Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = tomato compost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1957 KiB  
Article
Vegetable Productivity, Soil Physicochemical and Biochemical Properties, and Microbiome in Response to Organic Substitution in an Intensive Greenhouse Production System
by Xing Liu, Haohui Xu, Yanan Cheng, Ying Zhang, Yonggang Li, Fei Wang, Changwei Shen and Bihua Chen
Agriculture 2025, 15(14), 1493; https://doi.org/10.3390/agriculture15141493 - 11 Jul 2025
Viewed by 276
Abstract
Partial substitution of mineral N fertilizer with manure (organic substitution) is considered as an effective way to reduce N input in intensive agroecosystems. Here, based on a 3-year field experiment, we assessed the influence of different organic substitution ratios (15%, 30%, 45%, and [...] Read more.
Partial substitution of mineral N fertilizer with manure (organic substitution) is considered as an effective way to reduce N input in intensive agroecosystems. Here, based on a 3-year field experiment, we assessed the influence of different organic substitution ratios (15%, 30%, 45%, and 60%, composted chicken manure applied) on vegetable productivity and soil physicochemical and biochemical properties as well as microbiome (metagenomic sequencing) in an intensive greenhouse production system (cucumber-tomato rotation). Organic substitution ratio in 30% got a balance between stable vegetable productivity and maximum N reduction. However, higher substitution ratios decreased annual vegetable yield by 23.29–32.81%. Organic substitution (15–45%) improved soil fertility (12.18–19.94% increase in soil total organic carbon content) and such improvement was not obtained by higher substitution ratio. Soil mean enzyme activity was stable to organic substitution despite the activities of some selected enzymes changed (catalase, urease, sucrase, and alkaline phosphatase). Organic substitution changed the species and functional structures rather than diversity of soil microbiome, and enriched the genes related to soil denitrification (including nirK, nirS, and nosZ). Besides, the 30% of organic substitution obviously enhanced soil microbial network complexity and this enhancement was mainly associated with altered soil pH. At the level tested herein, organic substitution ratio in 30% was suitable for greenhouse vegetable production locally. Long-term influence of different organic substitution ratios on vegetable productivity and soil properties in intensive greenhouse system needs to be monitored. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

27 pages, 3569 KiB  
Article
Impact of a Soil Cyanobacteria Consortium-Based Bioinoculant on Tomato Growth, Yield, and Fruit Quality
by Zineb Hakkoum, Farah Minaoui, Zakaria Tazart, Amer Chabili, Mountasser Douma, Khadija Mouhri and Mohammed Loudiki
Plants 2025, 14(13), 2034; https://doi.org/10.3390/plants14132034 - 2 Jul 2025
Viewed by 475
Abstract
Cyanobacteria-based bioinoculants represent a sustainable solution for enhancing soil fertility and crop productivity. This research assessed the biofertilizing potential of two indigenous nitrogen-fixing cyanobacteria strains (Nostoc punctiforme Har. and Anabaena cylindrica Lemmerm.) on tomato growth and yield. A greenhouse experiment was conducted [...] Read more.
Cyanobacteria-based bioinoculants represent a sustainable solution for enhancing soil fertility and crop productivity. This research assessed the biofertilizing potential of two indigenous nitrogen-fixing cyanobacteria strains (Nostoc punctiforme Har. and Anabaena cylindrica Lemmerm.) on tomato growth and yield. A greenhouse experiment was conducted to study their effects on soil properties, plant growth and physiology, and fruit yield/quality. The strains were applied individually, as a consortium, or combined with organic or mineral fertilizers at half the standard dose (50%). All bioinoculants improved soil fertility, plant growth, and fruit yield/quality compared to the control. The most significant improvement was observed in the consortium amended with 50% of conventional fertilizer (compost or NPK), compared with individual strains. Correlation analysis revealed strong positive associations between photosynthetic pigments, plant productivity, and fruit biochemical traits, indicating coordinated physiological responses under the applied treatments. The results demonstrated that the consortium of diazotrophic terrestrial cyanobacteria possesses tomato biofertilizer properties that can be efficiently used in crop production. These findings suggest that such formulations offer a cost-effective approach to tomato cultivation and present a sustainable alternative for integrated and optimized fertilizer management. Full article
Show Figures

