Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = tin(II) 2-ethylhexanoate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3981 KB  
Article
Facile Preparation of Graphene Oxide-Enhanced Highly Crystalline Polyglycolic Acid Under Low-Temperature Crystallization Using Tin(II) 2-Ethylhexanoate and Its Application in Biomaterials
by Ho-Fu Chen, Jia-Wun Li, Kuo-Jen Ou, Shu-Yuan Yu, Jui-Hsin Wang, Chih-Chia Cheng, Yao-Hsuan Tseng, Yu-Hsun Nien, Chung-Feng Jeffrey Kuo and Chih-Wei Chiu
Polymers 2025, 17(23), 3181; https://doi.org/10.3390/polym17233181 - 29 Nov 2025
Viewed by 392
Abstract
Polyglycolic acid (PGA), a biodegradable polymer with many potential applications, is primarily synthesized via the ring-opening polymerization of glycolide monomers. Here, the temperature sensitivity of the PGA crystallization kinetics is systematically analyzed using differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and X-ray [...] Read more.
Polyglycolic acid (PGA), a biodegradable polymer with many potential applications, is primarily synthesized via the ring-opening polymerization of glycolide monomers. Here, the temperature sensitivity of the PGA crystallization kinetics is systematically analyzed using differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). Regression analysis yields Avrami exponents (n) within the range 1.41–1.51, indicating that PGA forms lamellar crystals during crystallization from heterogeneous nucleation. The FTIR indicates that the PGA molecular chains alter their conformation during crystallization. XRD reveals that the crystallization rate and crystallinity of PGA closely correlate with the processing temperature. The heterogeneous nucleation of PGA can be optimized by incorporating suitable nucleating agents or regulating the surface roughness to improve the crystallization rate and quality. Polarized optical microscopy (POM) indicates that elevated temperatures increase the polymer chain mobility and free growth of crystallization nuclei, whereas lower temperatures promote the rapid formation of crystallization nuclei but impede growth. Graphene oxide (GO) has abundant surface functional groups, is an efficient heterogeneous nucleating agent, and promotes molecular chain alignment to increase both the crystallization rate and crystallinity. This GO-induced enhancement demonstrates a promising strategy for tailoring the thermal and mechanical properties of PGA for advanced biomedical applications. Full article
(This article belongs to the Topic Application of Graphene-Based Materials, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 5322 KB  
Article
One-Pot Synthesis of Silicone–Urethane Hybrid Foam and Comparison of Flame Retardant, Rheological, and Mechanical Properties with Polyurethane Foam
by Sosan Hwang, Hyeon Woo Jeong, Asell Kim, Tae Soon Kwan, Sun Kyoung Jeoung, Sung-Hyeon Baeck, Sang Eun Shim and Yingjie Qian
Polymers 2025, 17(17), 2352; https://doi.org/10.3390/polym17172352 - 29 Aug 2025
Viewed by 1122
Abstract
This study presents the design and fabrication of silicone–urethane hybrid foam (SUF) to improve fire safety in transportation seating. Tin(II) 2-ethylhexanoate (Sn(OCT)2) was used to catalyze reactions between bifunctional isocyanates, polyols, and vinyl-terminated PDMS, enabling simultaneous curing and foaming. Sn(OCT)2 [...] Read more.
This study presents the design and fabrication of silicone–urethane hybrid foam (SUF) to improve fire safety in transportation seating. Tin(II) 2-ethylhexanoate (Sn(OCT)2) was used to catalyze reactions between bifunctional isocyanates, polyols, and vinyl-terminated PDMS, enabling simultaneous curing and foaming. Sn(OCT)2 effectively facilitated both the foaming and gelation processes of silicone and urethane chemistries. The resulting SUF demonstrated a 44.55% reduction in peak heat release rate (PHRR) compared to UF, due to the PDMS network’s synergistic flame-retardant and barrier effects. Additionally, the crosslinked PDMS structure maintained strong mechanical integrity. This study offers a simple and effective approach for producing SUF with enhanced fire safety. Full article
Show Figures

