Comparative Study Effect of Different Urea Fertilizers and Tomato Pomace Composts on the Performance and Quality Traits of Processing Tomato (Lycopersicon esculentum Mill.)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Site and Experimental Design
4.2. Sampling, Measurements and Methods
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Durmuş, M.; Kızılkaya, R. The effect of tomato waste compost on yield of tomato and some biological properties of soil. Agronomy 2022, 12, 1253. [Google Scholar] [CrossRef]
- Migliori, C.A.; Salvati, L.; Di Cesare, L.F.; Scalzo, R.L.; Parisi, M. Effects of preharvest applications of natural antimicrobial products on tomato fruit decay and quality during long-term storage. Sci. Hortic. 2017, 222, 193–202. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Cheema, A.; Paliyath, G. Solanaceous fruits including tomato, eggplant, and peppers. In The Encyclopedia of Food and Health; Cabellero, B., Finglas, P., Toldra, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 24–32. [Google Scholar]
- Bilalis, D.; Krokida, M.; Roussis, I.; Papastylianou, P.; Travlos, I.; Cheimona, N.; Dede, A. Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.). Folia Hort. 2018, 30, 321–332. [Google Scholar] [CrossRef]
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.-P.; Lutts, S. Tomato fruit development and metabolism. Front. Plant Sci. 2019, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
- Eslami, E.; Abdurrahman, E.; Ferrari, G.; Pataro, G. Enhancing resource efficiency and sustainability in tomato processing: A comprehensive review. J. Clean. Prod. 2023, 425, 138996. [Google Scholar] [CrossRef]
- Martella, A.; La Porta, I.M.; Nicastro, M.; Biagetti, E.; Franco, S. Ecological balance of agri-food supply chains—The case of the industrial tomato. Sustainability 2023, 15, 7846. [Google Scholar] [CrossRef]
- Anastasiadis, F.; Apostolidou, I.; Michailidis, A. Mapping sustainable tomato supply chain in Greece: A framework for research. Foods 2020, 9, 539. [Google Scholar] [CrossRef] [PubMed]
- Payment and Control Agency for Guidance and Guarantee Community Aid (OPEKEPE) (2023). Available online: https://www.opekepe.gr/ (accessed on 14 March 2024).
- Khan, M.; Khan, M.J.; Ahmad, S.; Ali, A.; Khan, N.; Fahad, M.A. Effect of different nitrogen doses and deficit irrigation on nitrogen use efficiency and growth parameters of tomato crop under drip irrigation system. Sarhad J. Agric. 2020, 36, 319–323. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Roussis, I.; Kakabouki, I.; Stavropoulos, P.; Mavroeidis, A.; Papatheodorou, M.; Vatougios, D.; Tsela, A.; Bilalis, D. Carbon footprint analysis of processing tomato cultivation in Greece. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca Hortic. 2023, 80, 76–79. [Google Scholar] [CrossRef]
- Page, G.; Ridoutt, B.; Bellotti, B. Carbon and water footprint tradeoffs in fresh tomato production. J. Clean. Prod. 2012, 32, 219–226. [Google Scholar] [CrossRef]
- Wyngaard, S.R.; Kissinger, M. Tomatoes from the desert: Environmental footprints and sustainability potential in a changing world. Front. Sustain. Food Syst. 2022, 6, 994920. [Google Scholar] [CrossRef]
- Erden, D.; Aydeniz, A. Determination of nitrogen-lime relations in tomatoes by 15 N. In Soil-Plant Relationships, Proceedings of the XXIVth Annual ESNA/IUR Meeting, Varna, Bulgaria, 12–16 September 1994; Forschungszentrum Seibersdorf Ges.m.b.H.: Seibersdorf, Austria, 1994. [Google Scholar]
- Cheng, M.; Wang, H.; Fan, J.; Xiang, Y.; Tang, Z.; Pei, S.; Zeng, H.; Zhang, C.; Dai, Y.; Li, Z.; et al. Effects of nitrogen supply on tomato yield, water use efficiency and fruit quality: A global meta-analysis. Sci. Hortic. 2021, 290, 110553. [Google Scholar] [CrossRef]
- Sha, Z.; Lv, T.; Staal, M.; Ma, X.; Wen, Z.; Li, Q.; Pasda, G.; Misselbrook, T.H.; Liu, X. Effect of combining urea fertilizer with P and K fertilizers on the efficacy of urease inhibitors under different storage conditions. J. Soils Sediment. 2020, 20, 2130–2140. [Google Scholar] [CrossRef]
- Swify, S.; Mažeika, R.; Baltrusaitis, J.; Drapanauskaitė, D.; Barčauskaitė, K. Modified urea fertilizers and their effects on improving nitrogen use efficiency (NUE). Sustainability 2024, 16, 188. [Google Scholar] [CrossRef]
