Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = tissue culture cytotoxicity assays

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2153 KiB  
Article
Interaction of MG63 Human Osteosarcoma-Derived Cells on S53P4 Bioactive Glass: An In Vitro Study
by Valentin Schmidt, Beáta Polgár, Vanda Ágnes Nemes, Tímea Dergez, László Janovák, Péter Maróti, Szilárd Rendeki, Kinga Turzó and Balázs Patczai
J. Funct. Biomater. 2025, 16(8), 275; https://doi.org/10.3390/jfb16080275 - 29 Jul 2025
Viewed by 399
Abstract
Bioactive glass materials have been used for decades in orthopedic surgery, traumatology, and oral and maxillofacial surgery to repair bone defects. This study aimed to evaluate in vitro the survival and proliferation of MG63 human osteosarcoma-derived cells on S53P4 bioactive glass (BonAlive® [...] Read more.
Bioactive glass materials have been used for decades in orthopedic surgery, traumatology, and oral and maxillofacial surgery to repair bone defects. This study aimed to evaluate in vitro the survival and proliferation of MG63 human osteosarcoma-derived cells on S53P4 bioactive glass (BonAlive® granules). Microscopic visualization was performed to directly observe the interactions between the cells and the material. Osteoblast-like cells were examined on non-adherent test plates, on tissue culture (TC)-treated plates and on the surface of the bioglass to assess the differences. Cell survival and proliferation were monitored using a CCK-8 optical density assay. Comparing the mean OD of MG63 cells in MEM on TC-treated plates with cells on BG, we detected a significant difference (p < 0.05), over each time of observation. The sustained cell proliferation confirmed the non-cytotoxic property of the bioglass, as the cell number increased continuously at 48, 72, 96, and 168 h and even did not plateau after 168 h. Since the properties of bioglasses can vary significantly depending on their composition and environment, a thorough characterization of their biocompatibility is crucial to ensure their effective and appropriate application—for example, during hip and knee prosthesis insertion. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

11 pages, 2796 KiB  
Article
In Vitro and Ex Vivo Evaluation of Rifampicin Cytotoxicity in Human Skin Models
by Marcel Nani Leite, Natália Aparecida de Paula, Leandra Náira Zambelli Ramalho and Marco Andrey Cipriani Frade
Antibiotics 2025, 14(7), 691; https://doi.org/10.3390/antibiotics14070691 - 8 Jul 2025
Viewed by 363
Abstract
Background/Objectives: Drugs for human use require several studies for the assessment of their efficacy and safety. An important property is cytotoxicity, which should be tested in different environments and models in closer proximity to the final use of the drug, with greater [...] Read more.
Background/Objectives: Drugs for human use require several studies for the assessment of their efficacy and safety. An important property is cytotoxicity, which should be tested in different environments and models in closer proximity to the final use of the drug, with greater reliability. Thus, we proposed to evaluate the toxicity of rifampicin, the only bactericidal drug in the anti-leprosy multidrug therapy, using skin cells and skin explant cultures. Methods: Cell viability was tested by the MTT method using primary keratinocytes and fibroblasts and immortalized skin cells (HaCaT and 3T3) at 24, 48, and 72 h of treatment. For the skin explant, we used the TTC assay to determine viability (24, 48, 72, and 96 h), hematoxylin and eosin staining to analyze the structure and architecture of the tissue, and TUNEL to assess apoptotic cells at 3, 6, 12, 24, 48, 72, and 96 h. Results: Regarding the toxicity of primary and immortalized cells, viability was above 70% up to a concentration of 50 μg/mL at 24, 48, and 72 h, and at the concentration of 200 μg/mL, all cells showed greater sensitivity, especially at 72 h. Tissue viability analysis revealed a high percentage (above 96%) of viable tissue at the concentrations of 100, 150, and 200 μg/mL at the time points studied. Histological analysis showed that tissue architecture was maintained, with no apoptotic cells being observed. Conclusions: Thus, our results showed the importance of evaluating drug toxicity using different cell types, with the ex vivo skin model proving to be an alternative to animal use. Full article
Show Figures