Figure 1

15 pages, 2840 KB  
Article
Ring-Opening Homo- and Copolymerization of Cyclic Esters Catalyzed by Iron(III) Triflate
by Yuushou Nakayama, Toshihiko Omori, Ryo Tanaka and Takeshi Shiono
Catalysts 2024, 14(12), 945; https://doi.org/10.3390/catal14120945 - 20 Dec 2024
Viewed by 1185
Abstract
Biomass-based and biodegradable poly(l-lactide) (PLLA) is synthesized by ring-opening polymerization of l-lactide (LLA), for which tin(II) 2-ethylhexanoate is a major catalyst. However, the potential toxicity of tin can be a problem, especially in biomedical applications. In this study, we focused [...] Read more.
Biomass-based and biodegradable poly(l-lactide) (PLLA) is synthesized by ring-opening polymerization of l-lactide (LLA), for which tin(II) 2-ethylhexanoate is a major catalyst. However, the potential toxicity of tin can be a problem, especially in biomedical applications. In this study, we focused on iron, which is a non-toxic metal and an abundant resource. We investigated the ring-opening homo- and copolymerization of cyclic esters such as LLA and ε-caprolactone (CL) catalyzed by iron(III) triflate, Fe(OTf)3, which is commercially available and known as a Lewis acid. In the polymerization of LLA in toluene at 110 °C, Fe(OTf)3 showed relatively high activity and yielded PLLA with unimodal molecular weight distribution. The addition of 1,8-bis(dimethylamino)naphthalene (proton sponge: PS) to the Fe(OTf)3 catalyst system increased the yield and molecular weight of the resulting polymer. In contrast, the polymerization of CL by Fe(OTf)3 was decelerated by the presence of PS. The Fe(OTf)3 system was found to have an exceptionally high preference for CL over LLA in the copolymerization of LLA and CL, with the reactivity ratio of rLLA = 0.51 and rCL = 6.9. In contrast, the Fe(OTf)3–2PS system exhibited an LLA preference with rLLA = 15 and rCL = 0.22, indicating that the comonomer selectivity changed depending on the presence or absence of PS. While the LLA polymerization rate by the Fe(OTf)3 system showed a second-order dependence on the Fe(OTf)3 concentration, that of the Fe(OTf)3–PS system showed a first-order dependence on the Fe(OTf)3–PS concentration. Full article
(This article belongs to the Special Issue State-of-the-Art Polymerization Catalysis)
Show Figures

Graphical abstract

23 pages, 4402 KB  
Article
Toward the Improvement of Maleic Anhydride Functionalization in Polyhydroxybutyrate (PHB): Effect of Styrene Monomer and Sn(Oct)2 Catalyst
by Matheus Ferreira de Souza, Carlos Bruno Barreto Luna, Danilo Diniz Siqueira, Ewerton de Oliveira Teotônio Bezerra, Grazielle Rozendo de Cerqueira, Edcleide Maria Araújo and Renate Maria Ramos Wellen
Int. J. Mol. Sci. 2023, 24(19), 14409; https://doi.org/10.3390/ijms241914409 - 22 Sep 2023
Cited by 8 | Viewed by 3074
Abstract
In this work, polyhydroxybutyrate (PHB) was maleic anhydride (MA)-grafted in the molten state, using dicumyl peroxide (DCP) as a reaction initiator. Tin(II) 2-ethylhexanoate (Sn(Oct)2) and styrene monomer (St.) were used to maximize the maleic anhydride grafting degree. When PHB was modified [...] Read more.
In this work, polyhydroxybutyrate (PHB) was maleic anhydride (MA)-grafted in the molten state, using dicumyl peroxide (DCP) as a reaction initiator. Tin(II) 2-ethylhexanoate (Sn(Oct)2) and styrene monomer (St.) were used to maximize the maleic anhydride grafting degree. When PHB was modified with MA/DCP and MA/DCP/Sn(Oct)2, viscosity was reduced, suggesting chain scission in relation to pure PHB. However, when the styrene monomer was added, the viscosity increased due to multiple grafts of MA and styrene into the PHB chain. In addition, the FTIR showed the formation of a new band at 1780 cm−1 and 704 cm−1, suggesting a multiphase copolymer PHB-g-(St-co-MA). The PHB (MA/DCP) system showed a grafting degree of 0.23%; however, the value increased to 0.39% with incorporating Sn(Oct)2. The highest grafting efficiency was for the PHB (MA/DCP/St.) system with a value of 0.91%, while the PHB (MA/DCP/St./Sn(Oct)2) hybrid mixture was reduced to 0.73%. The chemical modification process of PHB with maleic anhydride increased the thermal stability by about 20 °C compared with pure PHB. The incorporation of 0.5 phr of the Sn(Oct)2 catalyst increased the efficiency of the grafting degree in the PHB. However, the St./Sn(Oct)2 hybrid mixture caused a deleterious effect on the maleic anhydride grafting degree. Full article
(This article belongs to the Special Issue Research Progress of Biodegradable Materials)
Show Figures