- Nugrahaeningtyas, E.; Lee, D.J.; Song, J.I.; Kim, J.K.; Park, K.H. Potential application of urease and nitrification inhibitors to mitigate emissions from the livestock sector: A review. J. Anim. Sci. Technol. 2022, 64, 603–620. [Google Scholar] [CrossRef]
- Klimczyk, M.; Siczek, A.; Schimmelpfennig, L. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Sci. Total Environ. 2021, 771, 145483. [Google Scholar] [CrossRef]
- Peters, N.; Thiele-Bruhn, S. Major metabolites of NBPT degradation pathways contribute to urease inhibition in soil. Chemosphere 2022, 303, 135163. [Google Scholar] [CrossRef]
- Lasisi, A.A.; Akinremi, O.O. Degradation of N-(n-butyl) thiophosphoric triamide (NBPT) with and without nitrification inhibitor in soils. Nitrogen 2022, 3, 161–169. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Ito, O.; Sahrawat, K.L.; Berry, W.L.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rodon, M.; Rao, I.M. Scope and strategies for regulation of nitrification in agricultural systems—Challenges and opportunities. Crit. Rev. Plant Sci. 2006, 25, 303–335. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.; Ma, S.; Zheng, X.; Wang, Z.; Lu, C. Effects of commonly used nitrification inhibitors—Dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin—On soil nitrogen dynamics and nitrifiers in three typical paddy soils. Geoderma 2020, 380, 114637. [Google Scholar] [CrossRef]
- Li, Y.; Hu, M.; Tenuta, M.; Ma, Z.; Gui, D.; Li, X.; Zeng, F.; Gao, X. Agronomic evaluation of polymer-coated urea and urease and nitrification inhibitors for cotton production under drip-fertigation in a dry climate. Sci. Rep. 2020, 10, 1472. [Google Scholar] [CrossRef]
- Allende-Montalbán, R.; Martín-Lammerding, D.; Delgado, M.d.M.; Porcel, M.A.; Gabriel, J.L. Urease inhibitors effects on the nitrogen use efficiency in a maize–wheat rotation with or without water deficit. Agriculture 2021, 11, 684. [Google Scholar] [CrossRef]
- Školníková, M.; Škarpa, P.; Ryant, P.; Kozáková, Z.; Antošovský, J. Response of winter wheat (Triticum aestivum L.) to fertilizers with nitrogen-transformation inhibitors and timing of their application under field conditions. Agronomy 2022, 12, 223. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Wang, S.; Hou, W.; Yan, L. The combined use of liquid fertilizer and urease/nitrification inhibitors on maize yield, nitrogen loss and utilization in the Mollison region. Plants 2023, 12, 1486. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.P.; Tobin, J.T.; Forrestal, P.J.; Danaher, M.; Nkwonta, C.G.; Richards, K.; Cummings, E.; Hogan, S.A.; O’callaghan, T.F. Urease and nitrification inhibitors—As mitigation tools for greenhouse gas emissions in sustainable dairy systems: A review. Sustainability 2020, 12, 6018. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Li, X.; Zheng, Y.; Feng, S.; Jiang, G. Mitigating greenhouse gas emissions through replacement of chemical fertilizer with organic manure in a temperate farmland. Sci. Bull. 2015, 60, 598–606. [Google Scholar] [CrossRef]
- Liu, J.; Shu, A.; Song, W.; Shi, W.; Li, M.; Zhang, W.; Li, Z.; Liu, G.; Yuan, F.; Zhang, S.; et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma 2021, 404, 115287. [Google Scholar] [CrossRef]
- Chew, K.W.; Chia, S.R.; Yen, H.-W.; Nomanbhay, S.; Ho, Y.-C.; Show, P.L. Transformation of biomass waste into sustainable organic fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef]
- Del Valle, M.; Cámara, M.; Torija, M.E. Chemical characterization of tomato pomace. J. Sci. Food Agric. 2006, 86, 1232–1236. [Google Scholar] [CrossRef]
- Poojary, M.M.; Passamonti, P. Extraction of lycopene from tomato processing waste: Kinetics and modelling. Food Chem. 2015, 173, 943–950. [Google Scholar] [CrossRef]
- Lu, S.; Chen, S.; Li, H.; Paengkoum, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; et al. Sustainable valorization of tomato pomace (Lycopersicon esculentum) in animal nutrition: A Review. Animals 2022, 12, 3294. [Google Scholar] [CrossRef]
- Al-Wandawi, H.; Abdul-Rahman, M.; Al-Shaikhly, K. Tomato processing wastes as essential raw materials source. J. Agric. Food Chem. 1985, 33, 804–807. [Google Scholar] [CrossRef]
- Achmon, Y.; Harrold, D.R.; Claypool, J.T.; Stapleton, J.J.; VanderGheynst, J.S.; Simmons, C.W. Assesment of tomato and wine processing solid wastes as soil amendments for biosolqarization. Waste Manag. 2016, 48, 156–164. [Google Scholar] [CrossRef]