Figure 1

21 pages, 5182 KiB  
Article
Harnessing Phosphocompost Extracts to Mitigate Meloidogyne javanica Impacts on Tomato
by El Mehdi Bouchtaoui, Ayoub Haouas, Mouna Fahr, Aouatif Benali, Abdelfattah A. Dababat, Ayoob Obaid Alfalahi, Khalid Khfif, Abdelmjid Zouahri, Driss Iraqi, Khalid Azim, Abdelaziz Smouni and Fouad Mokrini
Agriculture 2025, 15(11), 1184; https://doi.org/10.3390/agriculture15111184 - 30 May 2025
Viewed by 903
Abstract
This study evaluated the chemical properties of phosphocompost extracts and their effectiveness in inducing tomato seedlings resistance to Meloidogyne javanica. Phosphocomposts: Sugar beet phosphocompost (PC-SB: CP2), green waste phosphocompost (PC-GW: CP3), and olive mill waste phosphocompost (PC-OMW: CP4), were utilized to produce [...] Read more.
This study evaluated the chemical properties of phosphocompost extracts and their effectiveness in inducing tomato seedlings resistance to Meloidogyne javanica. Phosphocomposts: Sugar beet phosphocompost (PC-SB: CP2), green waste phosphocompost (PC-GW: CP3), and olive mill waste phosphocompost (PC-OMW: CP4), were utilized to produce compost water extracts at concentrations of 1:5, 1:10, 1:20, and 1:100 g:mL and then applied as soil drenches for tomato seedlings one-week post-inoculation. The CP2 extract applied at a 1:5 dilution led to marked improvements in growth parameters, with plant height increasing by over 52.2%, shoot fresh biomass rising by approximately 52.44%, and shoot dry biomass showing a gain of 62.21%. Root biomass also rose by 33%. Chlorophyll a increased with CP4 at 1:5 and 1:100 (41.05% and 37.32%), chlorophyll b increased with CP3 at 1:5 and 1:10 (22.34% and 7.59%), while carotenes showed no variation. Polyphenols rose by 86.45–91.01% with CP2 from 1:5 to 1:20, and flavonoids increased by 64.90% with CP4 at 1:10. CP2 diminished the ultimate M. javanica population and reproduction factor by 171.43%, while CP4 at 1:20 decreased egg masses by 151.94%. The root gall index showed no variation. The chemical composition of phosphocomposts revealed that the strategic incorporation of diverse organic improvers (10%) in phosphocomposts yielded distinct nutrient signatures, with sugar beet waste enhancing PO43− (12.91 mg/L) and secondary macronutrients, green waste optimizing NO3 (69.91 mg/L) and SO42− (62.70 mg/L) availability, and olive mill waste producing superior micronutrient concentrations alongside dominant Ca (24.21 mg/L), K (392.50 mg/L), and P (9.17 mg/L) levels. Overall, the results underscore the potential of phosphocompost extracts as a viable, low-cost, and eco-friendly alternative to synthetic nematicides, offering a sustainable and resilient approach to M. javanica control while enhancing tomato plant growth. Full article
(This article belongs to the Special Issue Approaches for Plant-Parasitic Nematode Control)
Show Figures

