Study on Microseismic Monitoring of Landslide Induced by Blasting Caving
Abstract
1. Introduction
2. Engineering Background
2.1. Mining Operation Context
2.2. Introduction to the Microseismic Monitoring System
3. Microseismic Monitoring Results of Blasting-Induced Landslide
3.1. Blasting Operations
3.2. Microseismic Monitoring Results of the Major Blasting Event
- Zone I: Elevations below 630 m, covering the P1–P3 and C6–C8 zones.
- Zone II: Elevations above 630 m, covering the P4–P5 and C1–C6 zones.
4. Microseismic Monitoring Analysis of Landslide
4.1. Principal Component Analysis of the Orientation of the Slip Surface
4.2. Principal Component Plane Ellipticity Analysis
- 1
- Moment of Inertia Method [27]
- 2
- Determination of Ellipse Major and Minor Axes
4.3. Microseismic Moment Tensor Analysis for Types of Mountain Body Slide
5. Conclusions
- (1)
- The PCA-derived attitude of the sliding surface aligns closely with the field-measured attitude, with a dip angle difference of 2.8° and a dip direction difference of 2.4°. This demonstrates that the PCA method can effectively analyze the clustering of microseismic events and determine the spatial orientation of clustered events. It provides a reliable technical basis for identifying potential sliding surfaces and monitoring early warnings of mountain body slides.
- (2)
- The moment tensor analysis of the blasting-induced mountain body slide failure reveals that the method accurately classifies rock mass rupture types. The results are consistent with the observed macroscopic shear sliding failure along the fault plane in the field. This confirms the validity and applicability of microseismic source mechanism analysis in engineering rock mass rupture studies.
- (3)
- Microseismic monitoring technology can detect precursor rock mass rupture events before a mountain body slide. By analyzing the clustering degree of microseismic events, the attitude and rupture type of potential sliding surfaces can be determined. This enables effective monitoring and early warning of potential mountain body failures, offering a novel approach for studying mining-induced mountain body slides.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, R.Q. Large-scale landslides and their sliding mechanisms in China since the 20th century. Chin. J. Rock Mech. Eng. 2007, 26, 433–454. [Google Scholar]
- Li, H.J. Slope Deformation and Stability Research Induced by Typical Human Activities. Ph.D. Thesis, Graduate University of Chinese Academy of Sciences, Beijing, China, 2008. [Google Scholar]
- Li, J.; Zhao, Z.L. Analysis on the control methods and strategies of geological disaster and slope landslide in mine engineering. World Nonferr. Met. 2020, 22, 200–201. [Google Scholar]