Figure 1

17 pages, 5038 KiB  
Article
Efficacy of Oxygen Fluid (blue®m) on Human Gingival Fibroblast Viability, Proliferation and Inflammatory Cytokine Expression: An In Vitro Study
by Rhodanne Nicole A. Lambarte, Amani M. Basudan, Marwa Y. Shaheen, Terrence S. Sumague, Fatemah M. AlAhmari, Najla M. BinShwish, Abeer S. Alzawawi, Abdurahman A. Niazy, Mohammad A. Alfhili and Hamdan S. Alghamdi
Appl. Sci. 2025, 15(13), 7459; https://doi.org/10.3390/app15137459 - 3 Jul 2025
Viewed by 360
Abstract
Human gingival fibroblasts (HGnFs) play crucial roles in periodontal wound healing. This in vitro study examined the impact of varying concentrations of topical oxygen fluid (blue®m) on HGnF morphology, viability, proliferation, oxidative stress and pro-inflammatory cytokine production. The attempt was to [...] Read more.
Human gingival fibroblasts (HGnFs) play crucial roles in periodontal wound healing. This in vitro study examined the impact of varying concentrations of topical oxygen fluid (blue®m) on HGnF morphology, viability, proliferation, oxidative stress and pro-inflammatory cytokine production. The attempt was to underscore the potential of blue®m as a less cytotoxic alternative to chlorhexidine in the context of tissue-regeneration improvement. Primary HGnF cell cultures were subjected to oxygen fluid (blue®m) at concentrations of 0.6, 1.2 and 2.4% for a duration of 1 min. The positive control was 0.12% chlorhexidine. Cell morphology as well as actin cytoskeleton were assessed using microscopy and immunofluorescence staining. Cell viability and proliferation were assessed through AlamarBlue and trypan blue assays at 1, 2, 7, 10 and 14 days. Levels of reactive oxygen species (ROS) were quantified using DCFH-DA assay. Pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, MMP-8 and TIMP-1) were assessed through ELISA. HGnF morphology and actin structure were preserved at all oxygen fluid concentrations. Cell viability and proliferation were significantly higher in the 0.6% and 1.2% groups than in the control and chlorhexidine groups (p ≤ 0.05). ROS levels were low at 0.6% and 1.2%, but increased at 2.4% and with chlorhexidine (p ≤ 0.05). Oxygen treatment reduced IL-1β, IL-6, TNF-α and TIMP-1 expression, while MMP-8 levels increased. Chlorhexidine significantly upregulated the expression of all proinflammatory cytokines (p ≤ 0.01). Oxygen fluid (blue®m) therapy improves the viability and proliferation of gingival fibroblasts and offers anti-inflammatory and preliminary antioxidative effects at the cellular level, especially at lower concentrations (0.6% and 1.2%), indicating potential application in periodontal wound management, subject to clinical validation. Full article
Show Figures

Figure 1

21 pages, 1735 KiB  
Review
Immunomodulatory Potential and Biocompatibility of Chitosan–Hydroxyapatite Biocomposites for Tissue Engineering
by Davide Frumento and Ștefan Țălu
J. Compos. Sci. 2025, 9(6), 305; https://doi.org/10.3390/jcs9060305 - 17 Jun 2025
Cited by 2 | Viewed by 811
Abstract
Chitosan–hydroxyapatite (CS-HAp) biocomposites, combining the biocompatibility and bioactivity of chitosan with the osteoconductive properties of hydroxyapatite, are emerging as promising candidates for tissue engineering applications. These materials consistently exhibit excellent cytocompatibility, with cell viability rates greater than 95% in MTT and Neutral Red [...] Read more.
Chitosan–hydroxyapatite (CS-HAp) biocomposites, combining the biocompatibility and bioactivity of chitosan with the osteoconductive properties of hydroxyapatite, are emerging as promising candidates for tissue engineering applications. These materials consistently exhibit excellent cytocompatibility, with cell viability rates greater than 95% in MTT and Neutral Red Uptake assays, and minimal cytotoxicity, as demonstrated by low levels of cell death in DAPI and Trypan blue staining. More importantly, CS-HAp biocomposites modulate the immune environment by enhancing the expression of anti-inflammatory cytokines (IL-10 and IL-4) and the pro-inflammatory cytokine TGF-β, while avoiding significant increases in TNF-α, IL-6, or NF-κB expression in fibroblast cells exposed to HAC and HACF scaffolds. In an in vivo dermatitis model, these biocomposites reduced mast cell counts and plasma histamine levels and significantly decreased pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), JAK1/3, VEGF, and AnxA1 levels. Structurally, HACF scaffolds demonstrated larger average pore sizes (95 µm) compared to HAC scaffolds (74 µm), with porosities of 77.37 ± 2.4% and 65.26 ± 3.1%, respectively. These materials exhibited high swelling ability, equilibrium water content, and controlled degradation over a week in culture media. In addition to their immunomodulatory effects, CS-HAp composites promote essential cellular activities, such as attachment, proliferation, and differentiation, thereby supporting tissue integration and healing. Despite these promising findings, significant gaps remain in understanding the underlying mechanisms of immune modulation by CS-HAp biocomposites, and formulation-dependent variability raises concerns about reproducibility and clinical application. Therefore, a comprehensive review is essential to consolidate existing data, identify key knowledge gaps, and standardize the design of CS/HAp composites for broader clinical use, particularly in immunomodulatory and regenerative medicine contexts. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