Figure 1

13 pages, 3216 KB  
Article
Preparation and Hydrolytic Degradation of Hydroxyapatite-Filled PLGA Composite Microspheres
by Vladislav Istratov, Vitaliy Gomzyak, Oleg Baranov, Galy Markova, Yaroslav Mezhuev and Valerii Vasnev
J. Compos. Sci. 2023, 7(9), 346; https://doi.org/10.3390/jcs7090346 - 22 Aug 2023
Cited by 4 | Viewed by 3054
Abstract
Various hydroxyapatite-filled and unfilled microspheres based on lactide and glycolide copolymers were prepared. The synthesized poly(lactic-co-glycolic acid) (PLGA) samples were characterized by GPC and 1H NMR spectroscopy, the morphology was characterized by SEM. It was shown that under the tin (II) 2-ethylhexanoate [...] Read more.
Various hydroxyapatite-filled and unfilled microspheres based on lactide and glycolide copolymers were prepared. The synthesized poly(lactic-co-glycolic acid) (PLGA) samples were characterized by GPC and 1H NMR spectroscopy, the morphology was characterized by SEM. It was shown that under the tin (II) 2-ethylhexanoate catalysis the glycolide is highly active in copolymerization as compared with lactide. According to the data on weight loss and the weight average molecular weight shift of PLGA over time (pH = 6.5; t = 25 °C), an increase in the rate of microsphere destruction was noted when macromolecules were enriched with glycolic acid residues, as well as when filled with hydroxyapatite. It was shown that the rate of PLGA degradation was determined by the water-accessible surface of a sample. The rate increase in PLGA hydrolytic degradation both with an increase in glycolic acid residues mole fraction in the chain and upon filling with hydroxyapatite was the result of the microspheres’ surface hydrophilization, an increase in capillary pressure upon filling of the pores as well as of the defects with water, and an increase in the number of structural defects. Approaches to the creation of composite microspheres based on PLGA degrading at a controlled rate were proposed. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Graphical abstract

