 1900 from the Ashley Formation (28–29 Ma, Rupelian) near Ladson, South Carolina. A large collection of new skulls and skeletons (ChM PV 5022, 7677; CCNHM 104, 168, 1077, 5995) from the Ashley Formation considerably expands the hypodigm for this species, now the best known of any stem odontocete and permitting evaluation of intraspecific variation and ontogenetic changes. This collection reveals that the holotype (USNM 11049) is a juvenile. Xenorophus sloanii is a relatively large odontocete (70–74 cm CBL; BZW = 29–31 cm; estimated body length 2.6–3 m) with a moderately long rostrum (RPI = 2.5), marked heterodonty, limited polydonty (13–14 teeth), prominent sagittal crest and intertemporal constriction, and drastically larger brain size than basilosaurid archaeocetes (EQ = 2.9). Dental morphology, thickened cementum, a dorsoventrally robust rostrum, and thick rugose enamel suggest raptorial feeding; oral pathology indicates traumatic tooth loss associated with mechanically risky predation attempts. Ontogenetic changes include increased palatal vomer exposure; fusion of the nasofrontal, occipito-parietal, and median frontal sutures; anterior lengthening of the nasals; elaboration of the nuchal crests; and blunting and thickening of the antorbital process. The consistent deviation of the rostrum 2–5° to the left and asymmetry of the palate, dentition, neurocranium, mandibles, and vertebrae in multiple specimens of Xenorophus sloanii suggest novel adaptations for directional hearing driven by the asymmetrically oriented pan bones of the mandibles. A second collection consisting of a skeleton and several skulls from the overlying Chandler Bridge Formation (24–23 Ma, Chattian) represents a new species, Xenorophus simplicidens n. sp., differing from Xenorophus sloanii in possessing shorter nasals, anteroposteriorly shorter supraorbital processes of the frontal, and teeth with fewer accessory cusps and less rugose enamel. Phylogenetic analysis supports monophyly of Xenorophus, with specimens of Xenorophus simplicidens nested within paraphyletic X. sloanii; in concert with stratigraphic data, these results support the interpretation of these species as part of an anagenetic lineage. New clade names are provided for the sister taxon to Xenorophidae (Ambyloccipita), and the odontocete clade excluding Xenorophidae, Ashleycetus, Mirocetus, and Simocetidae (Stegoceti). Analyses of tooth size, body size, temporal fossa length, orbit morphology, and the rostral proportion index, prompted by well-preserved remains of Xenorophus, provide insight into the early evolution of Odontoceti. Full article
(This article belongs to the Special Issue Evolution of Crown Cetacea)
Show Figures

Figure 1

12 pages, 2015 KiB  
Article
Life History Parameters to Inform Pattern of Prenatal Investment in Marine Mammals
by Xiaoyu Huang, Mingming Liu, Samuel T. Turvey, Mingli Lin and Songhai Li
J. Mar. Sci. Eng. 2023, 11(11), 2086; https://doi.org/10.3390/jmse11112086 - 31 Oct 2023
Viewed by 1865
Abstract
Marine mammals are a diverse group of aquatic animals that exhibit wide variation in body size, living conditions, breeding habitat, social behaviour and phylogeny. Although case studies about prenatal investment in cetaceans and pinnipeds have been investigated, comparative studies across different marine mammal [...] Read more.
Marine mammals are a diverse group of aquatic animals that exhibit wide variation in body size, living conditions, breeding habitat, social behaviour and phylogeny. Although case studies about prenatal investment in cetaceans and pinnipeds have been investigated, comparative studies across different marine mammal taxonomic groups have not yet been conducted systematically. Here, six life history parameters from 75 marine mammal species were collected based on a meta-analysis of the existing literature, and prenatal investment patterns for different taxonomic groups were explored using an unsupervised artificial neural network of a self-organizing map (SOM). Most marine mammal species can be clearly divided into two clusters of small-bodied taxa (small-bodied toothed whales, pinnipeds) and large-bodied taxa (baleen whales, sperm whales and beaked whales, large-bodied toothed whales) based on their distribution within SOM feature maps. Gestation periods and breeding intervals are significantly shorter in pinnipeds than in small-bodied toothed dolphins despite being similar in body size, indicating their adaption to birthing and nursing on land or ice floes. Specific deep-dive feeding behaviour seems to have no impact on the prenatal investment of beaked whales and sperm whales, as these species exhibit a similar capital breeding strategy to baleen whales. Medium-bodied sirenians adopt an intermediate strategy between small-bodied and large-bodied toothed whales, suggesting their prenatal investment strategy is not affected by herbivorous habits. Overall, our results support the body-size hypothesis and breeding-substrate hypothesis and indicate that prenatal investment strategies of marine mammals are possibly not influenced by feeding habits or social behaviour. We suggest that effective conservation measures for small-bodied toothed whales and pinnipeds should prioritize the protection of habitats and minimize human disturbance, whereas conservation measures for large-bodied whales and beaked whales should focus on strategies to prevent substantial declines in population size. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