21 pages, 6702 KiB  
Article
Advancing Soft Tissue Reconstruction with a Ready-to-Use Human Adipose Allograft
by Victor Fanniel, Ihab Atawneh, Jonathan Savoie, Michelle Izaguirre-Ramirez, Joanna Marquez, Christopher Khorsandi and Shauna Hill
Bioengineering 2025, 12(6), 612; https://doi.org/10.3390/bioengineering12060612 - 4 Jun 2025
Viewed by 1178
Abstract
Soft tissue reconstruction remains a challenge in clinical practice, particularly for restoring substantial volume loss due to surgical resections or contour deformities. Current methods, such as autologous fat transplantation, have limitations, including donor site morbidity and insufficient tissue availability, necessitating an innovative approach. [...] Read more.
Soft tissue reconstruction remains a challenge in clinical practice, particularly for restoring substantial volume loss due to surgical resections or contour deformities. Current methods, such as autologous fat transplantation, have limitations, including donor site morbidity and insufficient tissue availability, necessitating an innovative approach. This study characterizes alloClae, a minimally manipulated human-derived adipose allograft prepared using a detergent-based protocol to reduce DNA content while preserving adipose tissue structure. Proteomic analysis revealed that alloClae retains key native proteins critical for graft integration with the host and stability, with key extracellular matrix (ECM) components, collagens, elastins, and laminin, which are more concentrated as a result of the detergent-based protocol. Biocompatibility of alloClae was assessed in vitro using cytotoxicity and cell viability assays in fibroblast cultures, revealing no adverse effects on cell viability, membrane integrity, or oxidative stress. Additionally, in vitro studies with adipose-derived stem cells (ASCs) demonstrated attachment and differentiation, with lipid droplet accumulation observed by day 14, indicating support for adipogenesis. A 6-month longitudinal study in athymic mice showed stable graft retention, host cell infiltration, and formation of new adipocytes and vasculature within alloClae by 3 months. The findings highlight alloClae’s ability to support host-driven adipogenesis and angiogenesis while maintaining graft stability throughout the study period. It presents a promising alternative to the existing graft materials, offering a clinically translatable solution for soft tissue reconstruction. Full article
(This article belongs to the Special Issue Regenerative Technologies in Plastic and Reconstructive Surgery)
Show Figures

Graphical abstract

17 pages, 3651 KiB  
Article
Polarization of THP-1-Derived Human M0 to M1 Macrophages Exposed to Flavored E-Liquids
by Raivat Shah, Emily D. Luo, Carly A. Shaffer, Maya Tabakha, Sophie Tomov, Siara H. Minton, Mikaela K. Brown, Dominic L. Palazzolo and Giancarlo A. Cuadra
Toxics 2025, 13(6), 451; https://doi.org/10.3390/toxics13060451 - 29 May 2025
Viewed by 1088
Abstract
Electronic cigarettes (ECIGs) are widely used but their effects on the immune system need to be further investigated. Macrophages are white blood cells central to the immune response. Using THP-1-derived M0 macrophages, this study aims to determine the effects of ECIG liquids (E-liquids) [...] Read more.
Electronic cigarettes (ECIGs) are widely used but their effects on the immune system need to be further investigated. Macrophages are white blood cells central to the immune response. Using THP-1-derived M0 macrophages, this study aims to determine the effects of ECIG liquids (E-liquids) on the polarization of M0 to the pro-inflammatory M1 macrophage subtype. THP-1 cells were cultured and differentiated to M0 macrophages using RPMI media. E-liquids ± cinnamon, menthol, strawberry and tobacco flavors were added to cell cultures at 1% (v/v) during polarization with lipopolysaccharides and interferon γ for 24 to 72 h. Morphology, viability, gene expression and cytokine production were measured using light microscopy, the LDH cytotoxicity assay, qPCR and ELISA, respectively. The results show that cells present little to no LDH activity under any treatments. In addition, cinnamon-flavored E-liquid severely affects morphology (i.e., abolishing pseudopodia formation), gene expression of all genes tested, and cytokine production. Other E-liquid flavors also affect some of these parameters, but to a lesser extent. Our data suggest that E-liquids can affect the polarization from M0 to M1, thus affecting the immune response in ECIG-exposed tissues such as the mucosa in the oral cavity and airways, ultimately mitigating the health status. Full article
(This article belongs to the Special Issue Health Risk Assessment of Exposure to Emerging Contaminants)
Show Figures