- Kakabouki, I.; Folina, A.; Efthimiadou, A.; Karydogianni, S.; Zisi, C.; Kouneli, V.; Kapsalis, C.N.; Katsenios, N.; Travlos, I. Evaluation of processing tomato pomace after composting on soil properties, yield, and quality of processing tomato in Greece. Agronomy 2021, 11, 88. [Google Scholar] [CrossRef]
- Gao, F.; Li, H.; Mu, X.; Gao, H.; Zhang, Y.; Li, R.; Cao, K.; Ye, L. Effects of organic fertilizer application on tomato yield and quality: A meta-analysis. Appl. Sci. 2023, 13, 2184. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular economy: The concept and its limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Stegmann, P.; Londo, M.; Junginger, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resour. Conserv. Recy. 2020, 6, 100029. [Google Scholar] [CrossRef]
- Rigane, M.K.; Medhioub, K. Assessment of properties of Tunisian agricultural waste composts: Application as components in reconstituted anthropic soils and their effects on tomato yield and quality. Resour. Conserv. Recycl. 2011, 55, 785–792. [Google Scholar] [CrossRef]
- Kakabouki, I.; Efthimiadou, A.; Folina, A.; Zisi, C.; Karydogianni, S. Effect of different tomato pomace compost as organic fertilizer in sweet maize crop. Commun. Soil Sci. Plant Anal. 2020, 51, 2858–2872. [Google Scholar] [CrossRef]
- Brown, S.; Cotton, M. Changes in soil properties and carbon content following compost application: Results of on-farm sampling. Compost Sci. Util. 2011, 19, 87–96. [Google Scholar] [CrossRef]
- Anjum; Khan, A. Decomposition of soil organic matter is modulated by soil amendments. Carbon Manag. 2021, 12, 37–50. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Z.; Ye, Q.; Peng, Z.; Zhu, S.; Chen, H.; Liu, D.; Li, Y.; Deng, L.; Shu, X.; et al. Positive effects of organic amendments on soil microbes and their functionality in agro-ecosystems. Plants 2023, 12, 3790. [Google Scholar] [CrossRef]
- Pattison, T. Microbial Amendments and Microbe-friendly Additives. Healthy Soils 2006, 55. Available online: https://www.daf.qld.gov.au/__data/assets/pdf_file/0004/73885/Microbial-Amend-Microbe.pdf (accessed on 15 March 2024).
- Bamdad, H.; Papari, S.; Lazarovits, G.; Berruti, F. Soil amendments for sustainable agriculture: Microbial organic fertilizers. Soil Use Manag. 2022, 38, 94–120. [Google Scholar] [CrossRef]
- Ma, Q.; Wen, Y.; Wang, D.; Sun, X.; Hill, P.W.; Macdonald, A.; Chadwick, D.R.; Wu, L.; Jones, D.L. Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition. Soil Biol. Biochem. 2020, 144, 107760. [Google Scholar] [CrossRef]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef]
- Felföldi, Z.; Vidican, R.; Stoian, V.; Roman, I.A.; Sestras, A.F.; Rusu, T.; Sestras, R.E. Arbuscular mycorrhizal fungi and fertilization influence yield, growth and root colonization of different tomato genotype. Plants 2022, 11, 1743. [Google Scholar] [CrossRef]
- Wahdan, S.F.M.; Asran, A.G.; Abdellatef, M.; Atia, M.A.; Ji, L. Arbuscular Mycorrhizal Fungi in Organic Versus Conventional Farming. In Arbuscular Mycorrhizal Fungi and Higher Plants: Fundamentals and Applications; Ahammed, G.J., Hajiboland, R., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 259–286. [Google Scholar]
- Pasković, I.; Soldo, B.; Ban, S.G.; Radić, T.; Lukić, M.; Urlić, B.; Mimica, M.; Bubola, K.B.; Colla, G.; Rouphael, Y.; et al. Fruit quality and volatile compound composition of processing tomato as affected by fertilisation practices and arbuscular mycorrhizal fungi application. Food Chem. 2021, 359, 129961. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, J.; Li, D.; Xu, C.; Xiang, X. Differential responses of arbuscular mycorrhizal fungal communities to mineral and organic fertilization. MicrobiologyOpen 2020, 9, e00920. [Google Scholar] [CrossRef] [PubMed]
- Sainju, U.M.; Dris, R.; Singh, B. Mineral nutrition of tomato. J. Food Agric. Environ. 2003, 1, 176–183. [Google Scholar]
- Han, Z.; Hou, H.; Yao, X.; Qian, X.; Zhou, M. Substituting partial chemical fertilizers with bio-organic fertilizers to reduce greenhouse gas emissions in water-saving irrigated rice fields. Agronomy 2024, 14, 544. [Google Scholar] [CrossRef]
- Verma, S.L. Effect of Compost on Soil Phosphorous Availability. 2013. Available online: https://digital.library.adelaide.edu.au/dspace/bitstream/2440/82714/8/02whole.pdf (accessed on 21 March 2024).