15 pages, 15091 KiB  
Article
Structured-Light 3D Scanning as a Tool for Creating a Digital Collection of Modern and Fossil Cetacean Skeletons (Natural History Museum, University of Pisa)
by Marco Merella, Simone Farina, Patrizia Scaglia, Gaia Caneve, Giada Bernardini, Alice Pieri, Alberto Collareta and Giovanni Bianucci
Heritage 2023, 6(10), 6762-6776; https://doi.org/10.3390/heritage6100353 - 13 Oct 2023
Cited by 13 | Viewed by 5696
Abstract
The Natural History Museum of the University of Pisa hosts one of the most important osteological collections of cetaceans all over Europe, as well as a conspicuous paleontological collection, including several holotypes of Archaeoceti (archaic whales), Mysticeti (baleen whales), and Odontoceti (toothed whales). [...] Read more.
The Natural History Museum of the University of Pisa hosts one of the most important osteological collections of cetaceans all over Europe, as well as a conspicuous paleontological collection, including several holotypes of Archaeoceti (archaic whales), Mysticeti (baleen whales), and Odontoceti (toothed whales). In order to valorize these collections, we used 3D technologies to digitize the most relevant specimens, create an online archive, and make the resulting models accessible and shareable with the broadest audience possible through social media profiles and internet browsers. Tens of specimens were surface-scanned using a structured-light scanner, and the resulting 3D models were processed for post-production through the 3D software Blender whenever necessary. All the 3D scans were then gathered in the online repository Sketchfab, which was chosen for its user-friendly interface and common usage among museum institutions. The result is a web page that hosts 35 surface scans of extant and extinct cetacean specimens. This Sketchfab account was linked to the social media (Facebook and Instagram) profiles of the MSNUP to increase the visibility of the museum and promote the dissemination of its outstanding collections of modern and fossil cetaceans. The preliminary results of such an effort are encouraging in terms of views and online interactions. Hopefully, this effort of digitization and online archiving will soon extend to other vertebrate collections. Full article
(This article belongs to the Special Issue Museums for Heritage Preservation and Communication)
Show Figures

Figure 1

14 pages, 1920 KiB  
Article
The Hypothalamus of the Beaked Whales: The Paraventricular, Supraoptic, and Suprachiasmatic Nuclei
by Simona Sacchini, Cristiano Bombardi, Manuel Arbelo and Pedro Herráez
Biology 2023, 12(10), 1319; https://doi.org/10.3390/biology12101319 - 9 Oct 2023
Cited by 1 | Viewed by 3359
Abstract
The hypothalamus is the body’s control coordinating center. It is responsible for maintaining the body’s homeostasis by directly influencing the autonomic nervous system or managing hormones. Beaked whales are the longest divers among cetaceans and their brains are rarely available for study. Complete [...] Read more.
The hypothalamus is the body’s control coordinating center. It is responsible for maintaining the body’s homeostasis by directly influencing the autonomic nervous system or managing hormones. Beaked whales are the longest divers among cetaceans and their brains are rarely available for study. Complete hypothalamic samples from a female Cuvier’s beaked whale and a male Blainville’s beaked whale were processed to investigate the paraventricular (PVN) and supraoptic (SON) nuclei, using immunohistochemical staining against vasopressin. The PVN occupied the preoptic region, where it reached its maximum size, and then regressed in the anterior or suprachiasmatic region. The SON was located from the preoptic to the tuberal hypothalamic region, encompassing the optical structures. It was composed of a retrochiasmatic region (SONr), which bordered and infiltrated the optic tracts, and a principal region (SONp), positioned more medially and dorsally. A third vasopressin-positive nucleus was also detected, i.e., the suprachiasmatic nucleus (SCN), which marked the end of the SON. This is the first description of the aforementioned nuclei in beaked whales—and in any marine mammals—as well as their rostro-caudal extent and immunoreactivity. Moreover, the SCN has been recognized for the first time in any marine mammal species. Full article
(This article belongs to the Special Issue New Era in Neuroscience)
Show Figures