Graphical abstract

15 pages, 5071 KiB  
Article
Differential Cytotoxicity of Surface-Functionalized Silver Nanoparticles in Colorectal Cancer and Ex-Vivo Healthy Colonocyte Models
by Marianna Barbalinardo, Emilia Benvenuti, Denis Gentili, Francesca Chiarini, Jessika Bertacchini, Luca Roncucci and Paola Sena
Cancers 2025, 17(9), 1475; https://doi.org/10.3390/cancers17091475 - 27 Apr 2025
Viewed by 611
Abstract
Background/Objectives: Engineered nanomaterials, particularly silver nanoparticles (AgNPs), have emerged as promising tools in oncology due to their ability to enhance tumor targeting and minimize off-target effects. This study investigates the cytotoxic effects of two different types of AgNPs—citrate-coated (AgNPs-cit) and EG6OH-coated [...] Read more.
Background/Objectives: Engineered nanomaterials, particularly silver nanoparticles (AgNPs), have emerged as promising tools in oncology due to their ability to enhance tumor targeting and minimize off-target effects. This study investigates the cytotoxic effects of two different types of AgNPs—citrate-coated (AgNPs-cit) and EG6OH-coated (AgNPs-EG6OH)—on colorectal cancer (CRC) cell lines and healthy colonocytes, aiming to assess their potential as selective therapeutic agents. Methods: AgNPs-cit and AgNPs-EG6OH were synthesized and characterized for size and surface properties. LoVo (microsatellite instability-high) and HT-29 (microsatellite stable) CRC cell lines, along with primary colonocyte cultures from healthy mucosal tissues, were exposed to these nanoparticles. Cytotoxicity was assessed through MTT assays, while morphological changes were observed using fluorescence microscopy. Internalization of the nanoparticles was evaluated by confocal microscopy. Results: AgNPs-cit exhibited significant cytotoxicity in LoVo cells, reducing viability and inducing morphological changes indicative of programmed cell death, especially after 48 h of exposure. In contrast, AgNPs-EG6OH showed minimal effects on LoVo cells and no significant toxicity on HT-29 cells or primary colonocytes. Confocal microscopy confirmed nanoparticle internalization, with surface functionalization influencing the distribution patterns within cells. Conclusions: This study demonstrates that surface functionalization significantly influences the cytotoxicity of AgNPs, with citrate-coated nanoparticles showing selective effects on microsatellite instability-high CRC cells. These findings underscore the potential of surface-modified nanoparticles for targeted cancer therapy and highlight the importance of tailoring nanoparticle design to optimize therapeutic efficacy while minimizing off-target effects. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Graphical abstract

16 pages, 1234 KiB  
Article
Antiviral Effect of Erdosteine in Cells Infected with Human Respiratory Viruses
by Pierachille Santus, Sergio Strizzi, Fiammetta Danzo, Mara Biasin, Irma Saulle, Claudia Vanetti, Marina Saad, Dejan Radovanovic and Daria Trabattoni
Pathogens 2025, 14(4), 388; https://doi.org/10.3390/pathogens14040388 - 15 Apr 2025
Viewed by 1030
Abstract
Respiratory viral infections trigger immune and inflammatory responses that can be associated with excessive oxidative stress, glutathione (GSH) depletion, and a cytokine storm that drives virus-induced cell/tissue damage and severe disease. Erdosteine is a thiol-based drug with proven mucolytic, anti-inflammatory, antioxidant, and antibacterial [...] Read more.
Respiratory viral infections trigger immune and inflammatory responses that can be associated with excessive oxidative stress, glutathione (GSH) depletion, and a cytokine storm that drives virus-induced cell/tissue damage and severe disease. Erdosteine is a thiol-based drug with proven mucolytic, anti-inflammatory, antioxidant, and antibacterial properties, but less is known about its antiviral effects. We performed in vitro studies to investigate the antiviral and anti-inflammatory activity of erdosteine in A549-hACE2 human lung epithelial cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or respiratory syncytial virus (RSV) and in Caco-2 human colon carcinoma cells infected with influenza A virus (H1N1). The cells were treated with different concentrations of erdosteine or its active metabolite 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MET-1) before and after viral infection. The viral replication/load in the cell culture supernatants was measured by real-time quantitative polymerase chain reaction (RT-qPCR) assay and digital droplet PCR. The gene expression of innate immune response signaling pathways and oxidative stress was analyzed by reverse transcription PCR custom-array. The results showed that erdosteine and its active metabolite, at concentrations consistent with an approved therapeutic human dosage, were not directly cytotoxic and had significant antiviral effects in cells pre-infected with SARS-CoV-2, RSV, and H1N1. The transcriptome analysis showed that erdosteine activated innate immune responses by stimulating overexpression of type I interferon and inflammasome pathways and modulated oxidative stress by inducing the modulation of oxidative stress and GSH pathways. These findings suggest that erdosteine may be a useful treatment for respiratory viral infections. Full article
(This article belongs to the Special Issue Virus–Host Cell Interactions and Research of New Antivirals)
Show Figures