Figure 1

16 pages, 302 KiB  
Article
A Combined Effect of Mixed Multi-Microplastic Types on Growth and Yield of Tomato
by Chijioke Emenike, Adeola Adelugba, Mason MacDonald, Samuel K. Asiedu, Raphael Ofoe and Lord Abbey
Microplastics 2025, 4(1), 5; https://doi.org/10.3390/microplastics4010005 - 8 Jan 2025
Cited by 1 | Viewed by 1617
Abstract
Microplastics (MPs) are plastic particles ranging from 1000 to 5000 µm in diameter, posing a growing environmental and health risk. Composting is an excellent way to add nutrient-rich humus to the soil to boost plant development, but it also pollutes agricultural soil with [...] Read more.
Microplastics (MPs) are plastic particles ranging from 1000 to 5000 µm in diameter, posing a growing environmental and health risk. Composting is an excellent way to add nutrient-rich humus to the soil to boost plant development, but it also pollutes agricultural soil with MPs. Previous research has shown that MPs can threaten plant development, production, and quality, hence they must be studied. This study examined how a mixture of three MP types—polyethene (PE), polystyrene (PS), and polypropene (PP)—affected greenhouse tomato plant development. MP types were spiked at 1% w/w (MPs/soil) in tomato pots, whereas non-spiked growth medium was the control. Statistical analysis was conducted using an analysis of variance (ANOVA) and Tukey’s test (95% confidence) to compare treatments and controls. Soil spiked with MPs increased chlorophyll content (SPAD), transpiration rate, photosynthetic rate, and stomata conductance by 5.16%, 16.71%, 25.81%, and 20.75%, respectively, compared to the control but decreased sub-stomata CO2 concentration by 3.23%. However, MPs did not significantly affect tomato plant morpho-physiological features (p > 0.05). Biochemical analysis of tomato fruits showed significant (p < 0.05) reduction effects of MPs on carotenoid, total flavonoid, and sugar but increased protein, ascorbate, and peroxidase activity. However, there was no significant difference (p > 0.05) in the effects of the combined MPs on total phenolic content. These data imply that whereas MPs did not influence tomato plant physiological and morphological properties, tomato fruit biochemistry was reduced. This raise concerns that an increase in MPs in soils may reduce antioxidant content and negatively affect human health contributing to a decrease in food security. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
18 pages, 2585 KiB  
Article
Enhancing the Quality of Tomato Straw Waste Composting: The Role of Earthworm Stocking Density in Composting–Vermicomposting Integrated Systems
by Yuanyuan Yang, Luolin Shu, Yuqin Lin, Lei Li, Qianqian Cao, Yongjun Wu and Zhenchao Yang
Sustainability 2025, 17(1), 175; https://doi.org/10.3390/su17010175 - 29 Dec 2024
Cited by 1 | Viewed by 1313
Abstract
Recently, combining composting with vermicomposting has garnered growing interest as an efficient approach for the sustainable processing of agricultural waste. This study utilized composting as a pretreatment method to mitigate the salinity of tomato straw, employing four distinct earthworm stocking densities (0, 40, [...] Read more.
Recently, combining composting with vermicomposting has garnered growing interest as an efficient approach for the sustainable processing of agricultural waste. This study utilized composting as a pretreatment method to mitigate the salinity of tomato straw, employing four distinct earthworm stocking densities (0, 40, 80, and 120 worms/kg) to assess the feasibility of a combined composting–vermicomposting approach for stabilizing tomato straw waste. The results indicated that the total nitrogen, total phosphorus, total potassium, humification index, and germination index of the vermicompost products increased by 3.2–10.57%, 3.3–12.69%, 2.65–7.42%, 21.56–30.54%, and 36.57–91.68%, respectively. Relative to the control, the greatest improvement was observed at a density of 80 worms per kilogram of tomato straw compost. Moreover, the earthworm treatment group showed enhanced enzyme activity, bacterial abundance, and diversity relative to the control group. It can, therefore, be concluded that the integrated composting–vermicomposting system contributes to enhancing the quality of tomato straw waste compost. However, to further explore the treatment potential of high-salinity agricultural waste, future research could optimize the integrated composting and vermicomposting system and investigate the synergistic effects between earthworm stocking density and environmental factors. Full article
Show Figures