- Pankow, K.L.; Moore, J.R.; Mark, H.J.; Koper, K.D.; Kubacki, T.; Whidden, K.M.; McCarter, M.K. Massive landslide at Utah copper mine generates wealth of geophysical data. Gsa Today 2014, 24, 4–9. [Google Scholar] [CrossRef]
- Zhou, G. Analysis of the major “12.25” goaf collapse accident in Wanzhuang Gypsum Mining Area, Pingyi County, Linyi City, Shandong Province: Huge mining tremor triggered adjacent mine collapse, rescue of over a thousand miners lasted 44 days. Jilin Labor Prot. 2018, 11, 34–36. [Google Scholar]
- Krahn, J.; Morgenstern, N.R. Mechanics of the Frank slide. In Rock Engineering for Foundation & Slopes; ASCE: Reston, VA, USA, 1976; Volume 309. [Google Scholar]
- Evans, I.S.; Evans, D.J. The Aberfan Disaster: A Case Study in Slope Instability. Eng. Geol. 1992, 33, 211–225. [Google Scholar]
- Jin, D.S. Laojinshan landslide in Yuanyang county, Yunnan province. Chin. J. Geol. Hazard Control 1998, 9, 98–101. [Google Scholar]
- Su, H.; Lu, N.D.; Fu, X.S.; Li, Q. Analysis on the influencing factors of geological disasters and causes of landslide in Yuanyang terraced fields based on geographical detectors. Geol. Surv. China 2024, 11, 92–100. [Google Scholar]
- Zhu, S.N.; Yin, Y.P.; Li, B. Evolution characteristics of weak intercalation in massive layered rockslides-A case study of Jiweishan rockslide in Wulong, Chongqing. J. Eng. Geol. 2018, 26, 1638–1647. [Google Scholar]
- Feng, Z.; Yin, Y.P.; Li, B.; Zhang, M. Mechanism analysis of apparent dip landslide of Jiweishan in Wulong, Chongqing. Rock Soil Mech. 2012, 33, 2704–2712. [Google Scholar]
- Yin, Y.P.; Liu, C.Z.; Chen, H.Q. Investigationon catastrophic landslide of January 11, 2013 at Zhaojiagou, Zhenxiong county, Yunnan province. J. Eng. Geol. 2013, 21, 6–15. [Google Scholar]
- Yin, Z.Q.; Xu, Y.Q.; Jian, X.W. The key triggering factor and its mitigation implication of Zhaojiagou catastrophic landslide in Zhenxiong County, Yunnan province. Chin. J. Geol. Hazard Control. 2015, 26, 36–42. [Google Scholar]
- Qing, L.; Xu, L.; Huang, J.; Fu, X.; Chen, J. Intelligent prediction and numerical simulation of landslide prediction in open-pit mines based on multi-source data fusion and machine learning. Sensors 2025, 25, 3131. [Google Scholar] [CrossRef]
- Yawar, H.; Martin, C.S.; Salvatore, M. Multiple geophysical techniques for investigation and monitoring of sobradinho landslide, Brazil. Sustainability 2019, 11, 6672. [Google Scholar] [CrossRef]
- Luo, R.; Li, G.; Chen, L.; Zeng, L.; Pei, K.; Yu, X. Rock slope instability mechanism induced by repeated mining in mountain mining areas. Appl. Sci. 2024, 14, 9634. [Google Scholar] [CrossRef]
- Jones, D.B.; Reddish, D.J.; Siddle, H.J.; Whittaker, B.N. Landslides and undermining: Slope stability interaction with mining. In Proceedings of the 7th International Society of Rock, Mechanics Congress, Aachen, Germany, 16–20 September 1992. [Google Scholar]