Figure 1

20 pages, 15356 KiB  
Article
A Carbon-Based Nanomaterial with Dichotomous Effects: Antineoplastic on Oral Cancer Cells and Osteoinductive/Chondroinductive on Dental Pulp Stem Cells
by Milica Jaksic Karisik, Nataša Jović Orsini, Jelena Carkic, Milos Lazarevic, Dijana Mitić, Bojan Jokanovic, Vukoman Jokanović and Jelena Milasin
J. Funct. Biomater. 2025, 16(3), 109; https://doi.org/10.3390/jfb16030109 - 19 Mar 2025
Viewed by 789
Abstract
Background: Oral cancer is an aggressive malignancy with modest survival rates. It also causes disfigurement following surgical removal of the tumor, thus highlighting the need for new cancer treatment and tissue repair modalities. Carbon-based nanomaterials have emerged as promising tools in both anticancer [...] Read more.
Background: Oral cancer is an aggressive malignancy with modest survival rates. It also causes disfigurement following surgical removal of the tumor, thus highlighting the need for new cancer treatment and tissue repair modalities. Carbon-based nanomaterials have emerged as promising tools in both anticancer and regenerative therapies. Objectives: We aimed to synthesize a new carbon-based nanomaterial (CBN) and test its antineoplastic effects, as well as its potential regenerative capacity. Materials and Methods: A carbon nanomaterial, obtained by ball milling graphite flakes, was functionalized with polyvinylpyrrolidone (CBN/PVP). Its physicochemical properties were explored with X-ray diffraction (XRD), attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR), micro-Raman spectroscopy, fluorescent and scanning electron microscopy, and wettability analysis. For the antineoplastic effects investigation, oral cancer cells were treated with CBN/PVP and examined with MTT and migration assays, as well as cell-cycle and ROS production analyses. Gene expression was determined by qPCR. To examine the pro-regenerative capacity of CBN/PVP, dental pulp stem cell cultures (DPSCs) were treated with the nanomaterial and subjected to osteo- and chondro-induction. Results: Lower concentrations of CBN/PVP (50, 100 μg/mL) applied on cancer cells exerted remarkable cytotoxic effects, induced G1 cell-cycle arrest, and reduced cancer cell invasion potential by different mechanisms, including downregulation of the PI3K/AKT/mTOR pathway. In contrast, the addition of 50 µg/mL of CBN/PVP to DPSCs stimulated their survival and proliferation. CBN/PVP significantly enhanced both the osteogenic (p < 0.05) and chondrogenic (p < 0.01) induction of DPSCs. Conclusions: The novel carbon-based nanomaterial displays unique characteristics, making it suitable in anticancer and regenerative therapies concomitantly. Full article
(This article belongs to the Special Issue Recent Studies on Biomaterials for Tissue Repair and Regeneration)
Show Figures

