Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,873)

Search Parameters:
Keywords = time congestion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1310 KiB  
Review
A Survey of Machine and Deep Learning Techniques in Analog Integrated Circuit Layout Synthesis
by Ricardo M. F. Martins
Microelectronics 2025, 1(1), 2; https://doi.org/10.3390/microelectronics1010002 (registering DOI) - 1 Aug 2025
Abstract
Automatic techniques for analog integrated circuit layout design have been proposed in the literature for over four decades. However, as analog design moves into deep nanometer integration nodes, the increasing number of design rules, the influence of layout-dependent effects, congestion, and the impact [...] Read more.
Automatic techniques for analog integrated circuit layout design have been proposed in the literature for over four decades. However, as analog design moves into deep nanometer integration nodes, the increasing number of design rules, the influence of layout-dependent effects, congestion, and the impact of parasitic structures constantly challenges existing automatic layout generation techniques and keeps the pressure on for further improvement. At the time of writing, no automatic tool or flow has been established in the industrial environment, resulting in a time-consuming and difficult-to-reuse design process. However, very recently, machine and deep learning techniques started to offer solutions for problems not dealt with in the previous generation of automatic layout tools and are reshaping analog design automation. Therefore, this paper conducts a review of the most recent analog integrated circuit automatic layout techniques powered by machine and deep learning methods, covering placement, routing, and trends on post-layout performance estimation, as well as providing an actual, complete, and comprehensive guide for circuit designers and design automation developers. Full article
Show Figures

Figure 1

30 pages, 4409 KiB  
Article
Accident Impact Prediction Based on a Deep Convolutional and Recurrent Neural Network Model
by Pouyan Sajadi, Mahya Qorbani, Sobhan Moosavi and Erfan Hassannayebi
Urban Sci. 2025, 9(8), 299; https://doi.org/10.3390/urbansci9080299 (registering DOI) - 1 Aug 2025
Abstract
Traffic accidents pose a significant threat to public safety, resulting in numerous fatalities, injuries, and a substantial economic burden each year. The development of predictive models capable of the real-time forecasting of post-accident impact using readily available data can play a crucial role [...] Read more.
Traffic accidents pose a significant threat to public safety, resulting in numerous fatalities, injuries, and a substantial economic burden each year. The development of predictive models capable of the real-time forecasting of post-accident impact using readily available data can play a crucial role in preventing adverse outcomes and enhancing overall safety. However, existing accident predictive models encounter two main challenges: first, a reliance on either costly or non-real-time data, and second, the absence of a comprehensive metric to measure post-accident impact accurately. To address these limitations, this study proposes a deep neural network model known as the cascade model. It leverages readily available real-world data from Los Angeles County to predict post-accident impacts. The model consists of two components: Long Short-Term Memory (LSTM) and a Convolutional Neural Network (CNN). The LSTM model captures temporal patterns, while the CNN extracts patterns from the sparse accident dataset. Furthermore, an external traffic congestion dataset is incorporated to derive a new feature called the “accident impact” factor, which quantifies the influence of an accident on surrounding traffic flow. Extensive experiments were conducted to demonstrate the effectiveness of the proposed hybrid machine learning method in predicting the post-accident impact compared to state-of-the-art baselines. The results reveal a higher precision in predicting minimal impacts (i.e., cases with no reported accidents) and a higher recall in predicting more significant impacts (i.e., cases with reported accidents). Full article
Show Figures

Figure 1

27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 (registering DOI) - 1 Aug 2025
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 (registering DOI) - 1 Aug 2025
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

