Four-Dimensional Printing of β-Tricalcium Phosphate-Modified Shape Memory Polymers for Bone Scaffolds in Osteochondral Regeneration
Highlights
- β-TCP-modified shape-memory terpolymer tailored for 4D printing and medical implants;
- DSC analysis reveals increased amorphous structure, enhancing 3D printing properties;
- β-TCP delays depolymerization, providing greater thermal resilience;
- Effective shape recovery was achieved in both modified and unmodified samples, with β-TCP allowing partial recovery for specific applications;
- Significant increase in cell viability and ALP activity, supporting osteointegration.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Scaffold Fabrication
2.3. Characterization
2.3.1. Mechanical Testing
2.3.2. Morphological Observation
2.3.3. Fourier-Transform Infrared Spectroscopy
2.3.4. Thermal Analysis
2.3.5. Shape Memory Analysis
2.4. Cell Culture Studies
2.4.1. Cultivation of Saos-2
2.4.2. Sterilization of Materials
2.4.3. MTT Assay
2.4.4. Determination of Alkaline Phosphatase (ALP)
2.4.5. Fluorescence Staining
2.4.6. Biocompatibility Evaluation
2.4.7. Statistical Analysis
3. Results
3.1. Morphological Characterization of β-TCP-Modified Disks, Sticks, and Scaffolds
3.2. Mechanical Properties of Pure Terpolymer
3.3. FTIR Spectral Analysis of Terpolymer and β-TCP Composites
3.4. Thermal Analysis: DSC and TGA of Terpolymer and β-TCP Modified Materials
3.5. Shape Memory Properties of Terpolymer and β-TCP Modified Materials
3.6. Cell Culture Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asensio, G.; Benito-Garzón, L.; Ramírez-Jiménez, R.A.; Guadilla, Y.; Gonzalez-Rubio, J.; Abradelo, C.; Parra, J.; Martín-López, M.R.; Aguilar, M.R.; Vázquez-Lasa, B.; et al. Biomimetic Gradient Scaffolds Containing Hyaluronic Acid and Sr/Zn Folates for Osteochondral Tissue Engineering. Polymers 2022, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Rajzer, I.; Menaszek, E.; Bacakova, L.; Orzelski, M.; Błażewicz, M. Hyaluronic acid-coated carbon nonwoven fabrics as potential material for repair of osteochondral defects. Fibres Text. East. Eur. 2013, 99, 102–107. [Google Scholar]
- Loureiro, J.A.; Pereira, M.C. PLGA based drug carrier and pharmaceutical applications: The most recent advances. Pharmaceutics 2020, 12, 903. [Google Scholar] [CrossRef] [PubMed]
- Rajzer, I.; Kurowska, A.; Frankova, J.; Sklenářová, R.; Nikodem, A.; Dziadek, M.; Jabłoński, A.; Janusz, J.; Szczygieł, P.; Ziąbka, M. 3D-Printed Polycaprolactone Implants Modified with Bioglass and Zn-Doped Bioglass. Materials 2023, 16, 1061. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Nand, A.; Ray, S. Application of Spectroscopy in Additive Manufacturing. Materials 2021, 14, 203. [Google Scholar] [CrossRef]
- Novotná, R.; Franková, J. Materials suitable for osteochondral regeneration. ACS Omega 2024, 9, 30097–30108. [Google Scholar] [CrossRef] [PubMed]
- Demoly, F.; Dunn, M.L.; Wood, K.L.; Qi, H.J.; André, J.C. The status, barriers, challenges, and future in design for 4D printing. Mater. Des. 2021, 212, 110193. [Google Scholar] [CrossRef]
- Jolaiy, S.; Yousefi, A.; Hosseini, M.; Zolfagharian, A.; Demoly, F.; Bodaghi, M. Limpet-inspired design and 3D/4D printing of sustainable sandwich panels: Pioneering supreme resiliency, recoverability and repairability. Appl. Mater. Today 2024, 38, 102243. [Google Scholar] [CrossRef]
- Doostmohammadi, H.; Kashmarizad, K.; Baniassadi, M.; Bodaghi, M.; Mostafa Baghani, M. 4D printing and optimization of biocompatible poly lactic acid/poly methyl methacrylate blends for enhanced shape memory and mechanical properties. J. Mech. Behav. Biomed. Mater. 2024, 160, 106719. [Google Scholar] [CrossRef] [PubMed]