- Boris, B. Numerical Modelling of Complex Slope Deformations. Ph.D. Thesis, University of Saskatchwan, Saskatoon, SK, USA, 1997. [Google Scholar]
- Mu, C.L.; Pei, X.Q.; Wang, R. Analysis on deformation characteristics of a cutting high bedding rock slope with multiple weak layers based on physical model tests. Chin. J. Geol. Hazard Control 2022, 33, 61–67. [Google Scholar]
- Yin, Y.P. Mechanism of apparent dip slide of inclined bedding rockslide-a case study of Jiweishan rockslide in Wulong, Chongqing. Chin. J. Rock Mech. Eng. 2010, 29, 217–226. [Google Scholar]
- Liu, C.; Jiang, A.M.; Dong, Y.C. Mechanism analysis and numerical simulation for landslide of mountain slope with underground complex goaf. Min. Metall. Eng. 2022, 42, 35–42. [Google Scholar]
- Liu, H.F.; Luo, H.Y.; Liu, Z.Q. Study on the ore pillar remining scheme during the transition from underground to open-pit mining at Shizhuyuan Polymetallic Mine. Min. Technol. 2024, 24, 13–18. [Google Scholar]
- He, B.Q.; Li, Z.Z.; Cheng, G.H. Analysis on safety and stability of open-pit and underground collaborative mining in Shizhuyuan Polymetallic Mine. Min. R&D 2023, 43, 1–10. [Google Scholar]
- Xie, Y.H.; Yang, T.; Jia, D.N. Minor fault detection based on PCA and moving window cumlative sum. Comput. Appl. Softw. 2023, 40, 60–66. [Google Scholar]
- Gao, X. Industrial Process Monitoring Based on Big Data Multivariate Statistics; Publishing House of Electronics Industry: Beijing, China, 2017. [Google Scholar]
- Yue, B.; Min, Y.Z.; Ma, H.F.; Xiao, B.Y. Research on image enhancement preprocessing method in rail surface defects detection system. J. Railw. Sci. Eng. 2018, 15, 3248–3256. [Google Scholar]
- Xu, C.H.; Wu, H. Application of the moment of interia method in predicting the constitutive relationship of multiaxial fatigue. Chin. Q. Mech. 2021, 42, 517–527. [Google Scholar]
- Ohtsu, M. Acoustic emission theory for moment tensor analysis. Res. Nondestruct. Eval. 1995, 6, 169–184. [Google Scholar] [CrossRef]
- Li, H.; Chang, X.; Hao, J. Hydraulic fracturing shear/tensile/compressive crack investigation using microseismic data. Remote Sens. 2024, 16, 1902. [Google Scholar] [CrossRef]
- Li, S.L.; Lin, K.F.; Zhou, M.J. Study on failure precursors and seismogenic mechanisms of a large landslide based on moment tensor analysis. Chin. J. Rock Mech. Eng. 2019, 38, 2000–2009. [Google Scholar]
Event Number | Coordinate | Event Number | Coordinate | ||||
---|---|---|---|---|---|---|---|
North/m | East/m | Depth/m | North/m | East/m | Depth/m | ||
1 | 8764.59 | 6748.95 | 714.05 | 28 | 8686.69 | 6703.73 | 670.01 |
2 | 8745.7 | 6739.25 | 687.29 | 29 | 8754.28 | 6746.31 | 697.84 |
3 | 8779.89 | 6756.93 | 673.28 | 30 | 8777.13 | 6759.04 | 680.62 |