15 pages, 606 KiB  
Article
Assessment of the Physical and Emotional Health-Related Quality of Life Among Congestive Heart Failure Patients with Preserved and Reduced Ejection Fraction at a Quaternary Care Teaching Hospital in Coastal Karnataka in India
by Rajesh Kamath, Vineetha Poojary, Nishanth Shekar, Kanhai Lalani, Tarushree Bari, Prajwal Salins, Gwendolen Rodrigues, Devesh Teotia and Sanjay Kini
Healthcare 2025, 13(15), 1874; https://doi.org/10.3390/healthcare13151874 - 31 Jul 2025
Abstract
Introduction: Congestive heart failure (CHF), a complex clinical syndrome characterized by the heart’s inability to pump blood effectively due to structural or functional impairments, is a growing public health concern, with profound implications for patients’ physical and emotional well-being. In India, the burden [...] Read more.
Introduction: Congestive heart failure (CHF), a complex clinical syndrome characterized by the heart’s inability to pump blood effectively due to structural or functional impairments, is a growing public health concern, with profound implications for patients’ physical and emotional well-being. In India, the burden of CHF is rising due to aging demographics and increasing prevalence of lifestyle-related risk factors. Among the subtypes of CHF, heart failure with preserved ejection fraction (HFpEF), i.e., heart failure with left ventricular ejection fraction of ≥50% with evidence of spontaneous or provokable increased left ventricular filling pressure, and heart failure with reduced ejection fraction (HFrEF), i.e., heart failure with left ventricular ejection fraction of 40% or less and is accompanied by progressive left ventricular dilatation and adverse cardiac remodeling, may present differing impacts on health-related quality of life (HRQoL), i.e., an individual’s or a group’s perceived physical and mental health over time, yet comparative data remains limited. This study assesses HRQoL among CHF patients using the Minnesota Living with Heart Failure Questionnaire (MLHFQ), one of the most widely used health-related quality of life questionnaires for patients with heart failure based on physical and emotional dimensions and identifies sociodemographic and clinical variables influencing these outcomes. Methods: A cross-sectional analytical study was conducted among 233 CHF patients receiving inpatient and outpatient care at the Department of Cardiology at a quaternary care teaching hospital in coastal Karnataka in India. Participants were enrolled using convenience sampling. HRQoL was evaluated through the MLHFQ, while sociodemographic and clinical characteristics were recorded via a structured proforma. Statistical analyses included descriptive measures, independent t-test, Spearman’s correlation and stepwise multivariable linear regression to identify associations and predictors. Results: The mean HRQoL score was 56.5 ± 6.05, reflecting a moderate to high symptom burden. Patients with HFpEF reported significantly worse HRQoL (mean score: 61.4 ± 3.94) than those with HFrEF (52.9 ± 4.64; p < 0.001, Cohen’s d = 1.95). A significant positive correlation was observed between HRQoL scores and age (r = 0.428; p < 0.001), indicating that older individuals experienced a higher burden of symptoms. HRQoL also varied significantly across NYHA functional classes (χ2 = 69.9, p < 0.001, ε2 = 0.301) and employment groups (χ2 = 17.0, p < 0.001), with further differences noted by education level, gender and marital status (p < 0.05). Multivariable linear regression identified age (B = 0.311, p < 0.001) and gender (B = –4.591, p < 0.001) as significant predictors of poorer HRQoL. Discussion: The findings indicate that patients with HFpEF experience significantly poorer HRQoL than those with HFrEF. Older adults and female patients reported greater symptom burden, underscoring the importance of demographic-sensitive care approaches. These results highlight the need for routine integration of HRQoL assessment into clinical practice and the development of comprehensive, personalized interventions addressing both physical and emotional health dimensions, especially for vulnerable subgroups. Conclusions: CHF patients, especially those with HFpEF, face reduced HRQoL. Key factors include age, gender, education, employment, marital status, and NYHA class, underscoring the need for patient-centered care. Full article
(This article belongs to the Special Issue Patient Experience and the Quality of Health Care)
Show Figures

Figure 1

17 pages, 3966 KiB  
Article
Beyond the Detour: Modeling Traffic System Shocks After the Francis Scott Key Bridge Failure
by Daeyeol Chang, Niyeyesh Meimandi Nejad, Mansoureh Jeihani and Mansha Swami
Sustainability 2025, 17(15), 6916; https://doi.org/10.3390/su17156916 - 30 Jul 2025
Viewed by 93
Abstract
This research examines the traffic disruptions resulting from the collapse of the Francis Scott Key Bridge in Baltimore, utilizing advanced econometric methods and real-time ClearGuide data. Employing Fixed Effects (FEs), Mixed Effects (MEs), Difference-in-Differences (DiDs), and stratified regression models, the study uniquely examines [...] Read more.
This research examines the traffic disruptions resulting from the collapse of the Francis Scott Key Bridge in Baltimore, utilizing advanced econometric methods and real-time ClearGuide data. Employing Fixed Effects (FEs), Mixed Effects (MEs), Difference-in-Differences (DiDs), and stratified regression models, the study uniquely examines the impacts of congestion across Immediate, Fall, and Winter periods, distinctly separating AM and PM peak patterns. Significant findings include severe PM peak congestion, up to four times greater than AM peak congestion, particularly on critical corridors such as the Harbor Tunnel Thruway northbound and MD-295 northbound. Initial route-level impacts were heterogeneous, gradually becoming uniform as the network adapted. The causal DiD analysis provides strong evidence that increased congestion is causally linked to proximity to the collapse. It is anticipated that incorporating the suggested framework will yield insightful information for stakeholders and decision-makers, such as targeted freight restriction, peak-hour dynamic pricing, corridor-specific signal adjustments, and investments in real-time traffic monitoring systems to strengthen transportation network resilience. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