Figure 1

12 pages, 3689 KiB  
Article
Feasibility of Vegetable Residues Compost Used as the Growth Medium for Brassica chinensis L. Seedlings: Effects of Membrane Covering and Superphosphate Application
by Jingjing Fu, Yunxiao Fang, Yongsheng Chen, Jie Cao, Aibing Wu and Zhenwei Wang
Agronomy 2024, 14(12), 2836; https://doi.org/10.3390/agronomy14122836 - 28 Nov 2024
Viewed by 795
Abstract
In order to evaluate the feasibility of vegetable residues compost used as the growth medium for Brassica chinensis L. seedings, the effects of membrane covering and superphosphate application on the performance of tomato and mushroom residues aerobic compost were investigated. In the composting [...] Read more.
In order to evaluate the feasibility of vegetable residues compost used as the growth medium for Brassica chinensis L. seedings, the effects of membrane covering and superphosphate application on the performance of tomato and mushroom residues aerobic compost were investigated. In the composting process, four treatments (T1: non-cover with non-addition, T2: membrane-covered with non-addition, T3: non-cover with superphosphate addition, and T4: membrane-covered with superphosphate addition) were explored. The results showed that membrane covering could effectively promote the degradation of lignocellulose, it had about 70% higher degradation rate than non-covered compost. The effect of superphosphate application was not significant. The humification indexes in Fourier Transform Infrared Spectroscopy (FTIR) and the fluorescence parameters were the main factors affecting the GI and chemical properties. The results manifested the membrane covering possess a higher conversion rate of humic substances, indicating better maturity. All the compost could almost meet the requirements of seedling substrate performance standards, especially the membrane-covered sample T2 had higher germination index (GI) value more than 100% and higher nutrient concentrations. Then, the four compost products were mixed with vermicompost, perlite, and vermiculite for the Brassica chinensis L. seedling raising experiment (T1B, T2B, T3B, T4B). It has been found that the compost-based substrate T2B with the best stability and maturity showed better seedling growth, and even comparable to peat substrate. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

11 pages, 528 KiB  
Article
Organic Mulching: A Sustainable Technique to Improve Soil Quality
by Gabriella Rossi, Claudio Beni and Ulderico Neri
Sustainability 2024, 16(23), 10261; https://doi.org/10.3390/su162310261 - 23 Nov 2024
Cited by 4 | Viewed by 4270
Abstract
Organic mulching is a promising technique for sustainable weed control and soil management, as it enhances crop growth, soil quality, water retention, and erosion control. This research evaluated the effects of organic mulches—wheat straw, wood chips, spray cellulose pulp, compost, and a cover [...] Read more.
Organic mulching is a promising technique for sustainable weed control and soil management, as it enhances crop growth, soil quality, water retention, and erosion control. This research evaluated the effects of organic mulches—wheat straw, wood chips, spray cellulose pulp, compost, and a cover crop mixture—on the physical–mechanical properties of organic garden soil transitioning to natural farming. The controlled soil received no mulch. The soil was fertilized with mature bovine manure prior to a three-year crop rotation of tomato, lettuce, and savoy cabbage. Mulching occurred after the second harrowing and before transplanting. Soil analyses were conducted to assess changes after three years. Soil organic carbon levels increased significantly in soils treated with compost, cover crops, or chipped wood mulching (6.81, 3.17, and 2.07%, respectively) compared to other treatments (1.24% in the control plot). Different kinds of mulch had a significant impact on soil’s physical–mechanical parameters. Compost, compared to the control, decreased the bulk density (from 1.22 to 0.89 Mg m−3), increased the infiltration rate (from 8.53 to 21.07 L m−2), and reduced compressive deformation (from 37.08 to 18.23%). The composition of mulch materials, specifically their nitrogen and carbon concentrations, C/N ratio, and moisture content, plays a significant role in influencing changes in soil properties. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 3926 KiB  
Article
Minimizing the Adverse Impacts of Soil Salinity on Maize and Tomato Growth and Productivity through the Application of Plant Growth-Promoting Rhizobacteria
by Hiba Yahyaoui, Nadia El Allaoui, Aziz Aziz, Majida Hafidi and Khaoula Habbadi
Crops 2024, 4(4), 463-479; https://doi.org/10.3390/crops4040033 - 12 Oct 2024
Cited by 3 | Viewed by 2292
Abstract
Soil salinity significantly impacts crop productivity. In response, plant growth-promoting rhizobacteria (PGPR) offer an innovative and eco-friendly solution to mitigate salinity stress. However, research on PGPR’s effects on crop physiology under varying salinity levels is still emerging. This study evaluates the impact of [...] Read more.
Soil salinity significantly impacts crop productivity. In response, plant growth-promoting rhizobacteria (PGPR) offer an innovative and eco-friendly solution to mitigate salinity stress. However, research on PGPR’s effects on crop physiology under varying salinity levels is still emerging. This study evaluates the impact of five bacterial strains, isolated from compost, on the growth of maize (Zea mays) and tomato (Solanum lycopersicum) plants under different levels of salt stress. This study involved treating maize and tomato seeds with five bacterial strains, and then planting them in a greenhouse under varying salt stress conditions (43 mM, 86 mM, 172 mM, 207 mM NaCl) using a Randomized Complete Block Design. Results showed that bacterial inoculation improved plant growth under saline conditions. S2015-1, S2026-2, and S2027-2 (Bacillus cereus, Acinetobacter calcoaceticus, Bacillus subtilis) were particularly effective in promoting plant growth under salt stress, especially at ionic concentrations of 43 mM and 86 mM, leading to a substantial increase in fresh and dry weight, with strain S2015-1 boosting chlorophyll by 29% at 86 mM in both crops. These results highlight the potential of PGPR to enhance crop resilience and productivity under salinity stress, promoting climate-smart agricultural practices. Full article
Show Figures