4 | 8751.25 | 6744.39 | 687.73 | 31 | 8776.4 | 6758.22 | 679.07 |
5 | 8687.59 | 6724.84 | 700.72 | 32 | 8671.68 | 6709.38 | 724.51 |
6 | 8656.33 | 6692.3 | 732.61 | 33 | 8674.47 | 6722.98 | 730.27 |
7 | 8670.31 | 6734.5 | 677.23 | 34 | 8673.83 | 6706.25 | 707.16 |
8 | 8815.82 | 6749.99 | 645.9 | 35 | 8753.47 | 6745.71 | 685.57 |
9 | 8687.15 | 6719.31 | 716.13 | 36 | 8779.81 | 6755.42 | 661.12 |
10 | 8780.7 | 6761.18 | 679.02 | 37 | 8788.56 | 6755.49 | 644.74 |
11 | 8783.22 | 6767.78 | 681.08 | 38 | 8671.87 | 6736.41 | 723.01 |
12 | 8777.71 | 6758.86 | 679.04 | 39 | 8764.91 | 6741.32 | 687.65 |
13 | 8774.76 | 6757.05 | 674.27 | 40 | 8773.67 | 6757.63 | 678.16 |
14 | 8775.94 | 6758.46 | 681.37 | 41 | 8775.22 | 6757.62 | 679.92 |
15 | 8753.34 | 6739.53 | 688.58 | 42 | 8683 | 6713.84 | 690.76 |
16 | 8756.39 | 6742.82 | 693.05 | 43 | 8781.85 | 6759.35 | 670.17 |
17 | 8758.55 | 6737.92 | 702.4 | 44 | 8761.72 | 6730.96 | 674.24 |
18 | 8655.76 | 6697.37 | 737.49 | 45 | 8676.09 | 6697.72 | 701.01 |
19 | 8703.29 | 6711.8 | 723.92 | 46 | 8671.33 | 6713.16 | 738.89 |
20 | 8694.39 | 6730.14 | 683.57 | 47 | 8751.07 | 6741.72 | 689 |
21 | 8773.55 | 6754.8 | 670.15 | 48 | 8679.43 | 6697.61 | 680.98 |
22 | 8773.29 | 6752.72 | 664.42 | 49 | 8777.24 | 6761.22 | 680.04 |
23 | 8782.13 | 6758.29 | 673.2 | 50 | 8777.55 | 6761.39 | 677.46 |
24 | 8782.21 | 6760.57 | 674.78 | 51 | 8821.96 | 6750.71 | 646.05 |
25 | 8781.29 | 6760.03 | 674.07 | 52 | 8793.54 | 6763.04 | 655.12 |
26 | 8782.49 | 6772.29 | 669.39 | 53 | 8775.82 | 6758.36 | 674.96 |
27 | 8756.43 | 6752.93 | 645.58 | 54 | 8687.92 | 6762.4 | 723.04 |
Event Number | Coordinate | Event Number | Coordinate | ||||
---|---|---|---|---|---|---|---|
North/m | East/m | Depth/m | North/m | East/m | Depth/m | ||
1 | 0.44020 | 0.33790 | 1.16045 | 28 | −1.20832 | −1.77069 | −0.70801 |
2 | 0.04045 | −0.11441 | 0.02512 | 29 | 0.22202 | 0.21480 | 0.47272 |
3 | 0.76398 | 0.71001 | −0.56928 | 30 | 0.70557 | 0.80840 | −0.25787 |
4 | 0.15790 | 0.12527 | 0.04379 | 31 | 0.69013 | 0.77016 | −0.32363 |
5 | −1.18928 | −0.78634 | 0.59490 | 32 | −1.52596 | −1.50724 | 1.60423 |
6 | −1.85080 | −2.30367 | 1.94788 | 33 | −1.46692 | −0.87307 | 1.84860 |
7 | −1.55495 | −0.33590 | −0.40169 | 34 | −1.48046 | −1.65319 | 0.86813 |
8 | 1.52433 | 0.38640 | −1.73091 | 35 | 0.20488 | 0.18682 | −0.04786 |
9 | −1.19859 | −1.04420 | 1.24870 | 36 | 0.76229 | 0.63960 | −1.08518 |
10 | 0.78112 | 0.90818 | −0.32575 | 37 | 0.94746 | 0.64286 | −1.78013 |
11 | 0.83445 | 1.21594 | −0.23835 | 38 | −1.52194 | −0.24684 | 1.54059 |
12 | 0.71785 | 0.80000 | −0.32490 | 39 | 0.44697 | −0.01788 | 0.04039 |
13 | 0.65542 | 0.71560 | −0.52727 | 40 | 0.63235 | 0.74265 | −0.36224 |
14 | 0.68039 | 0.78135 | −0.22605 | 41 | 0.66515 | 0.74218 | −0.28756 |