23 pages, 3828 KiB  
Article
SARAC4N: Socially and Resource-Aware Caching in Clustered Content-Centric Networks
by Amir Raza Khan, Umar Shoaib and Hannan Bin Liaqat
Future Internet 2025, 17(8), 341; https://doi.org/10.3390/fi17080341 - 29 Jul 2025
Viewed by 352
Abstract
The Content-Centric Network (CCN) presents an alternative to the conventional TCP/IP network, where IP is fundamental for communication between the source and destination. Instead of relying on IP addresses, CCN emphasizes content to enable efficient data distribution through caching and delivery. The increasing [...] Read more.
The Content-Centric Network (CCN) presents an alternative to the conventional TCP/IP network, where IP is fundamental for communication between the source and destination. Instead of relying on IP addresses, CCN emphasizes content to enable efficient data distribution through caching and delivery. The increasing demand of graphic-intensive applications requires minimal response time and optimized resource utilization. Therefore, the CCN plays a vital role due to its efficient architecture and content management approach. To reduce data retrieval delays in CCNs, traditional methods improve caching mechanisms through clustering. However, these methods do not address the optimal use of resources, including CPU, memory, storage, and available links, along with the incorporation of social awareness. This study proposes SARAC4N, a socially and resource-aware caching framework for clustered Content-Centric Networks that integrates dual-head clustering and popularity-driven content placement. It enhances caching efficiency, reduces retrieval delays, and improves resource utilization across heterogeneous network topologies. This approach will help resolve congestion issues while enhancing social awareness, lowering error rates, and ensuring efficient content delivery. The proposed Socially and Resource-Aware Caching in Clustered Content-Centric Network (SARAC4N) enhances caching effectiveness by optimally utilizing resources and positioning them with social awareness within the cluster. Furthermore, it enhances metrics such as data retrieval time, reduces computation and memory usage, minimizes data redundancy, optimizes network usage, and lowers storage requirements, all while maintaining a very low error rate. Full article
Show Figures

Figure 1

31 pages, 6206 KiB  
Article
High-Redundancy Design and Application of Excitation Systems for Large Hydro-Generator Units Based on ATS and DDS
by Xiaodong Wang, Xiangtian Deng, Xuxin Yue, Haoran Wang, Xiaokun Li and Xuemin He
Electronics 2025, 14(15), 3013; https://doi.org/10.3390/electronics14153013 - 29 Jul 2025
Viewed by 176
Abstract
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this [...] Read more.
The large-scale integration of stochastic renewable energy sources necessitates enhanced dynamic balancing capabilities in power systems, positioning hydropower as a critical balancing asset. Conventional excitation systems utilizing hot-standby dual-redundancy configurations remain susceptible to unit shutdown events caused by regulator failures. To mitigate this vulnerability, this study proposes a peer-to-peer distributed excitation architecture integrating asynchronous traffic shaping (ATS) and Data Distribution Service (DDS) technologies. This architecture utilizes control channels of equal priority and achieves high redundancy through cross-communication between discrete acquisition and computation modules. This research advances three key contributions: (1) design of a peer-to-peer distributed architectural framework; (2) development of a real-time data interaction methodology combining ATS and DDS, incorporating cross-layer parameter mapping, multi-priority queue scheduling, and congestion control mechanisms; (3) experimental validation of system reliability and redundancy through dynamic simulation. The results confirm the architecture’s operational efficacy, delivering both theoretical foundations and practical frameworks for highly reliable excitation systems. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

