Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,674)

Search Parameters:
Keywords = time above range

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 780 KiB  
Article
Important Role of Pregnancy Planning in Pregnancy Outcomes in Type 1 Diabetes
by Anna Juza, Lilianna Kołodziej-Spirodek and Mariusz Dąbrowski
Diabetology 2025, 6(8), 75; https://doi.org/10.3390/diabetology6080075 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Compared to in the general pregnant population, pregnancy in women with type 1 diabetes (T1D) is still associated with an increased number of perinatal complications affecting both the fetus and the mother. The Great Orchestra of Christmas Charity Foundation (GOCCF) program enables [...] Read more.
Background/Objectives: Compared to in the general pregnant population, pregnancy in women with type 1 diabetes (T1D) is still associated with an increased number of perinatal complications affecting both the fetus and the mother. The Great Orchestra of Christmas Charity Foundation (GOCCF) program enables the use of continuous subcutaneous insulin infusion (CSII) enhanced by a hypo-stop function and real-time continuous glucose monitoring (rtCGM) during the preconception or early pregnancy period in patients with T1D. This observational study aimed to analyze the association between pregnancy planning and pregnancy outcomes in patients who qualified for the GOCCF program. Methods: Ninety-eight women with T1D, aged 21–41 years, who began using the CSII + rtCGM system at the planning/early pregnancy stage or at a later stage in the case of an unplanned pregnancy, were eligible for this study. We analyzed glucose control, the insulin requirements, the pregestational BMI, the maternal weight gain, the occurrence of preterm births, congenital malformations and the birthweight of newborns. Results: Women who planned their pregnancies had significantly better glycemic control before and throughout the entire pregnancy, and a significantly higher proportion of them achieved a TIR (time in range) > 70% (58.7% vs. 28.9%, p = 0.014) and TAR (time above range) < 25% (65.2% vs. 24.4%, p < 0.001). Their glucose variability at the end of the pregnancy was significantly lower (29.4 ± 5.5 vs. 31.9 ± 5.1, p = 0.030). They also gave birth later, at a mean of 37.8 ± 0.9 weeks compared to 36.9 ± 1.8 weeks in the non-planned group (p = 0.039). Preterm birth occurred in five women (10.4%) who planned their pregnancies and in fifteen women (30%) who did not, with p = 0.031. Conclusions: Pregnancy planning in women with type 1 diabetes (T1D) is associated with better glucose control before conception and throughout the entire pregnancy, resulting in better pregnancy outcomes. Full article
Show Figures

Graphical abstract

18 pages, 564 KiB  
Article
Electrons in Quantum Dots on Helium: From Charge Qubits to Synthetic Color Centers
by Mark I. Dykman and Johannes Pollanen
Entropy 2025, 27(8), 787; https://doi.org/10.3390/e27080787 - 25 Jul 2025
Viewed by 126
Abstract
Electrons trapped above the surface of helium provide a means to study many-body physics free from the randomness that comes from defects in other condensed-matter systems. Localizing an electron in an electrostatic quantum dot makes its energy spectrum discrete, with controlled level spacing. [...] Read more.
Electrons trapped above the surface of helium provide a means to study many-body physics free from the randomness that comes from defects in other condensed-matter systems. Localizing an electron in an electrostatic quantum dot makes its energy spectrum discrete, with controlled level spacing. The lowest two states can act as charge qubit states. In this paper, we study how the coupling to the quantum field of capillary waves on helium—known as ripplons—affects electron dynamics. As we show, the coupling can be strong. This bounds the parameter range where electron-based charge qubits can be implemented. The constraint is different from the conventional relaxation time constraint. The electron–ripplon system in a dot is similar to a color center formed by an electron defect coupled to phonons in a solid. In contrast to solids, the coupling in the electron on helium system can be varied from strong to weak. This enables a qualitatively new approach to studying color center physics. We analyze the spectroscopy of the pertinent synthetic color centers in a broad range of the coupling strength. Full article
Show Figures