15 | 0.20213 | −0.10135 | 0.07985 | 42 | −1.28641 | −1.29927 | 0.17234 |
16 | 0.26667 | 0.05206 | 0.26949 | 43 | 0.80546 | 0.82285 | −0.70122 |
17 | 0.31238 | −0.17642 | 0.66618 | 44 | 0.37947 | −0.50097 | −0.52855 |
18 | −1.86286 | −2.06726 | 2.15492 | 45 | −1.43264 | −2.05094 | 0.60721 |
19 | −0.85703 | −1.39439 | 1.57920 | 46 | −1.53337 | −1.33098 | 2.21432 |
20 | −1.04537 | −0.53920 | −0.13271 | 47 | 0.15409 | 0.00077 | 0.09767 |
21 | 0.62981 | 0.61069 | −0.70207 | 48 | −1.36196 | −2.05607 | −0.24259 |
22 | 0.62431 | 0.51370 | −0.94517 | 49 | 0.70790 | 0.91005 | −0.28247 |
23 | 0.81138 | 0.77342 | −0.57267 | 50 | 0.71446 | 0.91797 | −0.39193 |
24 | 0.81308 | 0.87974 | −0.50564 | 51 | 1.65427 | 0.41997 | −1.72455 |
25 | 0.79361 | 0.85456 | −0.53576 | 52 | 1.05284 | 0.99491 | −1.33974 |
26 | 0.81900 | 1.42624 | −0.73431 | 53 | 0.67785 | 0.77669 | −0.49800 |
27 | 0.26752 | 0.52349 | −1.74449 | 54 | −1.18229 | 0.96507 | 1.54186 |
Event Number | North/m | East/m | Depth/m | Event Number | North/m | East/m | Depth/m |
---|---|---|---|---|---|---|---|
1 | 8660 | 6691 | 799 | 21 | 8759 | 6738 | 702 |
2 | 8656 | 6692 | 733 | 22 | 8754 | 6746 | 698 |
3 | 8666 | 6658 | 747 | 23 | 8756 | 6743 | 693 |
4 | 8656 | 6697 | 737 | 24 | 8765 | 6741 | 688 |
5 | 8671 | 6713 | 739 | 25 | 8751 | 6742 | 689 |
6 | 8674 | 6723 | 730 | 26 | 8753 | 6740 | 689 |
7 | 8672 | 6709 | 725 | 27 | 8753 | 6746 | 686 |
8 | 8688 | 6762 | 723 | 28 | 8746 | 6739 | 687 |
9 | 8687 | 6719 | 716 | 29 | 8776 | 6758 | 681 |
10 | 8703 | 6712 | 724 | 30 | 8783 | 6768 | 681 |
11 | 8728 | 6605 | 725 | 31 | 8781 | 6761 | 679 |
12 | 8674 | 6706 | 707 | 32 | 8780 | 6757 | 673 |
13 | 8676 | 6698 | 701 | 33 | 8775 | 6757 | 674 |
14 | 8688 | 6725 | 701 | 34 | 8774 | 6755 | 670 |
15 | 8683 | 6717 | 691 | 35 | 8782 | 6772 | 669 |
16 | 8694 | 6730 | 684 | 36 | 8780 | 6755 | 661 |
17 | 8679 | 6698 | 681 | 37 | 8794 | 6763 | 655 |
18 | 8670 | 6734 | 677 | 38 | 8822 | 6751 | 646 |
19 | 8687 | 6704 | 670 | 39 | 8816 | 6750 | 646 |
20 | 8765 | 6749 | 714 |
Event Number | R | Rupture Type | Event Number | R | Rupture Type |
---|---|---|---|---|---|
1 | 34.67 | Tensile rupture | 21 | −31.17 | Compaction rupture |
2 | −28.14 | Shear rupture | 22 | 15.90 | Shear rupture |
3 | −38.20 | Compaction rupture | 23 | 28.28 | Shear rupture |
4 | −31.59 | Compaction rupture | 24 | 24.05 | Shear rupture |
5 | 37.41 | Tensile rupture | 25 | 22.97 | Shear rupture |
6 | −42.78 | Compaction rupture | 26 | 15.68 | Shear rupture |
7 | 1.50 | Shear rupture | 27 | −24.67 | Shear rupture |
8 | 33.30 | Tensile rupture | 28 | −37.02 | Compaction rupture |
9 | 34.51 | Tensile rupture | 29 | 10.28 | Shear rupture |
10 | 20.88 | Shear rupture | 30 | 19.43 | Shear rupture |
11 | −32.21 | Compaction rupture | 31 | 9.59 | Shear rupture |