23 pages, 23264 KB  
Article
Photocatalytic Performance of Sn–Doped TiO2 Nanopowders for Photocatalytic Degradation of Methyl Orange Dye
by Luminița Predoană, Elena Mădălina Ciobanu, Gabriela Petcu, Silviu Preda, Jeanina Pandele-Cușu, Elena Maria Anghel, Simona Viorica Petrescu, Daniela Cristina Culiță, Adriana Băran, Vasile-Adrian Surdu, Bogdan Ștefan Vasile and Adelina C. Ianculescu
Catalysts 2023, 13(3), 534; https://doi.org/10.3390/catal13030534 - 6 Mar 2023
Cited by 25 | Viewed by 3498
Abstract
The tin-doped TiO2 powders obtained by sol-gel and microwave-assisted sol-gel methods were investigated. The synthesis took place in a basic medium (pH 10, ammonium hydroxide, 25%) starting from tetrabutyl orthotitanate in its parental alcohol. In the case of the dopant, Tin(II) 2-ethylhexanoate [...] Read more.
The tin-doped TiO2 powders obtained by sol-gel and microwave-assisted sol-gel methods were investigated. The synthesis took place in a basic medium (pH 10, ammonium hydroxide, 25%) starting from tetrabutyl orthotitanate in its parental alcohol. In the case of the dopant, Tin(II) 2-ethylhexanoate as SnO2 precursor was used in the amount of 1, 2, or 4 mol % SnO2. Based on thermal analysis data, the powders were thermally treated in air, at 500 °C. The comparative investigation of the structure and morphology of the nanopowders annealed at 500 °C was performed by scanning electron microscopy (SEM), high-resolution transmission electron microscopy with selected area electron diffraction (HRTEM/SAED), scanning transmission electron microscopy (STEM) coupled with EDX mapping, Fourier transmission infrared (FTIR), UV–Vis, Raman and photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), and X-ray florescence spectroscopy (XRF). The obtained materials were tested for the photocatalytic removal of methyl orange dye from aqueous solutions. High degradation efficiencies (around 90%) were obtained by Sn doping after 3 h of UV light irradiation. Full article
Show Figures

Figure 1

16 pages, 2913 KB  
Article
Branched Amphiphilic Polylactides as a Polymer Matrix Component for Biodegradable Implants
by Vladislav Istratov, Vitaliy Gomzyak, Valerii Vasnev, Oleg V. Baranov, Yaroslav Mezhuev and Inessa Gritskova
Polymers 2023, 15(5), 1315; https://doi.org/10.3390/polym15051315 - 6 Mar 2023
Cited by 7 | Viewed by 2541
Abstract
The combination of biocompatibility, biodegradability, and high mechanical strength has provided a steady growth in interest in the synthesis and application of lactic acid-based polyesters for the creation of implants. On the other hand, the hydrophobicity of polylactide limits the possibilities of its [...] Read more.
The combination of biocompatibility, biodegradability, and high mechanical strength has provided a steady growth in interest in the synthesis and application of lactic acid-based polyesters for the creation of implants. On the other hand, the hydrophobicity of polylactide limits the possibilities of its use in biomedical fields. The ring-opening polymerization of L-lactide, catalyzed by tin (II) 2-ethylhexanoate in the presence of 2,2-bis(hydroxymethyl)propionic acid, and an ester of polyethylene glycol monomethyl ester and 2,2-bis(hydroxymethyl)propionic acid accompanied by the introduction of a pool of hydrophilic groups, that reduce the contact angle, were considered. The structures of the synthesized amphiphilic branched pegylated copolylactides were characterized by 1H NMR spectroscopy and gel permeation chromatography. The resulting amphiphilic copolylactides, with a narrow MWD (1.14–1.22) and molecular weight of 5000–13,000, were used to prepare interpolymer mixtures with PLLA. Already, with the introduction of 10 wt% branched pegylated copolylactides, PLLA-based films had reduced brittleness, hydrophilicity, with a water contact angle of 71.9–88.5°, and increased water absorption. An additional decrease in the water contact angle, of 66.1°, was achieved by filling the mixed polylactide films with 20 wt% hydroxyapatite, which also led to a moderate decrease in strength and ultimate tensile elongation. At the same time, the PLLA modification did not have a significant effect on the melting point and the glass transition temperature; however, the filling with hydroxyapatite increased the thermal stability. Full article
(This article belongs to the Special Issue Scaffolds and Surfaces with Biomedical Applications)
Show Figures