- Skubis-Sikora, A.; Hudecki, A.; Sikora, B.; Wieczorek, P.; Hermyt, M.; Hreczka, M.; Likus, W.; Markowski, J.; Siemianowicz, K.; Kolano-Burian, A.; et al. Toxicological Assessment of Biodegradable Poli-ε-Caprolactone Polymer Composite Materials Containing Hydroxyapatite, Bioglass, and Chitosan as Potential Biomaterials for Bone Regeneration Scaffolds. Biomedicines 2024, 12, 1949. [Google Scholar] [CrossRef]
- Spearman, B.S.; Agrawal, N.K.; Rubiano, A.; Simmons, C.S.; Mobini, S.; Schmidt, C.E. Tunable methacrylated hyaluronic acid-based hydrogels as scaffolds for soft tissue engineering applications. J. Biomed. Mater. Res. Part A 2020, 108, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Rajzer, I.; Rom, M.; Błażewicz, M. Production of carbon fibers modified with ceramic powders for medical applications. Fibers Polym. 2010, 11, 615–624. [Google Scholar] [CrossRef]
- Helaehil, J.V.; Lourenço, C.B.; Huang, B.; Helaehil, L.V.; de Camargo, I.X.; Chiarotto, G.B.; Santamaria-Jr, M.; Bártolo, P.; Caetano, G.F. In Vivo Investigation of Polymer-Ceramic PCL/HA and PCL/β-TCP 3D Composite Scaffolds and Electrical Stimulation for Bone Regeneration. Polymers 2022, 14, 65. [Google Scholar] [CrossRef]
- Esslinger, S.; Grebhardt, A.; Jaeger, J.; Kern, F.; Killinger, A.; Bonten, C.; Gadow, R. Additive Manufacturing of β-Tricalcium Phosphate Components via Fused Deposition of Ceramics (FDC). Materials 2021, 14, 156. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, B.; Matera, B.; Meglioli, M.; Rossi, F.; Duraccio, D.; Faga, M.G.; Zappettini, A.; Macaluso, G.M.; Lumetti, S. Composite PCL Scaffold With 70% β-TCP as Suitable Structure for Bone Replacement. Int. Dent. J. 2024, 74, 1220–1232. [Google Scholar] [CrossRef] [PubMed]
- Orchel, A.; Jelonek, K.; Kasperczyk, J.; Dobrzynski, P.; Marcinkowski, A.; Pamula, E.; Orchel, J.; Bielecki, I.; Kulczycka, A. The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic Zirconium Initiator to In Vitro Biocompatibility. BioMed Res. Int. 2013, 2013, 176946. [Google Scholar] [CrossRef] [PubMed]
- Smola, A.; Dobrzynski, P.; Cristea, M.; Kasperczyk, J.; Sobota, M.; Gebarowska, K.; Janeczeka, H. Bioresorbable terpolymers based on l-lactide, glycolide and trimethylene carbonate with shape memory behavior. Polym. Chem. 2014, 5, 2442–2452. [Google Scholar] [CrossRef]
- Formas, K.; Kurowska, A.; Janusz, J.; Szczygieł, P.; Rajzer, I. Injection Molding Process Simulation of Polycaprolactone Sticks for Further 3D Printing of Medical Implants. Materials 2022, 15, 7295. [Google Scholar] [CrossRef] [PubMed]
- Pivodová, V.; Franková, J.; Doležel, P.; Ulrichová, J. The response of oste-oblast-like SaOS-2 cells to modified titanium surfaces. Int. J. Oral Maxillofac. Implants 2013, 28, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, X.; Fu, Y.; Jin, Y.; Weng, Y.; Bian, X.; Chen, X. Degradation Behaviors of Polylactic Acid, Polyglycolic Acid, and Their Copolymer Films in Simulated Marine Environments. Polymers 2024, 16, 1765. [Google Scholar] [CrossRef]
- Vey, E.; Rodger, C.; Booth, J.; Claybourn, M.; Miller, A.F.; Saiani, A. Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies. Polym. Degrad. Stab. 2011, 96, 1882–1889. [Google Scholar] [CrossRef]
- Al-Qahtani, A.S.; Tulbah, H.I.; Binhasan, M.; Shabib, S.; Al-Aali, K.A.; Alhamdan, M.M.; Abduljabbar, T. Influence of Concentration Levels of β-Tricalcium Phosphate on the Physical Properties of a Dental Adhesive. Nanomaterials 2022, 12, 853. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Lee, S.H.; Kim, S.H.; Lim, J.C.; Kim, S.H. Synthesis and characterization of the biodegradable and elastic terpolymer poly(glycolide-co-l-lactide-co-ϵ-caprolactone) for mechanoactive tissue engineering. J. Biomater. Sci. Polym. Ed. 2013, 24, 386–397. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.H.; Yang, Y.S.; Jang, K.S.; Jeon, S.; Jun-Ho Jeong, J.H.; Park, S.A. 4D printing and simulation of body temperature-responsive shape-memory polymers for advanced biomedical applications. Int. J. Bioprint. 2024, 10, 3035. [Google Scholar] [CrossRef]