Figure 1

16 pages, 11535 KiB  
Article
Sedimentary Stylolites Roughness Inversion Enables the Quantification of the Eroded Thickness of Deccan Trap Above the Bagh Group, Narmada Basin, India
by Dhiren Kumar Ruidas, Nicolas E. Beaudoin, Srabani Thakur, Aniruddha Musib and Gourab Dey
Minerals 2025, 15(8), 766; https://doi.org/10.3390/min15080766 - 22 Jul 2025
Viewed by 645
Abstract
Stylolites, common dissolution surfaces in carbonate rocks, form due to localized stress-induced pressure-solution during burial compaction or tectonic contraction. Their morphology and growth are influenced by dissolution kinetics, rock heterogeneity, clay content, burial depth, stress evolution, diagenesis, and pore fluid availability. This study [...] Read more.
Stylolites, common dissolution surfaces in carbonate rocks, form due to localized stress-induced pressure-solution during burial compaction or tectonic contraction. Their morphology and growth are influenced by dissolution kinetics, rock heterogeneity, clay content, burial depth, stress evolution, diagenesis, and pore fluid availability. This study applies the stylolite roughness inversion technique (SRIT), a proven paleopizometer that quantifies the principal vertical stress (σv = σ1) prevailing in strata in the last moments of bedding-parallel stylolites (BPS) formation, to the Late Cretaceous Bagh Group carbonates in the Narmada Basin, India, to estimate their burial paleo-depth. Using the Fourier Power Spectrum (FPS), we obtained 18 σ1 values from a collection of 30 samples, enabling us to estimate paleo-burial depths for the Bagh Group ranging from 660 to 1320 m. As the Bagh Group burial history is unknown, but as there is no subsequent sedimentary deposition above it, we relate this ca. 1.3 km burial depth to the now eroded thickness of the deposits related to Deccan volcanism at the end of the Cretaceous time, implying a quasi-instantaneous development of the BPS population in the strata. This research highlights the robustness of SRIT for reconstructing burial histories in carbonate sequences and that it can be a reliable way to reconstruct the thickness of eroded deposits in well-constrained geological history. Full article
Show Figures

Figure 1

15 pages, 1062 KiB  
Article
Prevalence of Biogenic Amines and Their Relation to the Bacterial Content in Ripened Cheeses on the Retail Market in Poland
by Marzena Pawul-Gruba, Edyta Denis, Tomasz Kiljanek and Jacek Osek
Foods 2025, 14(14), 2478; https://doi.org/10.3390/foods14142478 - 15 Jul 2025
Viewed by 374
Abstract
Biogenic amines (BA) are simple organic bases of low molecular weight, formed during decarboxylation of amino acids. Ripened cheeses provide suitable conditions for the development of bacteria and production of BAs. The aim of the present study was to investigate the presence of [...] Read more.
Biogenic amines (BA) are simple organic bases of low molecular weight, formed during decarboxylation of amino acids. Ripened cheeses provide suitable conditions for the development of bacteria and production of BAs. The aim of the present study was to investigate the presence of eight BAs in ripened cheese samples (n = 125) using a high-performance liquid chromatography with diode array detector (HPLC-DAD). Furthermore, microbiological analyses towards identification of bacteria using matrix-assisted laser desorption ionisation—time of flight mass spectrometry (MALDI-TOF MS) were performed. Cadaverine and putrescine were detected in 28.0% and 20.8% of cheese samples at concentrations ranging from 6.12 to 2871 mg/kg and 5.74 to 441 mg/kg, respectively. High amounts of putrescine and cadaverine in cheeses were associated with the presence of Hafnia alvei. Tyramine was identified in 28.0% of samples in the concentration range of 5.62–646 mg/kg. High concentrations of this amine was found in cheeses containing Enterococcus faecium and Enterococcus faecalis. Histamine content, the only BA restricted in food according to Regulation 2073/2005, was observed above 100 mg/kg in 11.2% of the cheeses. Ripened cheeses available on the local retail market may contain significant levels of biogenic amines and may pose a potential health hazard to consumers. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