Figure 1

15 pages, 5201 KiB  
Article
Valorisation of Tomato Waste as a Source of Cutin for Hydrophobic Surface Coatings to Protect Starch- and Gelatine-Blend Bioplastics
by Marta Mroczkowska, David Culliton, Kieran J. Germaine, Manasa Hegde, Edmond F. Tobin and Adriana Cunha Neves
Biomass 2024, 4(3), 990-1004; https://doi.org/10.3390/biomass4030055 - 2 Sep 2024
Cited by 1 | Viewed by 2563
Abstract
The valorisation of food by-products is an important step towards sustainability in food production. Tomatoes constitute one of the most processed crops in the world (160 million tonnes of tomatoes are processed every year), of which 4% is waste. This translates to 6.4 [...] Read more.
The valorisation of food by-products is an important step towards sustainability in food production. Tomatoes constitute one of the most processed crops in the world (160 million tonnes of tomatoes are processed every year), of which 4% is waste. This translates to 6.4 million tonnes of tomato skins and seeds. Currently, this waste is composted or is used in the production of low-value animal feed; higher value can be achieved if this waste stream is re-appropriated for more advanced purposes. Plant cuticle is a membrane structure found on leaves and fruit, including tomatoes, and is mainly composed of cutin. The main function of plant cuticle is to limit water loss from the internal tissue of the plant. Cutin, which can be recovered from the tomato skins by pH shift extraction, has hydrophobic (water repellent) properties and is therefore an ideal raw material for the development of a novel water-resistant coating. In this study, biomass-based bioplastics were developed. Unfortunately, although these bioplastics have good mechanical properties, their hydrophilic nature results in poor water barrier properties. To mitigate this, a very effective water-resistant coating was formulated using the cutin extracted from tomato peels. The water vapour permeability rates of the bioplastics improved by 74% and the percentage swelling of the bioplastic improved by 84% when treated with the cutin coating. With physicochemical properties that can compete with petroleum-based plastics, these bioplastics have the potential to address the growing market demand for sustainable alternatives for food packaging. Using ingredients generated from by-products of the food processing industries (circular economy), the development of these bioplastics also addresses the UN’s Sustainable Development Goal (SDG) 12, Sustainable Consumption and Production (SCP). Full article
(This article belongs to the Special Issue Biomass Materials: Synthesis, Functionalisation, and Applications)
Show Figures