52 pages, 3733 KiB  
Article
A Hybrid Deep Reinforcement Learning and Metaheuristic Framework for Heritage Tourism Route Optimization in Warin Chamrap’s Old Town
by Rapeepan Pitakaso, Thanatkij Srichok, Surajet Khonjun, Natthapong Nanthasamroeng, Arunrat Sawettham, Paweena Khampukka, Sairoong Dinkoksung, Kanya Jungvimut, Ganokgarn Jirasirilerd, Chawapot Supasarn, Pornpimol Mongkhonngam and Yong Boonarree
Heritage 2025, 8(8), 301; https://doi.org/10.3390/heritage8080301 - 28 Jul 2025
Viewed by 176
Abstract
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework [...] Read more.
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework that integrates Deep Reinforcement Learning (DRL) for policy-guided initialization, an Improved Multiverse Optimizer (IMVO) for global search, and a Generative Adversarial Network (GAN) for local refinement and solution diversity. The model operates within a digital twin of Warin Chamrap’s old town, leveraging 92 POIs, congestion heatmaps, and behaviorally clustered tourist profiles. The proposed method was benchmarked against seven state-of-the-art techniques, including PSO + DRL, Genetic Algorithm with Multi-Neighborhood Search (Genetic + MNS), Dual-ACO, ALNS-ASP, and others. Results demonstrate that DRL–IMVO–GAN consistently dominates across key metrics. Under equal-objective weighting, it attained the highest heritage score (74.2), shortest travel time (21.3 min), and top satisfaction score (17.5 out of 18), along with the highest hypervolume (0.85) and Pareto Coverage Ratio (0.95). Beyond performance, the framework exhibits strong generalization in zero- and few-shot scenarios, adapting to unseen POIs, modified constraints, and new user profiles without retraining. These findings underscore the method’s robustness, behavioral coherence, and interpretability—positioning it as a scalable, intelligent decision-support tool for sustainable and user-centered cultural tourism planning in secondary cities. Full article
(This article belongs to the Special Issue AI and the Future of Cultural Heritage)
Show Figures

Figure 1

25 pages, 1343 KiB  
Article
Low-Latency Edge-Enabled Digital Twin System for Multi-Robot Collision Avoidance and Remote Control
by Daniel Poul Mtowe, Lika Long and Dong Min Kim
Sensors 2025, 25(15), 4666; https://doi.org/10.3390/s25154666 - 28 Jul 2025
Viewed by 182
Abstract
This paper proposes a low-latency and scalable architecture for Edge-Enabled Digital Twin networked control systems (E-DTNCS) aimed at multi-robot collision avoidance and remote control in dynamic and latency-sensitive environments. Traditional approaches, which rely on centralized cloud processing or direct sensor-to-controller communication, are inherently [...] Read more.
This paper proposes a low-latency and scalable architecture for Edge-Enabled Digital Twin networked control systems (E-DTNCS) aimed at multi-robot collision avoidance and remote control in dynamic and latency-sensitive environments. Traditional approaches, which rely on centralized cloud processing or direct sensor-to-controller communication, are inherently limited by excessive network latency, bandwidth bottlenecks, and a lack of predictive decision-making, thus constraining their effectiveness in real-time multi-agent systems. To overcome these limitations, we propose a novel framework that seamlessly integrates edge computing with digital twin (DT) technology. By performing localized preprocessing at the edge, the system extracts semantically rich features from raw sensor data streams, reducing the transmission overhead of the original data. This shift from raw data to feature-based communication significantly alleviates network congestion and enhances system responsiveness. The DT layer leverages these extracted features to maintain high-fidelity synchronization with physical robots and to execute predictive models for proactive collision avoidance. To empirically validate the framework, a real-world testbed was developed, and extensive experiments were conducted with multiple mobile robots. The results revealed a substantial reduction in collision rates when DT was deployed, and further improvements were observed with E-DTNCS integration due to significantly reduced latency. These findings confirm the system’s enhanced responsiveness and its effectiveness in handling real-time control tasks. The proposed framework demonstrates the potential of combining edge intelligence with DT-driven control in advancing the reliability, scalability, and real-time performance of multi-robot systems for industrial automation and mission-critical cyber-physical applications. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