8 pages, 565 KiB  
Article
Diagnostic Tools for Endometriosis in Poland: A Comparative Assessment of Reliability and Out-of-Pocket Costs
by Anna Rogalska and Katarzyna Brukało
J. Clin. Med. 2025, 14(14), 4935; https://doi.org/10.3390/jcm14144935 - 11 Jul 2025
Viewed by 296
Abstract
Objectives: This study aimed to assess the availability, diagnostic reliability, and out-of-pocket costs of endometriosis diagnostic tools available on the private healthcare market in Poland. Methods: A desk-based analysis was conducted from a patient perspective to identify commercially available diagnostic tests for endometriosis [...] Read more.
Objectives: This study aimed to assess the availability, diagnostic reliability, and out-of-pocket costs of endometriosis diagnostic tools available on the private healthcare market in Poland. Methods: A desk-based analysis was conducted from a patient perspective to identify commercially available diagnostic tests for endometriosis in Poland. Data were collected in September 2024 using relevant keywords to simulate a patient search process. Identified tests were evaluated for their compliance with the 2022 European Society of Human Reproduction and Embryology (ESHRE) guidelines. Key parameters, including sensitivity, specificity, and associated costs, were assessed based on the available literature. Out-of-pocket costs were compared between the private and public healthcare sectors. Results: Five diagnostic methods were identified in the private healthcare market: two imaging techniques (transvaginal ultrasound, magnetic resonance imaging) and three blood-based tests. None of the blood-based tests demonstrated sensitivity or specificity above 90%. Imaging techniques met this criterion. The cost of blood tests ranged from EUR 21.1 to EUR 467.77. The average private-sector cost for transvaginal ultrasound was EUR 111.64, representing a 482.6% increase compared to the public sector. Magnetic resonance imaging cost EUR 122.89 in the private sector, a 148.64% increase. Conclusions: The private Polish healthcare market lacks non-invasive diagnostic tests for endometriosis that achieve high reliability based on large study samples. Imaging tests, while reliable, pose significant financial barriers when accessed privately. Enhanced public access and clearer patient guidance are required to ensure timely and effective diagnosis. Full article
(This article belongs to the Special Issue Endometriosis: Diagnosis and Treatment)
Show Figures

Figure 1

18 pages, 3495 KiB  
Article
Next-Generation Light Harvesting: MXene (Ti3C2Tx)-Based Metamaterial Absorbers for a Broad Wavelength Range from 0.3 μm to 18 μm
by Abida Parveen, Deepika Tyagi, Vijay Laxmi, Naeem Ullah, Faisal Ahmad, Ahsan Irshad, Keyu Tao and Zhengbiao Ouyang
Materials 2025, 18(14), 3273; https://doi.org/10.3390/ma18143273 - 11 Jul 2025
Viewed by 375
Abstract
Electromagnetic wave (EMW) absorption materials are crucial for a wide range of applications, yet most existing materials suffer from complex fabrication and narrow absorption bands, particularly under harsh environmental conditions. In this study, we introduce a broadband metamaterial absorber based on Ti3 [...] Read more.
Electromagnetic wave (EMW) absorption materials are crucial for a wide range of applications, yet most existing materials suffer from complex fabrication and narrow absorption bands, particularly under harsh environmental conditions. In this study, we introduce a broadband metamaterial absorber based on Ti3C2O2 MXene, a novel two-dimensional material that uniquely combines high electrical and metallic conductivity with hydrophilicity, biocompatibility, and an extensive surface area. Through advanced finite-difference time-domain (FDTD) simulations, the proposed absorber achieves over 95% absorption from 0.3 µm to 18 µm. Additionally, other MXene variants, including Ti3C2F2 and Ti3C2(OH)2, demonstrate robust absorption above 85%. This absorber not only outperforms previously reported structures in terms of efficiency and spectral coverage but also opens avenues for integration into applications such as infrared sensing, energy harvesting, wearable electronics, and Internet of Things (IoT) systems. Full article
Show Figures

Figure 1

17 pages, 2554 KiB  
Article
Pilot Study of Microplastics in Snow from the Zhetysu Region (Kazakhstan)
by Azamat Madibekov, Laura Ismukhanova, Christian Opp, Botakoz Sultanbekova, Askhat Zhadi, Renata Nemkaeva and Aisha Madibekova
Appl. Sci. 2025, 15(14), 7736; https://doi.org/10.3390/app15147736 - 10 Jul 2025
Viewed by 365
Abstract
The pilot study is devoted to the assessment of both the accumulation and spatial distribution of microplastics in the snow cover of the Zhetysu region. The height of snow cover in the study area varied from 4.0 to 80.5 cm, with a volume [...] Read more.
The pilot study is devoted to the assessment of both the accumulation and spatial distribution of microplastics in the snow cover of the Zhetysu region. The height of snow cover in the study area varied from 4.0 to 80.5 cm, with a volume of melt water ranging from 1.5 to 143 L. The analysis of 53 snow samples taken at different altitudes (from 350 to 1500 m above sea level) showed the presence of microplastics in 92.6% of samples in concentrations from 1 to 12 particles per square meter. In total, 170 microplastic particles were identified. The main polymers identified by Raman spectroscopy were polyethylene (PE), polypropylene (PP), and polystyrene (PS). These are typical components of plastic waste. The spatial distribution of microplastics showed elevated concentrations near settlements and roads. Notable contaminations were also recorded in remote mountainous areas, confirming the significant role of long-range atmospheric transport. Particles smaller than 0.5 mm dominated, having high aerodynamic mobility and capable of long-range atmospheric transport. Quantitative and qualitative characteristics of microplastics in snow cover have been realized for the first time both in Kazakhstan and in the Central Asian region, which contributes to the formation of primary ideas and future approaches about microplastic pollution in continental inland regions. The obtained results demonstrate the importance of atmospheric transport in the distribution of microplastics. They indicate the need for further monitoring and microplastic pollution analyses in Central Asia, taking into account its detection even in hard-to-reach and remote areas. Full article
Show Figures