Figure 1

6 pages, 403 KiB  
Communication
Suppressive Effect of Black Soldier Fly Larvae Frass on Fusarium Wilt Disease in Tomato Plants
by Ghazaleh Arabzadeh, Maxime Delisle-Houde, Grant W. Vandenberg, Marie-Hélène Deschamps, Martine Dorais, Nicolas Derome and Russell J. Tweddell
Insects 2024, 15(8), 613; https://doi.org/10.3390/insects15080613 - 15 Aug 2024
Cited by 5 | Viewed by 2885
Abstract
This study investigated the effect of black soldier fly larvae (BSFL) frass derived from BSFL reared on a diet composed of fruit/vegetable/bakery/brewery residues (FVBB diet) and on the Gainesville diet (GV diet) on the development of tomato (Solanum lycopersicum) Fusarium wilt [...] Read more.
This study investigated the effect of black soldier fly larvae (BSFL) frass derived from BSFL reared on a diet composed of fruit/vegetable/bakery/brewery residues (FVBB diet) and on the Gainesville diet (GV diet) on the development of tomato (Solanum lycopersicum) Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL). Tomato plants were grown in a substrate inoculated with FOL that was amended (10%, v:v) or not (control) with either a commercial compost, pasteurized (70 °C for 1 h) frass from BSFL reared on a FVBB diet, non-pasteurized frass from BSFL reared on a FVBB diet, pasteurized frass from BSFL reared on the GV diet, or non-pasteurized frass from BSFL reared on the GV diet. The results show that frass from BSFL reared on the GV diet, irrespective of pasteurization, inhibited FOL root colonization and reduced the severity of tomato Fusarium wilt to a far greater extent than frass from BSFL reared on a FVBB diet and commercial compost made of peat, seaweed, and shrimps. This study suggests that BSFL frass, depending on the larval rearing diet, has the potential to serve as a pasteurized or non-pasteurized soil amendment with prophylactic properties against FOL in tomato plants, opening new avenues of research for the valorization of BSFL frass. Full article
(This article belongs to the Special Issue Insect Rearing: Reserve Forces with Commercial and Ecological Values)
Show Figures

Figure 1

18 pages, 1844 KiB  
Article
The Use of Compost and Arbuscular Mycorrhizal Fungi and Their Combination to Improve Tomato Tolerance to Salt Stress
by Fadoua Mekkaoui, Mohamed Ait-El-Mokhtar, Nada Zaari Jabri, Ilham Amghar, Soukaina Essadssi and Abdelaziz Hmyene
Plants 2024, 13(16), 2225; https://doi.org/10.3390/plants13162225 - 11 Aug 2024
Cited by 9 | Viewed by 2005
Abstract
Salinity poses a significant challenge to tomato plant development and metabolism. This study explores the use of biostimulants as eco-friendly strategies to enhance tomato plant tolerance to salinity. Conducted in a greenhouse, the research focuses on the Solanum lycopersicum L. behavior under saline [...] Read more.
Salinity poses a significant challenge to tomato plant development and metabolism. This study explores the use of biostimulants as eco-friendly strategies to enhance tomato plant tolerance to salinity. Conducted in a greenhouse, the research focuses on the Solanum lycopersicum L. behavior under saline conditions. Tomato seeds were treated with arbuscular mycorrhizal fungi (AMF), compost, and their combination under both non-saline and saline conditions (0 and 150 mM NaCl). Plant height, number of flowers and fruits, shoot fresh weight, and root dry weight were negatively impacted by salt stress. The supplementation with compost affected the colonization of AMF, but the application of stress had no effect on this trait. However, the use of compost and AMF separately or in combination showed positive effects on the measured parameters. At the physiological level, compost played a beneficial role in increasing photosynthetic efficiency, whether or not plants were subjected to salinity. In addition, the application of these biostimulants led to an increase in nitrogen content in the plants, irrespective of the stress conditions. AMF and compost, applied alone or in combination, showed positive effects on photosynthetic pigment concentrations and protein content. Under salt stress, characterized by an increase in lipid peroxidation and H2O2 content, the application of these biostimulants succeeded in reducing both these parameters in affected plants through exhibiting an increase in antioxidant enzyme activity. In conclusion, incorporating compost, AMF, or their combined application emerges as a promising approach to alleviate the detrimental impacts of salt stress on both plant performances. These findings indicate optimistic possibilities for advancing sustainable and resilient agricultural practices. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