12 | −46.01 | Compaction rupture | 32 | 1.73 | Shear rupture |
13 | −34.29 | Compaction rupture | 33 | −8.17 | Shear rupture |
14 | 36.23 | Tensile rupture | 34 | −23.12 | Shear rupture |
15 | 42.72 | Tensile rupture | 35 | 29.65 | Shear rupture |
16 | −35.27 | Compaction rupture | 36 | 33.31 | Tensile rupture |
17 | 31.24 | Shear rupture | 37 | 15.12 | Shear rupture |
18 | −42.59 | Compaction rupture | 38 | 0.12 | Shear rupture |
19 | −27.35 | Compaction rupture | 39 | −1.27 | Shear rupture |
20 | 34.93 | Tensile rupture |
Event Number | Coordinate | Event Number | Coordinate | ||
---|---|---|---|---|---|
X/m | Y/m | X/m | Y/m | ||
1 | −10.8765 | 9.95176 | 28 | 56.86277 | 2.854803 |
2 | −0.59293 | 3.109962 | 29 | −6.75824 | 3.53674 |
3 | −41.3879 | −0.28007 | 30 | −37.1268 | −1.48474 |
4 | −7.04436 | 1.29217 | 31 | −36.7571 | −1.49648 |
5 | 59.60884 | −7.15709 | 32 | 87.23763 | 4.961927 |
6 | 109.3827 | 14.78544 | 33 | 82.11688 | −4.01791 |
7 | 62.90408 | −29.0757 | 34 | 80.31245 | 4.257605 |
8 | −79.8477 | 14.88671 | 35 | −10.1965 | 0.610695 |
9 | 67.38239 | 1.259091 | 36 | −45.1032 | −2.07072 |
10 | −41.5376 | −2.1254 | 37 | −58.5264 | −2.32475 |
11 | −45.295 | −6.14593 | 38 | 77.11557 | −18.5307 |
12 | −38.1274 | −1.4671 | 39 | −17.8534 | 10.02041 |
13 | −36.628 | −2.43047 | 40 | −34.5054 | −2.44011 |
14 | −35.6262 | −1.33127 | 41 | −35.2227 | −1.29628 |
15 | −6.86157 | 6.61236 | 42 | 63.89554 | −2.26831 |
16 | −9.07013 | 6.27485 | 43 | −45.0349 | −2.26045 |
17 | −5.92051 | 13.79336 | 44 | −16.2277 | 14.12077 |
18 | 109.8395 | 11.4029 | 45 | 79.1457 | 11.04772 |
19 | 58.76017 | 16.88287 | 46 | 91.32151 | 5.168681 |
20 | 45.78073 | −12.9662 | 47 | −5.5069 | 3.822066 |
21 | −36.2544 | −2.07439 | 48 | 69.18483 | 7.611306 |
22 | −37.335 | −1.84304 | 49 | −38.188 | −3.45225 |
23 | −43.8339 | −0.46505 | 50 | −39.431 | −4.10676 |
24 | −44.1382 | −1.98987 | 51 | −85.3725 | 17.05412 |
25 | −43.4034 | −2.11622 | 52 | −61.7995 | −3.9723 |
26 | −50.3789 | −13.2768 | 53 | −37.7598 | −2.90742 |
27 | −29.4603 | −14.2955 | 54 | 54.13868 | −33.6491 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, F.; Wang, W. Study on Microseismic Monitoring of Landslide Induced by Blasting Caving. Appl. Sci. 2025, 15, 7567. https://doi.org/10.3390/app15137567
Peng F, Wang W. Study on Microseismic Monitoring of Landslide Induced by Blasting Caving. Applied Sciences. 2025; 15(13):7567. https://doi.org/10.3390/app15137567
Chicago/Turabian StylePeng, Fuhua, and Weijun Wang. 2025. "Study on Microseismic Monitoring of Landslide Induced by Blasting Caving" Applied Sciences 15, no. 13: 7567. https://doi.org/10.3390/app15137567
APA StylePeng, F., & Wang, W. (2025). Study on Microseismic Monitoring of Landslide Induced by Blasting Caving. Applied Sciences, 15(13), 7567. https://doi.org/10.3390/app15137567