Figure 1

31 pages, 799 KiB  
Article
Exploring Determinants of Mediterranean Lifestyle Adherence: Findings from the Multinational MEDIET4ALL e-Survey Across Ten Mediterranean and Neighboring Countries
by Achraf Ammar, Mohamed Ali Boujelbane, Atef Salem, Khaled Trabelsi, Bassem Bouaziz, Mohamed Kerkeni, Liwa Masmoudi, Juliane Heydenreich, Christiana Schallhorn, Gabriel Müller, Ayse Merve Uyar, Hadeel Ali Ghazzawi, Adam Tawfiq Amawi, Bekir Erhan Orhan, Giuseppe Grosso, Osama Abdelkarim, Mohamed Aly, Tarak Driss, Kais El Abed, Wassim Moalla, Piotr Zmijewski, Frédéric Debeaufort, Nasreddine Benbettaieb, Clément Poulain, Laura Reyes, Amparo Gamero, Marta Cuenca-Ortolá, Antonio Cilla, Nicola Francesca, Concetta Maria Messina, Enrico Viola, Björn Lorenzen, Stefania Filice, Aadil Bajoub, El-Mehdi Ajal, El Amine Ajal, Majdouline Obtel, Sadjia Lahiani, Taha Khaldi, Nafaa Souissi, Omar Boukhris, Waqar Husain, Evelyn Frias-Toral, Walid Mahdi, Hamdi Chtourou, Haitham Jahrami and Wolfgang I. Schöllhornadd Show full author list remove Hide full author list
Nutrients 2025, 17(14), 2280; https://doi.org/10.3390/nu17142280 - 10 Jul 2025
Viewed by 509
Abstract
Background/Objectives: Despite its well-established health benefits, adherence to the Mediterranean lifestyle (MedLife) has declined globally, including in its region of origin, alongside a significant shift toward ultra-processed food consumption. Understanding the factors associated with MedLife adherence is essential for developing targeted interventions and [...] Read more.
Background/Objectives: Despite its well-established health benefits, adherence to the Mediterranean lifestyle (MedLife) has declined globally, including in its region of origin, alongside a significant shift toward ultra-processed food consumption. Understanding the factors associated with MedLife adherence is essential for developing targeted interventions and tailored policy recommendations. As part of the MEDIET4ALL PRIMA project, this cross-sectional study aimed to comprehensively examine geo-demographic, socio-economic, psychological, behavioral, and barrier-related factors associated with and potentially contributing to MedLife adherence. Methods: Data were collected from 4010 participants aged 18 years and above across ten Mediterranean and neighboring countries using the multinational MEDIET4ALL e-survey, which included the validated MedLife index, along with various other questionnaires. Results: Results indicate that only 22% of respondents demonstrated high adherence to the Mediterranean lifestyle (MedLife), with significant variability observed across countries, age groups, education levels, and health statuses. Spain had the highest proportion of participants with high adherence (38%). Factors associated with significantly higher adherence rates include older age, living in the Mediterranean region, higher education levels, a greater awareness of MedLife principles, lower perceived barriers, normal BMI, better health status, and stable economic and marital conditions (p-values ranging from 0.04 to <0.001). Additionally, individuals with high MedLife adherence exhibited more socially and physically active lifestyles and experienced less psychological strain (p < 0.001). Regression analyses identified MedLife awareness as the strongest positive predictor of adherence (β = 0.206), followed by social participation (β = 0.194) and physical activity (β = 0.096). Additional positive contributors include life satisfaction, sleep quality, living in the Mediterranean region, age, and education (β ranging from 0.049 to 0.093). Conversely, factors that are negatively associated with adherence include sedentary behavior, living environment, and barriers such as low motivation, taste dislike, price unaffordability, limited availability, and the time-consuming nature of preparing Mediterranean food (MedFood; β ranging from −0.036 to −0.067). Conclusions: These findings indicate that fewer than one in four adults across Mediterranean and neighboring countries demonstrate high adherence to MedLife, supporting prior evidence of suboptimal adherence even within Mediterranean regions. This study identified a range of behavioral, socio-demographic, and environmental factors—both positive and negative predictors—that can help guide the design of targeted, culturally adapted interventions to promote MedLife behavior. Future research should incorporate objective measurements and longitudinal monitoring to better understand underlying mechanisms, establish causality, and develop sustainable strategies for enhancing MedLife adherence in diverse populations. Full article
Show Figures