- Azcón, R.; Gomez-Ortega, M.; Barea, J.M. Comparative effects of foliar-or soil-applied nitrate on vesicular-arbuscular mycorrhizal infection in maize. New Phytol. 1982, 92, 553–559. [Google Scholar] [CrossRef]
- Grant, C.; Bittman, S.; Montreal, M.; Plenchette, C.; Morel, C. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Can. J. Plant Sci. 2005, 85, 3–14. [Google Scholar] [CrossRef]
- Fracasso, A.; Telò, L.; Lanfranco, L.; Bonfante, P.; Amaducci, S. Physiological beneficial effect of Rhizophagus intraradices inoculation on tomato plant yield under water deficit conditions. Agronomy 2020, 10, 71. [Google Scholar] [CrossRef]
- Ddamulira, G.; Malaala, A.; Otim, A.; Florence, N.; Maphosa, M. Soil Amendments improved tomato growth, yield and soil properties. Am. J. Plant Sci. 2022, 13, 960–971. [Google Scholar] [CrossRef]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Kuscu, H.; Turhan, A.; Ozmen, N.; Aydinol, P.; Demir, A.O. Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Hortic. Environ. Biotechnol. 2014, 55, 103–114. [Google Scholar] [CrossRef]
- Hui, Y.; Hongxia, C.; Xinmei, H.; Lijie, G.; Hongzheng, L.; Xuanyi, W. Evaluation of tomato fruit quality response to water and nitrogen management under alternate partial root-zone irrigation. Int. J. Agric. Biol. Eng. 2017, 10, 85–94. [Google Scholar] [CrossRef]
- Souri, M.K.; Rashidi, M.; Kianmehr, M.H. Effects of manure-based urea pellets on growth, yield, and nitrate content in coriander, garden cress, and parsley plants. J. Plant Nutr. 2018, 41, 1405–1413. [Google Scholar]
- San Martín-Hernández, C.; Gomez-Merino, F.C.; Saucedo-Veloz, C.; Quintana-Obregon, E.A.; Muy-Rangel, M.D.; Trejo-Tellez, L.I. Nitrogen and potassium supplied by phenological stages affect the carotenoid and nutritive content of the tomato fruit. Not. Bot. Hort. Agrobot. Cluj Napoca 2021, 49, 12320. [Google Scholar] [CrossRef]
- Taber, H.; Perkins-Veazie, P.; Li, S.; White, W.; Rodermel, S.; Xu, Y. Enhancement of tomato fruit lycopene by potassium is cultivar dependent. HortScience 2008, 43, 159–165. [Google Scholar] [CrossRef]
- Feng, X.; Sun, X.; Zhou, W.; Zhang, W.; Che, F.; Li, S. The effects of green waste compost on soil N, P, K, and organic matter fractions in forestry soils: Elemental analysis evaluation. RSC Adv. 2021, 11, 31983–31991. [Google Scholar] [CrossRef]
- Kumar, S.; Dhar, S.; Barthakur, S.; Rajawat, M.V.S.; Kochewad, S.A.; Kumar, S.; Kumar, D.; Meena, L.R. Farmyard manure as K-fertilizer modulates soil biological activities and yield of wheat using the integrated fertilization approach. Front. Environ. Sci. 2021, 9, 764489. [Google Scholar] [CrossRef]
- Frías-Moreno, M.N.; Espino-Díaz, M.; Dávila-Aviña, J.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F.; Molina-Corral, F.J.; Parra-Quezada, R.A.; Orozco, G.I.O. Preharvest nitrogen application affects quality and antioxidant status of two tomato cultivars. Bragantia 2020, 79, 134–144. [Google Scholar] [CrossRef]