Graphical abstract

22 pages, 6138 KiB  
Article
Transforming Agro-Waste Cutin into Sustainable Materials for Biomedical Innovations
by Gianni Pecorini, Martina Tamburriello, Erika Maria Tottoli, Giangiacomo Beretta, Ida Genta, Bice Conti, Rossella Dorati and Rita Nasti
Polymers 2025, 17(6), 742; https://doi.org/10.3390/polym17060742 - 12 Mar 2025
Viewed by 3305
Abstract
Agricultural waste derivatives, particularly tomato cutin, a biopolymer found in the cuticular layer of plants, present a promising alternative for the development of sustainable materials in biomedical applications. Cutin, composed primarily of fatty acids and hydroxy acids, exhibits favorable biodegradability, biocompatibility, and hydrophobic [...] Read more.
Agricultural waste derivatives, particularly tomato cutin, a biopolymer found in the cuticular layer of plants, present a promising alternative for the development of sustainable materials in biomedical applications. Cutin, composed primarily of fatty acids and hydroxy acids, exhibits favorable biodegradability, biocompatibility, and hydrophobic properties, positioning it as a viable candidate for applications such as drug delivery systems, wound healing, and tissue engineering. This study investigates the extraction, characterization, and potential biomedical utilization of 10,16-dihydroxy hexadecenoic acid monomer derived from tomato cutin agro-waste. The cytotoxicity of cutin-based materials was evaluated through in vitro assays, demonstrating minimal toxicity and confirming their suitability for biomedical applications. The extraction process was optimized using various solvents, and the molecular characteristics of the extracted monomer were assessed using techniques such as Gel Permeation Chromatography (GPC), Gas Chromatography–Mass Spectroscopy (GC-MS) 1H and 13C Nuclear Magnetic Resonance (NMR), Fourier Transformed Infrared (FT-IR) spectroscopy, Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC). MTT assay was also performed on NHDFs cultured in monomer solutions to assess their cytocompatibility. The findings suggest that cutin-based materials, when processed under environmentally sustainable conditions, offer an effective and biocompatible alternative to conventional synthetic polymers, opening new avenues for the development of sustainable biomedical products. Full article
(This article belongs to the Special Issue Polymers: Bio-Based Medical Textile)
Show Figures

Graphical abstract

13 pages, 2417 KiB  
Article
Neutralizing IL-15 Inhibits Tissue-Damaging Immune Response in Ex Vivo Cultured Untreated Celiac Intestinal Mucosa
by Vera Rotondi Aufiero, Giuseppe Iacomino, Giovanni De Chiara, Errico Picariello, Gaetano Iaquinto, Riccardo Troncone and Giuseppe Mazzarella
Cells 2025, 14(3), 234; https://doi.org/10.3390/cells14030234 - 6 Feb 2025
Viewed by 1437
Abstract
In celiac disease (CeD), interleukin 15 (IL-15) affects the epithelial barrier by acting on intraepithelial lymphocytes, promoting interferon γ (IFN-γ) production and inducing strong cytotoxic activity as well as eliciting apoptotic death of enterocytes by the Fas/Fas ligand system. This study investigates the [...] Read more.
In celiac disease (CeD), interleukin 15 (IL-15) affects the epithelial barrier by acting on intraepithelial lymphocytes, promoting interferon γ (IFN-γ) production and inducing strong cytotoxic activity as well as eliciting apoptotic death of enterocytes by the Fas/Fas ligand system. This study investigates the effects of a monoclonal antibody neutralizing the effects of IL-15 (aIL-15) on tissue-damaging immune response in untreated CeD patients by using an organ culture system. Jejunal biopsies from 10 untreated CeD patients were cultured ex vivo with or without aIL-15. Epithelial expressions of CD95/Fas, HLA-E and perforin were analyzed by immunohistochemistry. Apoptosis was detected in the epithelium by using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Additionally, the surface epithelium compartment of ex vivo cultured biopsy samples was isolated by laser capture microdissection (LCM). RNA from each LCM sample was extracted and the relative expression of IFN-γ was evaluated by quantitative reverse transcriptase-PCR (qRT-PCR). Biopsies cultured with the aIL-15 antibody showed a reduction in Fas, HLA-E and perforin epithelial expression, as well as a decrease in epithelial TUNEL+ cells compared to biopsies cultured without the aIL-15 antibody. Moreover, downregulation of epithelial IFN-γ expression was recorded in biopsies incubated with aIL-15, compared to those cultured without aIL-15. Our findings suggest that neutralizing the effects of IL-15 in ex vivo cultured untreated CeD intestinal mucosa could block apoptosis by downregulating Fas and HLA-E expression and the release of cytotoxic proteins, such as perforin. Furthermore, it can dampen the hyperactive immune response by reducing IFN-γ expression. More generally, our study provides new evidence for the effects of anti-IL-15 neutralizing monoclonal antibodies in preventing or repairing epithelial damage and further supports the concept that IL-15 is a meaningful therapeutic target in CeD, or inflammatory diseases associated with the upregulation of IL-15. Full article
Show Figures