Figure 1

12 pages, 226 KiB  
Article
Degree of Hypoxia and Physiological Differences Between Fast and Slow Ascents to Very High Altitude
by Clive Kelly, Shireen Saxena and Kieran Kelly
Oxygen 2025, 5(3), 13; https://doi.org/10.3390/oxygen5030013 - 8 Jul 2025
Viewed by 318
Abstract
Introduction: Rapid ascent to altitudes of over 5000 m above sea level are associated with dramatic changes in adaptive physiology. The effects of a gradual ascent on symptoms, oximetry, and heart rate are described and compared with the effects of a rapid [...] Read more.
Introduction: Rapid ascent to altitudes of over 5000 m above sea level are associated with dramatic changes in adaptive physiology. The effects of a gradual ascent on symptoms, oximetry, and heart rate are described and compared with the effects of a rapid ascent to the same altitude by a comparable cohort. Methods: A group of 13 individuals (six females) representing 10 countries from five continents ascended gradually from Lukla (2300 m) to Everest Base Camp (5300 m) in Nepal over an 8-day period, then descended over a further 4 days. All symptoms and medication were recorded, along with pulse oximetry (SpO2) and heart rate (HR) every 500 m of ascent. The results were then compared with those obtained at equivalent altitudes using similar methodology from a fast ascent of Mount Kilimanjaro to an equivalent altitude by a comparable cohort over 4 days. Results: The gradual ascent group had a median age of 33 years (range 25–66), and all successfully completed the trek. No severe headache, vomiting, orthopnoea, or productive cough occurred, although minor nausea and mild headache were common. Baseline oximetry fell from a median of 96% (93–97%) to a median of 78% (53–86%) at 8 days but recovered to 94% (89–99%) inside 4 days. Corresponding HR rose from a baseline median of 72 bpm (57–85) to a median of 103 bpm (78–115) at 8 days, then recovered to 80 bpm (54–94) after 4 days. Neither age nor gender correlated with outcomes. Individually, HR correlated inversely with oximetry, but there was no group correlation between these two variables. By contrast, a more rapid 4-day ascent from the same starting height, with similar baseline values for HR and oximetry, to the same final altitude was associated with more severe headache, breathlessness, and vomiting. Fast ascent was associated with a significantly more marked reduction in oximetry to a median of 71% (52–76) and an increase in HR to a median of 110 bpm (88–140). The fast ascent group also required significantly more medication, rated their experience as less enjoyable, and had a 100% incidence of acute mountain sickness compared to 0% in the slow ascent group. Discussion: Oxygen desaturation and tachycardia are inevitable consequences of ascending above 5000 m, but the degree to which this occurs can be reduced by slowing ascent times and taking rest days every 1000 m of ascent. This practice is associated with fewer symptoms and greater safety, with less need for either prophylactic or therapeutic medication. Careful consideration should be given to rates of ascent when climbing to altitudes at or above 5000 m. Full article
20 pages, 3953 KiB  
Article
Real-Time Collision Warning System for Over-Height Ships at Bridges Based on Spatial Transformation
by Siyang Gu and Jian Zhang
Buildings 2025, 15(13), 2367; https://doi.org/10.3390/buildings15132367 - 5 Jul 2025
Viewed by 231
Abstract
Rapid identification of vessel height within the navigable space beneath bridges is crucial for ensuring bridge safety. To prevent bridge collisions caused by vessels exceeding their height limits, this article introduces a real-time warning framework for excessive vessel height based on video spatial [...] Read more.
Rapid identification of vessel height within the navigable space beneath bridges is crucial for ensuring bridge safety. To prevent bridge collisions caused by vessels exceeding their height limits, this article introduces a real-time warning framework for excessive vessel height based on video spatial transformation. The specific contributions include the following: (1) A spatial transformation-based method for locating vessel coordinates in the channel using buoys as control points, employing laser scanning to obtain their world coordinates from a broad channel range, and mapping the pixel coordinates of the buoys from side channel images to the world coordinates of the channel space, thus achieving pixel-level positioning of the vessel’s waterline intersection in the channel. (2) For video images, a key point recognition network for vessels based on attention mechanisms is developed to obtain pixel coordinates of the vessel’s waterline and top, and to capture the posture and position of multiple vessels in real time. (3) Analyzing the posture of vessels traveling in various directions within the channel, the method accounts for the pixel distance of spatial transformation control points and vessel height to determine vessel positioning coordinates, solve for the vessel’s height above water, and combine with real-time waterline height to enable over-height vessel collision warnings for downstream channel bridges. The method has been deployed in actual navigational scenarios beneath bridges, with the average error in vessel height estimation controlled within 10 cm and an error rate below 0.8%. The proposed approach enables real-time automatic estimation of vessel height in terms of computational speed, making it more suitable for practical engineering applications that demand both real-time performance and system stability. The system exhibits outstanding performance in terms of accuracy, stability, and engineering applicability, providing essential technical support for intelligent bridge safety management. Full article
Show Figures