- Wang, Y.T.; Huang, S.W.; Liu, R.L.; Jin, J.Y. Effects of nitrogen application on flavor compounds of cherry tomato fruits. J. Plant Nutr. Soil Sci. 2007, 170, 461–468. [Google Scholar] [CrossRef]
- Tavallali, V.; Esmaili, S.; Karimi, S. Nitrogen and potassium requirements of tomato plants for the optimization of fruit quality and antioxidative capacity during storage. J. Food Meas. Charact. 2018, 12, 755–762. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, P.; Sun, X.; Chen, F.; Lai, S.; Yang, H. Calcium permeation property and firmness change of cherry tomatoes under ultrasound combined with calcium lactate treatment. Ultrason. Sonochem. 2020, 60, 104784. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Mukherjee, S.; Dash, P.K.; Das, D.; Das, S. Growth, yield and water productivity of tomato as influenced by deficit irrigation water management. Environ. Process. 2023, 10, 10. [Google Scholar] [CrossRef]
- Weralupitiya, C.; Gunarathne, V.; Keerthanan, S.; Rinklebe, J.; Biswas, J.K.; Jayasanka, J.; Vithanage, M. Influence of biochar on soil biology in the charosphere. In Biochar in Agriculture for Achieving Sustainable Development Goals; Tsang, D.C.W., Ok, Y.S., Eds.; Academic Press: Oxford, UK, 2022; pp. 273–291. [Google Scholar]
- Sibomana, C.I.; Opiyo, A.M.; Aguyoh, J.N. Influence of soil moisture levels and packaging on postharvest qualities of tomato (Solanum lycopersicum). Afr. J. Agric. Res. 2015, 10, 1392–1400. [Google Scholar]
- Tigist, M.; Workneh, T.S.; Woldetsadik, K. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 2013, 50, 477–486. [Google Scholar] [CrossRef]
- Murariu, O.C.; Brezeanu, C.; Jitareanu, C.D.; Robu, T.; Irimia, L.M.; Trofin, A.E.; Popa, L.-D.; Stoleru, V.; Murariu, F.; Brezeanu, P.M. Functional quality of improved tomato genotypes grown in open field and in plastic tunnel under organic farming. Agriculture 2021, 11, 609. [Google Scholar] [CrossRef]
- Nour, V.; Ionica, M.E.; Trandafir, I. Bioactive compounds, antioxidant activity and color of hydroponic tomato fruits at different stages of ripening. Not. Bot. Hort. Agrobot. Cluj Napoca 2015, 43, 404–412. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- IERSD/NOA. Weather Data. Available online: https://meteosearch.meteo.gr/data/index.cfm (accessed on 17 March 2024).
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of nitrogen in soil by Kjedahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Kormanik, P.P.; Mcgraw, A.C. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In Methods and Principles of Mycorrhizal Research; Schenck, N.C., Ed.; American Phytopathological Society: St. Paul, MN, USA, 1982; pp. 37–45. [Google Scholar]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Akdeniz, B.; Demirbüker, K.B.; Ağdatlioğlu, N. Use of factorial experimental design for analyzing the effect of storage conditions on color quality of sun-dried tomatoes. Sci. Res. Essays 2012, 7, 477–489. [Google Scholar]