Figure 1

14 pages, 7247 KiB  
Article
Development of Recombinant Human Collagen-Based Porous Scaffolds for Skin Tissue Engineering: Enhanced Mechanical Strength and Biocompatibility
by Yang Yang, Ting Yu, Mengdan Tao, Yong Wang, Xinying Yao, Chenkai Zhu, Fengxue Xin and Min Jiang
Polymers 2025, 17(3), 303; https://doi.org/10.3390/polym17030303 - 23 Jan 2025
Cited by 1 | Viewed by 1633
Abstract
Skin tissue engineering scaffolds should possess key properties such as porosity, degradability, durability, and biocompatibility to effectively facilitate skin cell adhesion and growth. In this study, recombinant human collagen (RHC) was used to fabricate porous scaffolds via freeze-drying, offering an alternative to animal-derived [...] Read more.
Skin tissue engineering scaffolds should possess key properties such as porosity, degradability, durability, and biocompatibility to effectively facilitate skin cell adhesion and growth. In this study, recombinant human collagen (RHC) was used to fabricate porous scaffolds via freeze-drying, offering an alternative to animal-derived collagen where bovine collagen (BC)-based scaffolds were also prepared for comparison. The internal morphology of the RHC scaffolds were characterized by scanning electron microscopy (SEM) and the pore size ranged from 68.39 to 117.52 µm. The results from compression and fatigue tests showed that the mechanical strength and durability of RHC scaffolds could be tailored by adjusting the RHC concentration, and the maximum compressive modulus reached to 0.003 MPa, which is comparable to that of BC scaffolds. The degradation test illustrated that the RHC scaffolds had a slower degradation rate compared to BC scaffolds. Finally, the biocompatibilities of the porous scaffolds were studied by seeding and culturing the human foreskin fibroblasts (HFFs) and human umbilical vein endothelial cells (HUVECs) in samples. The fluorescent images and Cell Counting Kit-8 (CCK-8) assay revealed RHC porous scaffolds were non-cytotoxic and supported the attachment as well as the proliferation of the seeded cells. Overall, the results demonstrated that RHC-based scaffolds exhibited adequate mechanical strength, ideal biodegradability, and exceptional biocompatibility, making them highly suitable for skin-tissue-engineering applications. Full article
(This article belongs to the Special Issue Biopolymers for Drug Delivery and Tissue Engineering)
Show Figures

Figure 1

12 pages, 4498 KiB  
Article
Polycarbonate–Acrylonitrile Butadiene Styrene Three Dimensional Printing Material Exhibits Biocompatibility and Enhances Osteogenesis and Gingival Tissue Formation with Human Cells
by Li Xiao, Naohiro Shimamura, Takashi Kamio, Ryoji Ide, Mai Mochizuki and Taka Nakahara
Cells 2025, 14(3), 167; https://doi.org/10.3390/cells14030167 - 22 Jan 2025
Cited by 1 | Viewed by 1440
Abstract
Three dimensional (3D) printing materials are widely used in dental applications, but their biocompatibility and interactions with human cells require evaluation. This study aimed to identify materials meeting biocompatibility, mechanical strength, and tissue-forming requirements for safe dental applications. We assessed the cytotoxicity of [...] Read more.
Three dimensional (3D) printing materials are widely used in dental applications, but their biocompatibility and interactions with human cells require evaluation. This study aimed to identify materials meeting biocompatibility, mechanical strength, and tissue-forming requirements for safe dental applications. We assessed the cytotoxicity of resins and thermoplastic filaments in human HaCaT keratinocytes, gingival fibroblasts (hGFs), and stem cells from human exfoliated deciduous teeth (SHED) using PrestoBlue assays. Three resins, including two types of surgical guide resins, exhibited strong cytotoxicity after 4–72 h, while 2 h exposure to an FDA-approved surgical guide resin did not affect SHED cell viability. In contrast, six thermoplastic filaments showed no significant cytotoxicity even after 72 h. Among these, polycarbonate–acrylonitrile butadiene styrene (PC-ABS) demonstrated excellent toughness, heat resistance, and surface quality at a low cost. SHED cells cultured on PC-ABS dishes and micro bone structures showed strong proliferation and osteogenic potential. Culture inserts made of PC-ABS also supported the growth of HaCaT keratinocytes and the hGFs formed gingival tissue, which was superior to that formed on commercially available PET inserts. In conclusion, PC-ABS is a promising 3D printing material for dental applications due to its biocompatibility, ability to promote osteogenesis, and support for gingival tissue formation, with no observed cytotoxicity. Full article
(This article belongs to the Special Issue Recent Advances in Regenerative Dentistry—Second Edition)
Show Figures