Figure 1

21 pages, 6033 KiB  
Article
Study on Microseismic Monitoring of Landslide Induced by Blasting Caving
by Fuhua Peng and Weijun Wang
Appl. Sci. 2025, 15(13), 7567; https://doi.org/10.3390/app15137567 - 5 Jul 2025
Viewed by 325
Abstract
This study focuses on the monitoring and early warning of landslide hazards induced by blasting caving in the Shizhuyuan polymetallic mine. A 30-channel microseismic monitoring system was deployed to capture the spatiotemporal characteristics of rock mass fracturing during a large-scale directional stratified blasting [...] Read more.
This study focuses on the monitoring and early warning of landslide hazards induced by blasting caving in the Shizhuyuan polymetallic mine. A 30-channel microseismic monitoring system was deployed to capture the spatiotemporal characteristics of rock mass fracturing during a large-scale directional stratified blasting operation (419 tons) conducted on 21 June 2012. A total of 85 microseismic events were recorded, revealing two distinct zones of intense rock failure: Zone I (below 630 m elevation, P1–P3, C6–C8) and Zone II (above 630 m elevation, P4–P5, C1–C6). The upper slope collapse occurred within 5 min post-blasting, as documented by real-time monitoring and video recordings. Principal component analysis (PCA) was applied to 54 microseismic events in Zone II to determine the kinematic characteristics of the slip surface, yielding a dip direction of 324.6° and a dip angle of 73.2°. Complementary moment tensor analysis further revealed that shear failure dominated the slope instability, with pronounced shear fracturing observed in the 645–700 m height range. This study innovatively integrates spatial microseismic event distribution with geomechanical mechanisms, elucidating the dynamic evolution of blasting-induced landslides. The proposed methodology provides a novel approach for monitoring and forecasting slope instability triggered by underground mining, offering significant implications for disaster prevention in similar mining contexts. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