19 pages, 4642 KiB  
Article
Photosynthetic Activities, Phytohormones, and Secondary Metabolites Induction in Plants by Prevailing Compost Residue
by Lord Abbey, Samuel Kwaku Asiedu, Sparsha Chada, Raphael Ofoe, Peter Ofori Amoako, Stella Owusu-Nketia, Nivethika Ajeethan, Anagha Pradeep Kumar and Efoo Bawa Nutsukpo
Metabolites 2024, 14(8), 400; https://doi.org/10.3390/metabo14080400 - 24 Jul 2024
Viewed by 1501
Abstract
Compost residue enriches soil health with the potential to enhance plant metabolism and hormonal balance, but has not yet been studied. A study was performed to determine how prevailing compost residue induces tomato (Solanum lycopersicum ‘Scotia’) plant morpho-physiology, phytohormones, and secondary metabolites. [...] Read more.
Compost residue enriches soil health with the potential to enhance plant metabolism and hormonal balance, but has not yet been studied. A study was performed to determine how prevailing compost residue induces tomato (Solanum lycopersicum ‘Scotia’) plant morpho-physiology, phytohormones, and secondary metabolites. Plants were grown in soils with a previous history of annual (AN) and biennial (BI) compost amendments. The controls were soil without compost (C) amendment and municipal solid waste compost (MSWC) alone. The MSWC- and AN-plants had similar and significantly (p < 0.05) highest growth and photosynthetic activities compared to the BI- or C-plants. Total phenolics and lipid peroxidase activity were significantly (p < 0.001) high in BI-plants, while hydrogen peroxide and antioxidant capacity were significantly (p < 0.001) high in AN-plants. MSWC-plants recorded the highest cis-abscisic acid, followed by AN-, and then BI- and C-plants. Cis-zeatin, trans-zeatin, and isopentenyladenine ribosides were detected in the MSWC- and AN-plants but not in the BI- or C-plants. Furthermore, gibberellins GA53, GA19, and GA8 were high in the MSWC-plants, but only GA8 was detected in the AN plants and none in the others. Besides, MSWC plants exhibited the highest content of 1-aminocyclopropane-1-carboxylic acid. Conjugated salicylic acid was highest in the BI-plants, while jasmonic acid-isoleucine was highest in MSWC-plants and C plants. In conclusion, prevailing compost chemical residues upregulate plant growth, phytohormones, and metabolic compounds that can potentially increase plant growth and abiotic stress defense. Future work should investigate the flow of these compounds in plants under abiotic stress. Full article
Show Figures

Figure 1

18 pages, 2953 KiB  
Article
Comparative Study Effect of Different Urea Fertilizers and Tomato Pomace Composts on the Performance and Quality Traits of Processing Tomato (Lycopersicon esculentum Mill.)
by Ioanna Kakabouki, Ioannis Roussis, Magdalini Krokida, Antonios Mavroeidis, Panteleimon Stavropoulos, Stella Karydogianni, Dimitrios Beslemes and Evangelia Tigka
Plants 2024, 13(13), 1852; https://doi.org/10.3390/plants13131852 - 5 Jul 2024
Viewed by 2901
Abstract
Processing tomato (Lycopersicon esculentum Mill.) is regarded amongst the most dominant horticultural crops globally. Yet, due to its elevated water and fertilization needs, its environmental footprint is significantly high. The recent efforts to reduce the footprint of agriculture have rekindled the search [...] Read more.
Processing tomato (Lycopersicon esculentum Mill.) is regarded amongst the most dominant horticultural crops globally. Yet, due to its elevated water and fertilization needs, its environmental footprint is significantly high. The recent efforts to reduce the footprint of agriculture have rekindled the search for optimized fertilization regimes in tomato. The aim of the present study was to assess the effect of different urea fertilizers and tomato pomace-based composts on the performance and quality traits of processing tomato. A two-year field experiment was conducted in the Larissa region, Central Greece, during 2018–2019. The experiment was set up in a randomized complete block design (RCBD), with five treatments: control, urea (Urea), urea with nitrification and urease inhibitors (Urea + NI + UI), processing tomato pomace with farmyard manure (TP + FM), and processing tomato pomace with compost from plant residues (TP + CM). Measurements included soil total nitrogen (STN), soil organic matter (SOM), root length density (RLD), arbuscular mycorrhiza fungi (AMF) colonization, dry weight per plant, fruit yield (number per plant, total yield, weight, diameter), fruit firmness, total soluble solids (TSS), titratable acidity (TA), lycopene content and yield, and fruit surface color (L*, a*, b*, CI). Overall, the best results in soil properties and quality traits were reported in the organic fertilization treatments (STN, SOM, AMF, TSS, TA, lycopene content, L*, a*, b*) and the differences among TP + FM and TP + CM were insignificant in their majority. On the contrary, fruit yield and its components were significantly improved in Urea + NI + UI. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