Figure 1

21 pages, 8799 KiB  
Article
Four-Dimensional Printing of β-Tricalcium Phosphate-Modified Shape Memory Polymers for Bone Scaffolds in Osteochondral Regeneration
by Izabella Rajzer, Anna Kurowska, Jarosław Janusz, Maksymilian Maślanka, Adam Jabłoński, Piotr Szczygieł, Janusz Fabia, Roman Novotný, Wojciech Piekarczyk, Magdalena Ziąbka and Jana Frankova
Materials 2025, 18(2), 306; https://doi.org/10.3390/ma18020306 - 11 Jan 2025
Cited by 1 | Viewed by 1298
Abstract
The use of scaffolds for osteochondral tissue regeneration requires an appropriate selection of materials and manufacturing techniques that provide the basis for supporting both cartilage and bone tissue formation. As scaffolds are designed to replicate a part of the replaced tissue and ensure [...] Read more.
The use of scaffolds for osteochondral tissue regeneration requires an appropriate selection of materials and manufacturing techniques that provide the basis for supporting both cartilage and bone tissue formation. As scaffolds are designed to replicate a part of the replaced tissue and ensure cell growth and differentiation, implantable materials have to meet various biological requirements, e.g., biocompatibility, biodegradability, and mechanical properties. Osteoconductive materials such as tricalcium phosphate ceramics and some biodegradable polymers appear to be a perfect choice. The present work evaluates the structural, mechanical, thermal, and functional properties of a shape memory terpolymer modified with β-tricalcium phosphate (β-TCP). A new approach is using the developed materials for 4D printing, with a particular focus on its applicability in manufacturing medical implants. In this study, the manufacturing parameters of the scaffold components were developed. The scaffolds were examined via scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and mechanical testing. The cytotoxicity result was obtained with an MTT assay, and the alkaline phosphatase (ALP) activity was measured. The structural and microstructural investigations confirmed the integration of β-TCP into the filament matrix and scaffolds. Thermal stability was enhanced as β-TCP delayed depolymerization of the polymer matrix. The shape memory studies demonstrated effective recovery. The in vitro cell culture studies revealed the significantly increased cell viability and alkaline phosphatase (ALP) activity of the β-TCP-modified terpolymer after 3 weeks. The developed terpolymer can be tailored for applications in which partial shape recovery is acceptable, such as bone scaffolds. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

23 pages, 11607 KiB  
Article
Injectable Gelatin–Palmitoyl–GDPH Hydrogels as Bioinks for Future Cutaneous Regeneration: Physicochemical Characterization and Cytotoxicity Assessment
by Aifa Asyhira Khairul Nizam, Nur Izzah Md Fadilah, Haslina Ahmad, Manira Maarof and Mh Busra Fauzi
Polymers 2025, 17(1), 41; https://doi.org/10.3390/polym17010041 - 27 Dec 2024
Cited by 5 | Viewed by 1256
Abstract
Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native [...] Read more.
Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native tissues. Gelatin-based bioinks are widely used in wound healing due to their excellent biocompatibility, biodegradability, non-toxicity, and ability to accelerate extracellular matrix formation. However, the role of a novel fatty acid conjugated tetrapeptide, palmitic acid–glycine–aspartic acid–proline–histidine (palmitoyl–GDPH), in enhancing hydrogel performance with human dermal fibroblasts (HDFs) concerning cell survival, proliferation, growth, and metabolism remains poorly understood. This study fabricated gelatin–palmitoyl–GDPH hydrogels at various concentrations (GE_GNP_ELS_PAL12.5 and GE_GNP_ELS_PAL25) using an injectable method and preliminary extrusion-based 3D bioprinting at 24 °C. Physicochemical characterization revealed superior water absorption, biocompatibility, and stability, aligning with optimal wound-healing criteria. In vitro cytotoxicity assays demonstrated >90% cell viability of HDFs cultured on these scaffolds for five days. These results highlight their ability to promote cell survival, proliferation, and adhesion, establishing them as strong contenders for wound healing. This study underscores the potential of gelatin–palmitoyl–GDPH hydrogels as effective bioinks for 3D bioprinting, offering a promising platform for skin tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymer Scaffolds for Tissue Engineering II)
Show Figures

Figure 1

Back to TopTop