23 pages, 4988 KiB  
Article
Research on the Optimization of the Electrode Structure and Signal Processing Method of the Field Mill Type Electric Field Sensor
by Wei Zhao, Zhizhong Li and Haitao Zhang
Sensors 2025, 25(13), 4186; https://doi.org/10.3390/s25134186 - 4 Jul 2025
Viewed by 226
Abstract
Aiming at the issues that the field mill type electric field sensor lacks an accurate and complete mathematical model, and its signal is weak and contains a large amount of harmonic noise, on the basis of establishing the mathematical model of the sensor’s [...] Read more.
Aiming at the issues that the field mill type electric field sensor lacks an accurate and complete mathematical model, and its signal is weak and contains a large amount of harmonic noise, on the basis of establishing the mathematical model of the sensor’s induction electrode, the finite element method was adopted to analyze the influence laws of parameters such as the thickness of the shielding electrode and the distance between the induction electrode and the shielding electrode on the sensor sensitivity. On this basis, the above parameters were optimized. A signal processing circuit incorporating a pre-integral transformation circuit, a differential amplification circuit, and a bias circuit was investigated, and a completed mathematical model of the input and output of the field mill type electric field sensor was established. An improved harmonic detection method combining fast Fourier transform and back propagation neural network (FFT-BP) was proposed, the learning rate, momentum factor, and excitation function jointly participated in the adjustment of the network, and the iterative search range of the algorithm was limited by the threshold interval, further improving the accuracy and rapidity of the sensor measurement. Experimental results indicate that within the simulated electric field intensity range of 0–20 kV/m in the laboratory, the measurement resolution of this system can reach 18.7 V/m, and the measurement linearity is more than 99%. The designed system is capable of measuring the atmospheric electric field intensity in real time, providing necessary data support for lightning monitoring and early warning. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 2066 KiB  
Article
Evaluation of Oil Displacement by Polysaccharide Fermentation Broth of Athelia rolfsii Under Extreme Reservoir Conditions
by Haowei Fu, Jianlong Xiu, Lixin Huang, Lina Yi, Yuandong Ma and Sicai Wang
Molecules 2025, 30(13), 2861; https://doi.org/10.3390/molecules30132861 - 4 Jul 2025
Viewed by 242
Abstract
In the development of high-temperature and high-salinity oil fields, biopolymer scleroglucan flooding technology faces significant challenges. Traditional scleroglucan products exhibit poor injectability and high extraction costs. This study investigated the application potential of the original fermentation broth of exopolysaccharides (EPS) produced by microorganisms [...] Read more.
In the development of high-temperature and high-salinity oil fields, biopolymer scleroglucan flooding technology faces significant challenges. Traditional scleroglucan products exhibit poor injectability and high extraction costs. This study investigated the application potential of the original fermentation broth of exopolysaccharides (EPS) produced by microorganisms in a simulated high-temperature and high-salinity oil reservoir environment. The polysaccharide was identified as scleroglucan through IR and NMR analysis. Its stability and rheological properties were comprehensively evaluated under extreme conditions, including temperatures up to 150 °C, pH levels ranging from 1 to 13, and salinities up to 22 × 104 mg/L. The results demonstrated that EPS maintained excellent viscosity and stability, particularly at 76.6 °C and 22 × 104 mg/L salinity, where its viscosity remained above 80% for 35 days. This highlights its significant viscoelasticity and stability in high-temperature and high-salinity oil reservoirs. Additionally, this study, for the first time, examined the rheological properties of the original fermentation broth of scleroglucan, specifically assessing its injectability and enhanced oil recovery (EOR) performance in a simulated Middle Eastern high-temperature, high-salinity, medium-low permeability reservoir environment. The findings revealed an effective EOR exceeding 15%, confirming the feasibility of using the original fermentation broth as a biopolymer for enhancing oil recovery in extreme reservoir conditions. Based on these experimental results, it is concluded that the original fermentation broth of Athelia rolfsii exhibits superior performance under high-temperature and high-salinity conditions in medium–low permeability reservoirs, offering a promising strategy for future biopolymer flooding in oil field development. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

26 pages, 6447 KiB  
Article
Optimizing Thermal Comfort with Adaptive Behaviours in South Australian Residential Buildings
by Szymon Firląg and Artur Miszczuk
Energies 2025, 18(13), 3498; https://doi.org/10.3390/en18133498 - 2 Jul 2025
Viewed by 215
Abstract
This study focuses on thermal comfort in residential buildings within the Iron Triangle area of South Australia, examining how indoor conditions influence residents’ comfort and adaptive behaviours. Conducted from June 2023 to February 2024 across 30 homes in Port Pirie, Port Augusta, and [...] Read more.
This study focuses on thermal comfort in residential buildings within the Iron Triangle area of South Australia, examining how indoor conditions influence residents’ comfort and adaptive behaviours. Conducted from June 2023 to February 2024 across 30 homes in Port Pirie, Port Augusta, and Whyalla, the research gathered data from 38 residents, who reported indoor comfort levels in living rooms and bedrooms. A total of 3540 responses were obtained. At the same time, the measurement of indoor conditions in the buildings was performed using a small HOBO MX1104 device. Using the Mean Thermal Sensation Vote (MTSV) concept, it was possible to determine the neutral operative temperature and temperature ranges for thermal comfort categories. According to the defined linear regression formula, the neutral temperature was 23.9 °C. In living rooms, it was slightly lower, at 23.7 °C, and in bedrooms, slightly higher, at 24.4 °C. For comparison, the neutral temperature was calculated based on the average Predicted Mean Vote (MPMV) and equal to 24.3 °C. Comparison of the regression curves showed that in terms of slope, the MPMV curve is steeper (slope 0.282) than the MTSV curve (slope 0.1726), and lies above it. Regarding the residents’ behaviour, a strong correlation was found between the operative temperature To and the degree of clothing Icl in living rooms. Use of ceiling fans was also studied. A clear trend was also observed regarding window and door opening. The findings of the research can be used to inform the design and operation of residential buildings with a view to enhancing thermal comfort and energy efficiency. Full article
Show Figures