29 pages, 1659 KiB  
Article
A Mixed-Integer Programming Framework for Drone Routing and Scheduling with Flexible Multiple Visits in Highway Traffic Monitoring
by Nasrin Mohabbati-Kalejahi, Sepideh Alavi and Oguz Toragay
Mathematics 2025, 13(15), 2427; https://doi.org/10.3390/math13152427 - 28 Jul 2025
Viewed by 226
Abstract
Traffic crashes and congestion generate high social and economic costs, yet traditional traffic monitoring methods, such as police patrols, fixed cameras, and helicopters, are costly, labor-intensive, and limited in spatial coverage. This paper presents a novel Drone Routing and Scheduling with Flexible Multiple [...] Read more.
Traffic crashes and congestion generate high social and economic costs, yet traditional traffic monitoring methods, such as police patrols, fixed cameras, and helicopters, are costly, labor-intensive, and limited in spatial coverage. This paper presents a novel Drone Routing and Scheduling with Flexible Multiple Visits (DRSFMV) framework, an optimization model for planning drone-based highway monitoring under realistic operational constraints, including battery limits, variable monitoring durations, recharging at a depot, and target-specific inter-visit time limits. A mixed-integer nonlinear programming (MINLP) model and a linearized version (MILP) are presented to solve the problem. Due to the NP-hard nature of the underlying problem structure, a heuristic solver, Hexaly, is also used. A case study using real traffic census data from three Southern California counties tests the models across various network sizes and configurations. The MILP solves small and medium instances efficiently, and Hexaly produces high-quality solutions for large-scale networks. Results show clear trade-offs between drone availability and time-slot flexibility, and demonstrate that stricter revisit constraints raise operational cost. Full article
Show Figures

Figure 1

41 pages, 3023 KiB  
Article
Enhanced Scalability and Security in Blockchain-Based Transportation Systems for Mass Gatherings
by Ahmad Mutahhar, Tariq J. S. Khanzada and Muhammad Farrukh Shahid
Information 2025, 16(8), 641; https://doi.org/10.3390/info16080641 - 28 Jul 2025
Viewed by 300
Abstract
Large-scale events, such as festivals and public gatherings, pose serious problems in terms of traffic congestion, slow transaction processing, and security risks to transportation planning. This study proposes a blockchain-based solution for enhancing the efficiency and security of intelligent transport systems (ITS) by [...] Read more.
Large-scale events, such as festivals and public gatherings, pose serious problems in terms of traffic congestion, slow transaction processing, and security risks to transportation planning. This study proposes a blockchain-based solution for enhancing the efficiency and security of intelligent transport systems (ITS) by utilizing state channels and rollups. Throughput is optimized, enabling transaction speeds of 800 to 3500 transactions per second (TPS) and delays of 5 to 1.5 s. Prevent data tampering, strengthen security, and enhance data integrity from 89% to 99.999%, as well as encryption efficacy from 90% to 98%. Furthermore, our system reduces congestion, optimizes vehicle movement, and shares real-time, secure data with stakeholders. Practical applications include fast and safe road toll payments, faster public transit ticketing, improved emergency response coordination, and enhanced urban mobility. The decentralized blockchain helps maintain trust among users, transportation authorities, and event organizers. Our approach extends beyond large-scale events and proposes a path toward ubiquitous, Artificial Intelligence (AI)-driven decision-making in a broader urban transit network, informing future operations in dynamic traffic optimization. This study demonstrates the potential of blockchain to create more intelligent, more secure, and scalable transportation systems, which will help reduce urban mobility inefficiencies and contribute to the development of resilient smart cities. Full article
Show Figures

Figure 1

25 pages, 3182 KiB  
Article
From Efficiency to Safety: A Simulation-Based Framework for Evaluating Empty-Container Terminal Layouts
by Cristóbal Vera-Carrasco, Cristian D. Palma and Sebastián Muñoz-Herrera
J. Mar. Sci. Eng. 2025, 13(8), 1424; https://doi.org/10.3390/jmse13081424 - 26 Jul 2025
Viewed by 216
Abstract
Empty container depot (ECD) design significantly impacts maritime terminal efficiency, yet traditional evaluation approaches assess limited operational factors, constraining comprehensive performance optimization. This study develops an integrated discrete event simulation (DES) framework that simultaneously evaluates lifting equipment utilization, truck turnaround times, and potential [...] Read more.
Empty container depot (ECD) design significantly impacts maritime terminal efficiency, yet traditional evaluation approaches assess limited operational factors, constraining comprehensive performance optimization. This study develops an integrated discrete event simulation (DES) framework that simultaneously evaluates lifting equipment utilization, truck turnaround times, and potential collisions to support terminal decision-making. This study combines operational efficiency metrics with safety analytics for non-automated ECDs using Top Lifters and Reach Stackers. Additionally, a regression analysis examines efficiency metrics’ effect on safety risk. A case study at a Chilean multipurpose terminal reveals performance trade-offs between indicators under different operational scenarios, identifying substantial efficiency disparities between dry and refrigerated container operations. An analysis of four distinct collision zones with varying historical risk profiles showed the gate area had the highest potential collisions and a strong regression correlation with efficiency metrics. Similar models showed a poor fit in other conflict zones, evidencing the necessity for dedicated safety indicators complementing traditional measures. This integrated approach quantifies interdependencies between safety and efficiency metrics, helping terminal managers optimize layouts, expose traditional metric limitations, and reduce safety risks in space-constrained maritime terminals. Full article
Show Figures