- Jimenez-Cuesta, M.; Cuquerella, J.; Martinz-Javaga, J.M. Determination of a color index for citrus fruits degreening. In Proceedings of the International Society of Citriculture, International Citrus Congress, Tokyo, Japan, 9–12 November 1981. [Google Scholar]
- Egan, H.; Kirk, R.S.; Sawyer, R. Pearson’s Chemical Analysis of Foods, 8th ed.; Churchill Livingstone: Edinburgh, UK, 1981. [Google Scholar]
- Sadler, G.D.; Murphy, P.A. pH and titratable acidity. In Food Analysis; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2010; pp. 219–238. [Google Scholar]
- Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Comp. Anal. 2002, 15, 309–317. [Google Scholar] [CrossRef]
- Sadler, G.; Davis, J.; Dezman, D. Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. J. Food Sci. 1990, 55, 1460–1461. [Google Scholar] [CrossRef]
Soil Total Nitrogen (STN) (%) | Soil Organic Matter (SOM) (%) | Root Length Density (RLD) (cm cm−3) | AMF Colonization (%) | |
---|---|---|---|---|
Year A | ||||
Control | 0.107 ± 0.001 c | 2.174 ± 0.023 c | 0.572 ± 0.155 c | 27.97 ± 1.07 b |
Urea | 0.116 ± 0.004 bc | 2.264 ± 0.085 bc | 1.479 ± 0.178 ab | 31.61 ± 0.98 b |
Urea + NI + UI | 0.124 ± 0.006 ab | 2.434 ± 0.117 ab | 1.640 ± 0.167 a | 30.33 ± 1.53 b |
TP + FM | 0.130 ± 0.003 a | 2.537 ± 0.045 a | 1.204 ± 0.073 ab | 41.00 ± 2.45 a |
TP + CM | 0.128 ± 0.002 a | 2.504 ± 0.058 a | 1.096 ± 0.176 b | 43.36 ± 1.26 a |
Fertilization (F) | ** | * | ** | ** |
Blocks | ns | * | ns | ns |
Year B | ||||
Control | 0.109 ± 0.002 d | 2.162 ± 0.047 c | 0.449 ± 0.082 d | 28.89 ± 0.59 c |
Urea | 0.121 ± 0.004 c | 2.363 ± 0.049 b | 1.724 ± 0.035 ab | 30.39 ± 0.74 bc |
Urea + NI + UI | 0.123 ± 0.001 bc | 2.447 ± 0.023 ab | 1.996 ± 0.090 a | 31.72 ± 0.35 b |
TP + FM | 0.131 ± 0.003 a | 2.576 ± 0.034 a | 1.269 ± 0.037 bc | 41.85 ± 0.71 a |
TP + CM | 0.128 ± 0.003 ab | 2.527 ± 0.049 a | 1.039 ± 0.019 c | 39.55 ± 1.42 a |
Fertilization (F) | *** | *** | *** | *** |
Blocks | ns | ns | ns | ns |
Overall effects | ||||
Fertilization (F) | *** | *** | *** | *** |
Year (Y) | ns | ns | ns | ns |
F × Y | ns | ns | ns | ns |
Blocks | ns | * | ns | ns |
Dry Weight per Plant (g) | Fruit Number per Plant | Fruit Yield (t ha−1) | Average Fruit Weight (g) | Fruit Diameter (mm) | |
---|---|---|---|---|---|
Year A | |||||
Control | 95.9 ± 5.0 c | 44.0 ± 2.6 c | 77.7 ± 8.1 c | 47.0 ± 1.7 c | 38.2 ± 0.7 a |
Urea | 151.2 ± 8.7 ab | 53.4 ± 0.7 ab | 115.9 ± 2.9 ab | 58.2 ± 1.8 ab | 38.5 ± 1.0 a |
Urea + NI + UI | 156.9 ± 8.2 a | 56.9 ± 1.5 a | 132.3 ± 5.9 a | 62.3 ± 1.5 a | 39.8 ± 1.4 a |
TP + FM | 137.2 ± 4.2 ab | 49.6 ± 0.9 b | 101.0 ± 3.5 b | 54.6 ± 1.0 b | 40.2 ± 0.8 a |
TP + CM | 131.6 ± 8.8 b | 49.7 ± 0.8 b | 102.1 ± 3.3 b | 55.1 ± 1.1 b | 39.9 ± 0.9 a |
Fertilization (F) | ** | ** | *** | *** | ns |
Blocks | ns | ns | ns | ns | ns |
Year B | |||||
Control | 93.2 ± 5.4 d | 45.3 ± 1.4 d | 84.5 ± 10.2 d | 49.7 ± 3.3 d | 39.1 ± 0.6 a |
Urea | 163.3 ± 1.7 a | 55.8 ± 0.9 ab | 122.9 ± 2.7 ab | 59.1 ± 0.5 ab | 39.2 ± 0.7 a |