Figure 1

16 pages, 3487 KB  
Article
Design, Synthesis and Characterization of Vitrimers with Low Topology Freezing Transition Temperature
by Baiju P. Krishnan, Kay Saalwaechter, Vico K. B. Adjedje and Wolfgang H. Binder
Polymers 2022, 14(12), 2456; https://doi.org/10.3390/polym14122456 - 16 Jun 2022
Cited by 22 | Viewed by 8293
Abstract
Vitrimers are crosslinked polymeric materials that behave like fluids when heated, regulated by the kinetics of internal covalent bond-exchange that occurs rapidly at or above the topology freezing transition temperature (Tv) of the vitrimer, making these materials readily reprocessable and [...] Read more.
Vitrimers are crosslinked polymeric materials that behave like fluids when heated, regulated by the kinetics of internal covalent bond-exchange that occurs rapidly at or above the topology freezing transition temperature (Tv) of the vitrimer, making these materials readily reprocessable and recyclable. We report two novel multiphase vitrimeric materials prepared by the cross-linking of two polymers, namely poly(triethylene glycol sebacate) and poly(2-hydroxyethyl acrylate), using zinc acetate or tin(II) 2-ethylhexanoate as catalysts, which exhibit significantly low Tv temperatures of 39 °C and 29 °C, respectively. The transesterification reactions allow rapid and pronounced stress relaxation at high temperatures, following the Arrhenius law. The lower Tv of these vitrimers could be attributable to the flexible long chains of these polymers and the significant excess of OH moieties present along the main chain of the polymer. The design of such multiphase vitrimers is not only useful for the practical application of vitrimers to reduce plastic waste but could also facilitate further development of functional polymer materials that can be reprocessed at low temperatures. Full article
(This article belongs to the Special Issue Analysis and Characterization of Renewable Polymers)
Show Figures

Graphical abstract

19 pages, 7838 KB  
Article
Hydroxyapatite-poly(d,l-lactide) Nanografts. Synthesis and Characterization as Bone Cement Additives
by Kristina L. Goranova, Anne Kathrine Kattenhøj Sloth Overgaard and Ivan Gitsov
Molecules 2021, 26(2), 424; https://doi.org/10.3390/molecules26020424 - 15 Jan 2021
Cited by 13 | Viewed by 3161
Abstract
This paper reports the creation of hydroxyapatite/polyester nanografts by “graft-from” polymerization of d,l-lactide with [Ca5(OH)(PO4)3]2 as the initiator and tin(II)-2-ethylhexanoate as the catalyst. Model polymerizations were performed with cyclooctanol as initiator to confirm [...] Read more.
This paper reports the creation of hydroxyapatite/polyester nanografts by “graft-from” polymerization of d,l-lactide with [Ca5(OH)(PO4)3]2 as the initiator and tin(II)-2-ethylhexanoate as the catalyst. Model polymerizations were performed with cyclooctanol as initiator to confirm the grafting on the surface of the hydroxyapatite nanocrystals. Polymers with the highest molecular mass (Mn) between 4250 Da (cyclooctanol) and 6100 Da (hydroxyapatite) were produced. In both cases the molecular mass distributions of the polymers formed were monomodal. The materials obtained were characterized by size-exclusion chromatography, NMR and FT-IR spectroscopy, and thermal methods. Their suitability as additives for commercial bone cement (Simplex P Speedset, Stryker Orthopaedics) has been confirmed by thermal analysis techniques and mechanical testing. The results obtained show that addition of the hydroxyapatite/ polyester nanografts improved both thermal and mechanical properties of the bone cement. Full article
Show Figures