Figure 1

27 pages, 1379 KiB  
Article
A Multifaceted Exploration of Shirakiopsis indica (Willd) Fruit: Insights into the Neuropharmacological, Antipyretic, Thrombolytic, and Anthelmintic Attributes of a Mangrove Species
by Mahathir Mohammad, Md. Jahirul Islam Mamun, Mst. Maya Khatun, Md. Hossain Rasel, M Abdullah Al Masum, Khurshida Jahan Suma, Mohammad Rashedul Haque, Sayed Al Hossain Rabbi, Md. Hemayet Hossain, Hasin Hasnat, Nafisah Mahjabin and Safaet Alam
Drugs Drug Candidates 2025, 4(3), 31; https://doi.org/10.3390/ddc4030031 - 1 Jul 2025
Viewed by 444
Abstract
Background: Shirakiopsis indica (Willd.) (Family: Euphorbiaceae), a mangrove species found in the Asian region, is a popular folkloric plant. Locally, the plant is traditionally used to treat various types of ailments, especially for pain relief. Therefore, the current study investigates the neuropharmacological, [...] Read more.
Background: Shirakiopsis indica (Willd.) (Family: Euphorbiaceae), a mangrove species found in the Asian region, is a popular folkloric plant. Locally, the plant is traditionally used to treat various types of ailments, especially for pain relief. Therefore, the current study investigates the neuropharmacological, antipyretic, thrombolytic, and anthelmintic properties of the S. indica fruit methanolic extract (SIF-ME). Methods: The neuropharmacological activity was evaluated using several bioactive assays, and the antipyretic effect was investigated using the yeast-induced pyrexia method, both in Swiss albino mice models. Human blood clot lysis was employed to assess thrombolytic activity, while in vitro anthelmintic characteristics were tested on Tubifex tubifex. Insights into phytochemicals from SIF-ME have also been reported from a literature review, which were further subjected to molecular docking, pass prediction, and ADME/T analysis and validated the wet-lab outcomes. Results: In the elevated plus maze test, SIF-ME at 400 mg/kg demonstrated significant anxiolytic effects (200.16 ± 1.76 s in the open arms, p < 0.001). SIF-ME-treated mice exhibited increased head dipping behavior and spent a longer time in the light box, confirming strong anxiolytic activity in the hole board and light–dark box tests, respectively. It (400 mg/kg) also significantly reduced depressive behavior during forced swimming and tail suspension tests (98.2 ± 3.83 s and 126.33 ± 1.20 s, respectively). The extract induced strong locomotor activity, causing mice’s mobility to gradually decrease over time in the open field and hole cross tests. The antipyretic effect of SIF-ME (400 mg/kg) was minimal using the yeast-induced pyrexia method, while it (100 μg/mL) killed T. tubifex in 69.33 ± 2.51 min, indicating a substantial anthelmintic action. SIF-ME significantly reduced blood clots by 67.74% (p < 0.001), compared to the control group’s 5.56%. The above findings have also been predicted by in silico molecular docking studies. According to the molecular docking studies, the extract’s constituents have binding affinities ranging from 0 to −10.2 kcal/mol for a variety of human target receptors, indicating possible pharmacological activity. Conclusions: These findings indicate that SIF-ME could serve as a promising natural source of compounds with neuropharmacological, anthelmintic, thrombolytic, and antipyretic properties. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Figure 1

Back to TopTop