Urea + NI + UI | 174.4 ± 4.6 a | 59.6 ± 1.7 a | 140.1 ± 6.3 a | 63.0 ± 1.1 a | 40.9 ± 0.9 a |
TP + FM | 140.2 ± 2.5 b | 53.8 ± 0.8 bc | 113.4 ± 3.8 bc | 56.6 ± 0.9 bc | 40.6 ± 0.8 a |
TP + CM | 128.9 ± 1.9 c | 50.6 ± 1.2 c | 100.4 ± 4.7 cd | 53.2 ± 0.8 cd | 40.2 ± 1.1 a |
Fertilization (F) | *** | *** | *** | ** | ns |
Blocks | ns | ns | ns | ns | ns |
Overall effects | |||||
Fertilization (F) | *** | *** | *** | *** | ns |
Year (Y) | ns | * | ns | ns | ns |
F × Y | ns | ns | ns | ns | ns |
Blocks | ns | ns | ns | ns | ns |
Fruit Firmness (kg cm−2) | Total Soluble Solids (TSS) (°Brix) | Titratable Acidity (TA) (% Citric Acid w/w) | TSS/TA | |
---|---|---|---|---|
Year A | ||||
Control | 4.59 ± 0.02 a | 4.49 ± 0.08 c | 0.29 ± 0.02 bc | 15.35 ± 0.53 bc |
Urea | 4.45 ± 0.03 b | 4.74 ± 0.10 bc | 0.27 ± 0.01 c | 17.34 ± 0.29 a |
Urea + NI + UI | 4.48 ± 0.01 b | 4.82 ± 0.02 b | 0.29 ± 0.01 b | 16.45 ± 0.48 ab |
TP + FM | 4.57 ± 0.03 a | 5.11 ± 0.12 a | 0.32 ± 0.03 a | 16.20 ± 0.30 abc |
TP + CM | 4.52 ± 0.02 ab | 5.01 ± 0.07 ab | 0.33 ± 0.02 a | 15.09 ± 0.51 c |
Fertilization (F) | ** | ** | *** | * |
Blocks | ns | ns | * | ns |
Year B | ||||
Control | 4.58 ± 0.09 a | 4.47 ± 0.06 d | 0.29 ± 0.01 c | 15.39 ± 0.49 b |
Urea | 4.34 ± 0.05 bc | 4.81 ± 0.07 c | 0.28 ± 0.02 c | 17.32 ± 0.18 a |
Urea + NI + UI | 4.28 ± 0.02 c | 4.87 ± 0.05 bc | 0.30 ± 0.01 bc | 16.50 ± 0.21 ab |
TP + FM | 4.56 ± 0.08 ab | 5.23 ± 0.08 a | 0.31 ± 0.02 ab | 16.54 ± 0.82 ab |
TP + CM | 4.50 ± 0.03 ab | 5.11 ± 0.03 ab | 0.33 ± 0.01 a | 15.40 ± 0.54 b |
Fertilization (F) | * | *** | ** | * |
Blocks | * | ns | ns | ns |
Overall effects | ||||
Fertilization (F) | *** | *** | *** | ** |
Year (Y) | * | ns | ns | ns |
F × Y | ns | ns | ns | ns |
Blocks | * | ns | * | ns |
Lycopene Content (mg kg−1 Fresh Weight) | Lycopene Yield (kg ha−1) | |
---|---|---|
Year A | ||
Control | 74.4 ± 4.2 c | 5.9 ± 1.0 c |
Urea | 80.3 ± 1.2 bc | 9.3 ± 0.2 ab |
Urea + NI + UI | 81.9 ± 1.8 ab | 10.8 ± 0.6 a |
TP + FM | 88.0 ± 0.3 a | 8.9 ± 0.3 b |
TP + CM | 88.8 ± 1.9 a | 9.1 ± 0.5 ab |
Fertilization (F) | ** | ** |
Blocks | ns | ns |
Year B | ||
Control | 74.6 ± 3.9 c | 6.4 ± 0.8 c |
Urea | 84.2 ± 1.4 ab | 10.4 ± 0.4 ab |
Urea + NI + UI | 78.6 ± 2.9 bc | 11.0 ± 0.5 a |
TP + FM | 86.9 ± 0.7 a | 9.8 ± 0.4 ab |
TP + CM | 88.2 ± 2.4 a | 8.8 ± 0.3 b |
Fertilization (F) | * | ** |
Blocks | ns | ns |
Overall effects | ||
Fertilization (F) | ** | *** |
Year (Y) | ns | ns |
F × Y | ns | ns |
Blocks | ns | ns |
Fruit Surface Color | |||||
---|---|---|---|---|---|
L* | a* | b* | a*/b* | CI | |
Year A | |||||
Control | 40.8 ± 0.5 a | 33.3 ± 0.4 c | 27.8 ± 0.2 a | 1.20 ± 0.01 b | 29.3 ± 0.6 b |
Urea | 39.0 ± 0.2 c | 34.4 ± 0.7 bc | 26.9 ± 0.1 c | 1.27 ± 0.03 a | 32.7 ± 1.1 a |
Urea + NI + UI | 39.3 ± 0.4 bc | 35.0 ± 0.1 ab | 27.1 ± 0.3bc | 1.29 ± 0.01 a | 32.9 ± 0.5 a |
TP + FM | 40.3 ± 0.3 ab | 36.1 ± 0.8 a | 27.8 ± 0.2 a | 1.30 ± 0.02 a | 32.3 ± 0.6 a |
TP + CM | 40.4 ± 0.4 ab | 35.4 ± 0.4 ab | 27.5 ± 0.1 ab | 1.28 ± 0.01 a | 31.8 ± 0.2 a |