Graphical abstract

9 pages, 1099 KB  
Communication
Thermal Upgrade of Enzymatically Synthesized Aliphatic and Aromatic Oligoesters
by James W. Comerford, Fergal P. Byrne, Simone Weinberger, Thomas J. Farmer, Georg M. Guebitz, Lucia Gardossi and Alessandro Pellis
Materials 2020, 13(2), 368; https://doi.org/10.3390/ma13020368 - 13 Jan 2020
Cited by 19 | Viewed by 4074
Abstract
The enzymatic synthesis of polyesters in solventless systems is an environmentally friendly and sustainable method for synthetizing bio-derived materials. Despite the greenness of the technique, in most cases only short oligoesters are obtained, with limited practical applications or requiring further chemical processing for [...] Read more.
The enzymatic synthesis of polyesters in solventless systems is an environmentally friendly and sustainable method for synthetizing bio-derived materials. Despite the greenness of the technique, in most cases only short oligoesters are obtained, with limited practical applications or requiring further chemical processing for their elongation. In this work, we present a catalyst-free thermal upgrade of enzymatically synthesized oligoesters. Different aliphatic and aromatic oligoesters were synthesized using immobilized Candida antarctica lipase B (iCaLB) as the catalyst (70 °C, 24 h) yielding poly(1,4-butylene adipate) (PBA, Mw = 2200), poly(1,4-butylene isophthalate) (PBI, Mw = 1000), poly(1,4-butylene 2,5-furandicarboxylate) (PBF, Mw = 600), and poly(1,4-butylene 2,4-pyridinedicarboxylate) (PBP, Mw = 1000). These polyesters were successfully thermally treated to obtain an increase in Mw of 8.5, 2.6, 3.3, and 2.7 folds, respectively. This investigation focused on the most successful upgrade, poly(1,4-butylene adipate), then discussed the possible effect of di-ester monomers as compared to di-acids in the thermally driven polycondensation. The herein-described two-step synthesis method represents a practical and cost-effective way to synthesize higher-molecular-weight polymers without the use of toxic metal catalysts such as titanium(IV) tert-butoxide, tin(II) 2-ethylhexanoate, and in particular, antimony(IV) oxide. At the same time, the method allows for the extension of the number of reuses of the biocatalyst by preventing its exposure to extreme denaturating conditions. Full article
(This article belongs to the Special Issue Sustainable Polymers: From Synthesis to Functional Properties)
Show Figures

Figure 1

21 pages, 1121 KB  
Article
Star-Shaped and Linear POSS-Polylactide Hybrid Copolymers
by Krystyna Rozga-Wijas, Wlodzimierz A. Stanczyk, Jan Kurjata and Slawomir Kazmierski
Materials 2015, 8(7), 4400-4420; https://doi.org/10.3390/ma8074400 - 17 Jul 2015
Cited by 17 | Viewed by 6727
Abstract
Novel octakis-2[(6-hydroxyhexyl)thio]ethyl-octasilsesquioxane (POSS-S-OH) as well as heptaisobutyl-2[(6-hydroxyhexyl)thio]ethyl-octasilsesquioxane (iBu-POSS-S-OH) were synthesized. POSS structures, bearing both types of groups i.e., 2[(6-hydroxyhexyl)thio]ethyl and the vinyl ones, pendant from the octahedral cage are also described. The synthetic pathway involved thiol-ene click reaction of 6-mercapto-1-hexanol (MCH) to [...] Read more.
Novel octakis-2[(6-hydroxyhexyl)thio]ethyl-octasilsesquioxane (POSS-S-OH) as well as heptaisobutyl-2[(6-hydroxyhexyl)thio]ethyl-octasilsesquioxane (iBu-POSS-S-OH) were synthesized. POSS structures, bearing both types of groups i.e., 2[(6-hydroxyhexyl)thio]ethyl and the vinyl ones, pendant from the octahedral cage are also described. The synthetic pathway involved thiol-ene click reaction of 6-mercapto-1-hexanol (MCH) to octavinyloctasilsesquioxane (POSS-Vi), and heptaisobutylvinyloctasilsesquioxane (iBu-POSS-Vi), in the presence of 2,2′-azobisisobutyronitrile. The functionalized silsesquioxane cages of regular octahedral structure were used further as initiators for ring opening polymerization of L,L-dilactide, catalyzed by tin (II) 2-ethylhexanoate. The polymerization afforded biodegradable hybrid star shape and linear systems with an octasilsesquioxane cage as a core, bearing polylactide arm(s). Full article
Show Figures