Figure 1

14 pages, 1412 KiB  
Article
Homoplasy of Retrotransposon Insertions in Toothed Whales
by Liliya Doronina, Lynn Ogoniak and Jürgen Schmitz
Genes 2023, 14(9), 1830; https://doi.org/10.3390/genes14091830 - 21 Sep 2023
Cited by 3 | Viewed by 2610
Abstract
Retrotransposon insertion patterns facilitate a virtually homoplasy-free picture of phylogenetic history. Still, a few most likely random parallel insertions or deletions result in rare cases of homoplasy in primates. The following question arises: how frequent is retrotransposon homoplasy in other phylogenetic clades? Here, [...] Read more.
Retrotransposon insertion patterns facilitate a virtually homoplasy-free picture of phylogenetic history. Still, a few most likely random parallel insertions or deletions result in rare cases of homoplasy in primates. The following question arises: how frequent is retrotransposon homoplasy in other phylogenetic clades? Here, we derived genome insertion data of toothed whales to evaluate the extension of homoplasy in a representative laurasiatherian group. Among more than a thousand extracted and aligned retrotransposon loci, we detected 37 cases of precise parallel insertions in species that are separated by over more than 10 million years, a time frame which minimizes the effects of incomplete lineage sorting. We compared the phylogenetic signal of insertions with the flanking sequences of these loci to further exclude potential polymorphic loci derived by incomplete lineage sorting. We found that the phylogenetic signals of retrotransposon insertion patterns exhibiting true homoplasy differ from the signals of their flanking sequences. In toothed whales, precise parallel insertions account for around 0.18–0.29% of insertion cases, which is about 12.5 times the frequency of such insertions among Alus in primates. We also detected five specific deletions of retrotransposons on various lineages of toothed whale evolution, a frequency of 0.003%, which is slightly higher than such occurrences in primates. Overall, the level of retrotransposon homoplasy in toothed whales is still marginal compared to the phylogenetic diagnostic retrotransposon presence/absence signal. Full article
(This article belongs to the Special Issue Mobile-Element-Related Genetic Variation)
Show Figures

Figure 1

11 pages, 4375 KiB  
Communication
Computed Tomography as a Method for Age Determination of Carnivora and Odontocetes with Validation from Individuals with Known Age
by Sina Baier-Stegmaier, Carsten Gundlach, Mariann Chriél, Mette Sif Hansen, Christina Vedel-Smith, Charlotte Vikkelsø Hansen, Daniel Klingberg Johansson, Louise Birgitte Henriksen, Magnus Wahlberg, Charlotte Bie Thøstesen, Aage Kristian Olsen Alstrup, Kristian Murphy Gregersen, Cino Pertoldi and Sussie Pagh
Animals 2023, 13(11), 1783; https://doi.org/10.3390/ani13111783 - 27 May 2023
Cited by 4 | Viewed by 2226
Abstract
Traditional methods for age determination of wildlife include either slicing thin sections off or grinding a tooth, both of which are laborious and invasive. Especially when it comes to ancient and valuable museum samples of rare or extinct species, non-invasive methods are preferable. [...] Read more.
Traditional methods for age determination of wildlife include either slicing thin sections off or grinding a tooth, both of which are laborious and invasive. Especially when it comes to ancient and valuable museum samples of rare or extinct species, non-invasive methods are preferable. In this study, X-ray micro-computed tomography (µ-CT) was verified as an alternative non-invasive method for age determination of three species within the order of Carnivora and suborders Odontoceti. Teeth from 13 red foxes (Vulpes vulpes), 2 American mink (Neogale vison), and 2 harbor porpoises (Phocoena phocoena) of known age were studied using µ-CT. The number of visible dental growth layers in the µ-CT were highly correlated with true age for all three species (R2 = 96%, p < 0.001). In addition, the Bland–Altman plot showed high agreement between the age of individuals and visible dental layers represented in 2D slices of the 3D µ-CT images. The true age of individuals was on average 0.3 (±0.6 SD) years higher than the age interpreted by the µ-CT image, and there was a 95% agreement between the true age and the age interpreted from visible dental layers in the µ-CT. Full article
(This article belongs to the Topic Ecology, Management and Conservation of Vertebrates)
Show Figures

Figure 1

Back to TopTop