- Senatov, F.; Niaza, K.; Zadorozhnyy, M.Y.; Maksimkin, A.; Kaloshkin, S.; Estrin, Y. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J. Mech. Behav. Biomed. Mater. 2016, 57, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Zarek, M.; Mansour, N.; Shapira, S.; Cohn, D. 4D printing of shape memory-based personalized Endoluminal medical devices. Macromol. Rapid Commun. 2017, 38, 1600628. [Google Scholar] [CrossRef] [PubMed]
- Thérien-Aubin, H.L.; Wu, Z.L.; Nie, Z.; Kumacheva, E. Multiple shape transformations of composite hydrogel sheets. J. Am. Chem. Soc. 2013, 135, 4834–4839. [Google Scholar] [CrossRef] [PubMed]
- Hippler, M.; Blasco, E.; Qu, J.; Tanaka, M.; Barner-Kowollik, C.; Wegener, M.; Bastmeyer, M. Controlling the shape of 3D microstructures by temperature and light. Nat. Commun. 2019, 10, 232. [Google Scholar] [CrossRef]
- Prakash, A.; Malviya, R.; Sridhar, S.B.; Shareef, J. 4D printing in dynamic and adaptive bone implants: Progress in bone tissue engineering. Bioprinting 2024, 44, e00373. [Google Scholar] [CrossRef]
- Lui, Y.S.; Sow, W.T.; Tan, L.P.; Wu, Y.; Lai, Y.; Li, H. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 2019, 92, 19–36. [Google Scholar] [CrossRef]
- Lu, T.; Liang, Y.; Zhang, L.; Yuan, X.; Ye, J. Fabrication of β-TCP ceramic scaffold with hierarchical pore structure using 3D printing and porogen: Investigation of osteoinductive and bone defects. Appl. Mater. Today 2024, 40, 102351. [Google Scholar] [CrossRef]
Parameters | Filament Sticks | Dog Bone-Shaped Samples | ||
---|---|---|---|---|
TER_gran | TER_β-TCP | TER_gran | PCL | |
Plastification temperature [°C] | 125 | 135 | 125 | 160 |
Chamber temperature [°C] | 130 | 132 | 130 | 151 |
Nozzle temperature [°C] | 140 | 131 | 140 | 165 |
Injection size [mm] | 18 | 18 | 24 | 24 |
Cooling time [s] | 28 | 28 | 60 | 60 |
First injection pressure [bar] | 113 | 107 | 113 | 130 |
Time of the first injection pressure [s] | 1.9 | 2.0 | 11 | 11 |
Second injection pressure [bar] | 60 | 60 | 90 | 90 |
Time of the second injection pressure [s] | 5.3 | 5.3 | 3.5 | 3.5 |
Type of Sample | Young’s Modulus [MPa] | Tensile Strength [MPa] | Strain at Break [%] | VL 1 [m/s] |
---|---|---|---|---|
Terpolymer Polycaprolactone | 1492.4 ± 129.1 407 ± 20 | 45.95 ± 3.25 31.95 ± 1.95 | 3.36 ± 0.35 658.99 ±46.09 | 2312.5 ± 13.8 1995 ± 10.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajzer, I.; Kurowska, A.; Janusz, J.; Maślanka, M.; Jabłoński, A.; Szczygieł, P.; Fabia, J.; Novotný, R.; Piekarczyk, W.; Ziąbka, M.; et al. Four-Dimensional Printing of β-Tricalcium Phosphate-Modified Shape Memory Polymers for Bone Scaffolds in Osteochondral Regeneration. Materials 2025, 18, 306. https://doi.org/10.3390/ma18020306
Rajzer I, Kurowska A, Janusz J, Maślanka M, Jabłoński A, Szczygieł P, Fabia J, Novotný R, Piekarczyk W, Ziąbka M, et al. Four-Dimensional Printing of β-Tricalcium Phosphate-Modified Shape Memory Polymers for Bone Scaffolds in Osteochondral Regeneration. Materials. 2025; 18(2):306. https://doi.org/10.3390/ma18020306
Chicago/Turabian StyleRajzer, Izabella, Anna Kurowska, Jarosław Janusz, Maksymilian Maślanka, Adam Jabłoński, Piotr Szczygieł, Janusz Fabia, Roman Novotný, Wojciech Piekarczyk, Magdalena Ziąbka, and et al. 2025. "Four-Dimensional Printing of β-Tricalcium Phosphate-Modified Shape Memory Polymers for Bone Scaffolds in Osteochondral Regeneration" Materials 18, no. 2: 306. https://doi.org/10.3390/ma18020306
APA StyleRajzer, I., Kurowska, A., Janusz, J., Maślanka, M., Jabłoński, A., Szczygieł, P., Fabia, J., Novotný, R., Piekarczyk, W., Ziąbka, M., & Frankova, J. (2025). Four-Dimensional Printing of β-Tricalcium Phosphate-Modified Shape Memory Polymers for Bone Scaffolds in Osteochondral Regeneration. Materials, 18(2), 306. https://doi.org/10.3390/ma18020306