Figure 1

16 pages, 954 KB  
Article
Effect of Compatibilization on Poly-ε-Caprolactone Grafting onto Poly(ethylene-co-vinyl alcohol)
by Samira Touhtouh, Frederic Becquart, Caroline Pillon and Mohamed Taha
Polymers 2011, 3(4), 1734-1749; https://doi.org/10.3390/polym3041734 - 11 Oct 2011
Cited by 10 | Viewed by 7913
Abstract
The non-miscibility of the reactants during solvent free poly-ε-caprolactone grafting onto poly(ethylene-co-vinyl alcohol) (EVOH) dramatically affects reaction kinetics. Different solutions were proposed to accelerate the exchange reactions between poly(ethylene-co-vinyl alcohol) and poly-ε-caprolactone. Reactions were conducted in a batch reactor [...] Read more.
The non-miscibility of the reactants during solvent free poly-ε-caprolactone grafting onto poly(ethylene-co-vinyl alcohol) (EVOH) dramatically affects reaction kinetics. Different solutions were proposed to accelerate the exchange reactions between poly(ethylene-co-vinyl alcohol) and poly-ε-caprolactone. Reactions were conducted in a batch reactor or a mini twin-screw extruder. The addition of a poly(ethylene-co-vinyl alcohol)-g-poly-ε-caprolactone copolymer increased the compatibility of the reactants and led to a higher reaction rate. This copolymer was either prepared separately and added at the reaction beginning or prepared in situ grafting caprolactone from EVOH. The reactive system evolution was analyzed using molar mass evolution, microstructure characterization, thermal properties and the reactive blend morphology. The compatibilization effect combined with optimized reaction conditions, such as concentration and nature of catalyst and temperature, resulted in an important increase in reaction rates. Among the tested catalysts, 1,5,7-Triazabicyclo [4.4.0]dec-5-ene was a more efficient catalyst for grafting reactions than Tin (II) 2-ethylhexanoate. Full article
Show Figures

11 pages, 894 KB  
Article
Novel Microwave-Assisted Synthesis of Poly(D,L-lactide): The Influence of Monomer/Initiator Molar Ratio on the Product Properties
by Ljubisa Nikolic, Ivan Ristic, Borivoj Adnadjevic, Vesna Nikolic, Jelena Jovanovic and Mihajlo Stankovic
Sensors 2010, 10(5), 5063-5073; https://doi.org/10.3390/s100505063 - 20 May 2010
Cited by 75 | Viewed by 14877
Abstract
Poly(D,L-lactide) synthesis using tin(II) 2-ethylhexanoate initiated ring-opening polymerization (ROP) takes over 30 hours in bulk at 120 °C. The use of microwave makes the same bulk polymerization process with the same initiator much faster and energy saving, with a reaction time of about [...] Read more.
Poly(D,L-lactide) synthesis using tin(II) 2-ethylhexanoate initiated ring-opening polymerization (ROP) takes over 30 hours in bulk at 120 °C. The use of microwave makes the same bulk polymerization process with the same initiator much faster and energy saving, with a reaction time of about 30 minutes at 100 °C. Here, the poly(lactide) synthesis was done in a microwave reactor, using frequency of 2.45 GHz and maximal power of 150 W. The reaction temperature was controlled via infra-red system for in-bulk-measuring, and was maintained at 100 °C. Different molar ratios of monomer and initiator, [M]/[I], of 1,000, 5,000 and 10,000 were used. The achieved average molar masses for the obtained polymers (determined by gel permeation chromatography) were in the interval from 26,700 to 112,500 g/mol. The polydispersion index was from 2.436 to 3.425. For applicative purposes, the obtained material was purified during the procedure of microsphere preparation. Microspheres were obtained by spraying a fine fog of polymer (D,L-lactide) solution in tetrahydrofuran into the water solution of poly(vinyl alcohol) with intensive stirring. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

Back to TopTop