25 pages, 2927 KiB  
Article
A Multidisciplinary Approach for the Development of a Supply Chain in Biomass Conversion of Agrifood Waste Mediated by Larvae of Hermetia illucens L.: From Rearing to By-Product Exploitation
by Eleonora De Santis, Alberto de Iudicibus, Francesca Lecce, Massimiliano De Mei, Francesco Petrazzuolo, Angelo Del Giudice, Monica Carnevale, Francesco Gallucci, Claudio Beni, Alberto Assirelli, Enrico Santangelo and Silvia Arnone
Agriculture 2024, 14(7), 1010; https://doi.org/10.3390/agriculture14071010 - 26 Jun 2024
Cited by 2 | Viewed by 1869
Abstract
Black soldier fly larvae (BSFL) can convert various organic substrates into high added-value biomass. In addition, the residue can be used as a soil conditioner. Several studies have been conducted on a laboratory scale that may not represent what happens on a prototype [...] Read more.
Black soldier fly larvae (BSFL) can convert various organic substrates into high added-value biomass. In addition, the residue can be used as a soil conditioner. Several studies have been conducted on a laboratory scale that may not represent what happens on a prototype scale. Using fruit and vegetable waste as a basic substrate, mixing them with agro-industry by-products (called co-substrates), the Hermes project set up a process on medium (2 kg) and large (10 kg) scales with two different feeding regimes (1.25 g/BSFL and 2 g/BSFL). At the mature stage, larval biomass was separated from frass (the by-product of the larval rearing). The production of larval proteins and fats and the use of frass as soil conditioning were evaluated. The lowest feeding regime (1.25 g/BSFL) provided the best waste valorization. The shift towards higher production scales is not completely linear. The addition of co-substrates to fruit and vegetable waste, as they are provided by the large-scale retail trade, can help to standardize a process as part of an insect farm. The frass recovered from the residue of rearing (on the diet or on the agrifood leftovers) was composted and used in field to grow a processing tomato variety. The addition of composted frass assured a slightly lower yield than synthetic fertilizer but there was no statistically significant difference (p > 0.10). This suggests that partial replacement of synthetic fertilizer with composted frass has potential. Overall, the work demonstrated that, using a multidisciplinary approach, the interest and the value in building a supply chain based on bioconversion mediated by Hermetia illucens can be emphasized. Full article
Show Figures

Figure 1

26 pages, 2643 KiB  
Review
Tomato Residue Management from a Biorefinery Perspective and towards a Circular Economy
by Patrícia V. Almeida, Licínio M. Gando-Ferreira and Margarida J. Quina
Foods 2024, 13(12), 1873; https://doi.org/10.3390/foods13121873 - 14 Jun 2024
Cited by 7 | Viewed by 2534
Abstract
The tomato industry is a relevant socio-economic activity in the European Union, while it generates a large variety of residues. Tomatoes unfit for consumption, tomato peels, seeds, industrial pomace, and plants are examples of residues of this industry. Commonly, some of the residues [...] Read more.
The tomato industry is a relevant socio-economic activity in the European Union, while it generates a large variety of residues. Tomatoes unfit for consumption, tomato peels, seeds, industrial pomace, and plants are examples of residues of this industry. Commonly, some of the residues can be left in the field, composted, used for animal feeding, or valorized through anaerobic digestion. However, more economic value can be attributed to these residues if a biorefinery approach is applied. Indeed, many value-added compounds can be obtained by the integration of different processes while closing the carbon and nutrient loops. The extraction of bioactive compounds followed by anaerobic digestion and composting seems to be a viable proposal for a biorefinery approach. Thus, this study aims to review the biorefinery strategies for valorizing tomato residues, highlighting the main processes proposed. The recovery of lycopene, β-carotene, and phenolic compounds has been widely studied at the lab scale, while energy recovery has already been applied at the industrial scale. Although techno-economic analysis is scarce for tomato residue valorization processes, positive net present values (NPV) and low payback times (PBT) have been reported in the literature. Thus, more work comparing multiple extraction technologies and biorefinery strategies coupled with economic and environmental assessment should be performed to select the most promising management route for tomato residues. Full article
Show Figures

Figure 1

Back to TopTop