Fertilization (F) | * | * | ** | * | * |
Blocks | ns | ns | ns | ns | ns |
Year B | |||||
Control | 41.4 ± 0.3 a | 33.5 ± 0.3 b | 27.9 ± 0.9 a | 1.21 ± 0.05 b | 29.1 ± 1.3 b |
Urea | 39.1 ± 0.1 b | 34.7 ± 0.5 ab | 25.5 ± 0.4 c | 1.36 ± 0.01 a | 34.7 ± 0.4 a |
Urea + NI + UI | 39.5 ± 0.2 b | 35.3 ± 0.7 a | 25.7 ± 0.6 bc | 1.38 ± 0.03 a | 34.9 ± 1.2 a |
TP + FM | 40.7 ± 0.3 a | 36.2 ± 0.6 a | 27.2 ± 0.3 ab | 1.33 ± 0.02 a | 32.7 ± 0.7 a |
TP + CM | 41.0 ± 0.4 a | 35.7 ± 0.2 a | 25.9 ± 0.1 bc | 1.38 ± 0.01 a | 33.5 ± 0.2 a |
Fertilization (F) | ** | * | * | * | ** |
Blocks | ns | ns | ns | ns | ns |
Overall effects | |||||
Fertilization (F) | ** | ** | ** | *** | *** |
Year (Y) | ns | ns | *** | ** | * |
F × Y | ns | ns | ns | ns | ns |
Blocks | ns | ns | ns | ns | ns |
Organic Matter (%) | EC (mS cm−1) | pH | N Total (g kg−1) | P Olsen (mg kg−1) | K (mg kg−1) | Mg (mg kg−1) | |
---|---|---|---|---|---|---|---|
Tomato pomace with farmyard manure (TP + FM) | 52 | 1.66 | 7.43 | 31.6 | 20 | 34 | 0.65 |
Tomato pomace with compost (TP + CM) | 44 | 1.76 | 7.38 | 28.7 | 15 | 30 | 0.35 |
Fertilization Treatment | Fertilization Amount | Nitrogen (N) Content | N Application Rate |
---|---|---|---|
Control | No fertilizer | - | - |
Urea | 435 kg ha−1 | 46% | 200 kg N ha−1 |
Urea + NI + UI | 435 kg ha−1 | 46% | 200 kg N ha−1 |
TP + FM | 3000 kg ha−1 | 3.16% | 94.8 kg N ha−1 |
TP + CM | 3000 kg ha−1 | 2.87% | 86.1 kg N ha−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakabouki, I.; Roussis, I.; Krokida, M.; Mavroeidis, A.; Stavropoulos, P.; Karydogianni, S.; Beslemes, D.; Tigka, E. Comparative Study Effect of Different Urea Fertilizers and Tomato Pomace Composts on the Performance and Quality Traits of Processing Tomato (Lycopersicon esculentum Mill.). Plants 2024, 13, 1852. https://doi.org/10.3390/plants13131852
Kakabouki I, Roussis I, Krokida M, Mavroeidis A, Stavropoulos P, Karydogianni S, Beslemes D, Tigka E. Comparative Study Effect of Different Urea Fertilizers and Tomato Pomace Composts on the Performance and Quality Traits of Processing Tomato (Lycopersicon esculentum Mill.). Plants. 2024; 13(13):1852. https://doi.org/10.3390/plants13131852
Chicago/Turabian StyleKakabouki, Ioanna, Ioannis Roussis, Magdalini Krokida, Antonios Mavroeidis, Panteleimon Stavropoulos, Stella Karydogianni, Dimitrios Beslemes, and Evangelia Tigka. 2024. "Comparative Study Effect of Different Urea Fertilizers and Tomato Pomace Composts on the Performance and Quality Traits of Processing Tomato (Lycopersicon esculentum Mill.)" Plants 13, no. 13: 1852. https://doi.org/10.3390/plants13131852
APA StyleKakabouki, I., Roussis, I., Krokida, M., Mavroeidis, A., Stavropoulos, P., Karydogianni, S., Beslemes, D., & Tigka, E. (2024). Comparative Study Effect of Different Urea Fertilizers and Tomato Pomace Composts on the Performance and Quality Traits of Processing Tomato (Lycopersicon esculentum Mill.). Plants, 13(13), 1852. https://doi.org/10.3390/plants13131852