Figure 1

18 pages, 500 KiB  
Article
Hybrid Model-Based Traffic Network Control Using Population Games
by Sindy Paola Amaya, Pablo Andrés Ñañez, David Alejandro Martínez Vásquez, Juan Manuel Calderón Chávez and Armando Mateus Rojas
Appl. Syst. Innov. 2025, 8(4), 102; https://doi.org/10.3390/asi8040102 - 25 Jul 2025
Viewed by 162
Abstract
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of [...] Read more.
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of innovative traffic control strategies based on advanced theoretical frameworks. In this sense, we explore different game theory-based control strategies in an eight-intersection traffic network modeled by means of hybrid systems and graph theory, using a software simulator that combines the multi-modal traffic simulation software VISSIM and MATLAB to integrate traffic network parameters and population game criteria. Across five distinct network scenarios with varying saturation conditions, we explore a fixed-time scheme of signaling by means of fictitious play dynamics and adaptive schemes, using dynamics such as Smith, replicator, Logit and Brown–Von Neumann–Nash (BNN). Results show better performance for Smith and replicator dynamics in terms of traffic parameters both for fixed and variable signaling times, with an interesting outcome of fictitious play over BNN and Logit. Full article
Show Figures

Figure 1

23 pages, 13739 KiB  
Article
Traffic Accident Rescue Action Recognition Method Based on Real-Time UAV Video
by Bo Yang, Jianan Lu, Tao Liu, Bixing Zhang, Chen Geng, Yan Tian and Siyu Zhang
Drones 2025, 9(8), 519; https://doi.org/10.3390/drones9080519 - 24 Jul 2025
Viewed by 341
Abstract
Low-altitude drones, which are unimpeded by traffic congestion or urban terrain, have become a critical asset in emergency rescue missions. To address the current lack of emergency rescue data, UAV aerial videos were collected to create an experimental dataset for action classification and [...] Read more.
Low-altitude drones, which are unimpeded by traffic congestion or urban terrain, have become a critical asset in emergency rescue missions. To address the current lack of emergency rescue data, UAV aerial videos were collected to create an experimental dataset for action classification and localization annotation. A total of 5082 keyframes were labeled with 1–5 targets each, and 14,412 instances of data were prepared (including flight altitude and camera angles) for action classification and position annotation. To mitigate the challenges posed by high-resolution drone footage with excessive redundant information, we propose the SlowFast-Traffic (SF-T) framework, a spatio-temporal sequence-based algorithm for recognizing traffic accident rescue actions. For more efficient extraction of target–background correlation features, we introduce the Actor-Centric Relation Network (ACRN) module, which employs temporal max pooling to enhance the time-dimensional features of static backgrounds, significantly reducing redundancy-induced interference. Additionally, smaller ROI feature map outputs are adopted to boost computational speed. To tackle class imbalance in incident samples, we integrate a Class-Balanced Focal Loss (CB-Focal Loss) function, effectively resolving rare-action recognition in specific rescue scenarios. We replace the original Faster R-CNN with YOLOX-s to improve the target detection rate. On our proposed dataset, the SF-T model achieves a mean average precision (mAP) of 83.9%, which is 8.5% higher than that of the standard SlowFast architecture while maintaining a processing speed of 34.9 tasks/s. Both accuracy-related metrics and computational efficiency are substantially improved. The proposed method demonstrates strong robustness and real-time analysis capabilities for modern traffic rescue action recognition. Full article
(This article belongs to the Special Issue Cooperative Perception for Modern Transportation)
Show Figures

Figure 1

Back to TopTop